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Schaffner’s Model of Theory Reduction:
Critique and Reconstruction*

Rasmus Grønfeldt Winther†‡

Schaffner’s model of theory reduction has played an important role in philosophy of
science and philosophy of biology. Here, the model is found to be problematic because
of an internal tension. Indeed, standard antireductionist external criticisms concerning
reduction functions and laws in biology do not provide a full picture of the limits of
Schaffner’s model. However, despite the internal tension, his model usefully highlights
the importance of regulative ideals associated with the search for derivational, and
embedding, deductive relations among mathematical structures in theoretical biology.
A reconstructed Schaffnerian model could therefore shed light on mathematical theory
development in the biological sciences and on the epistemology of mathematical prac-
tices more generally.

1. Introduction. The general model of theory reduction presented by Ken-
neth Schaffner (1967, 1969, 1976, 1993a, 1993b) has played an important
role in the literature on reduction. It provided a clear logical empiricist
account of theory reduction. It also served as a counterpoint for critics
to develop alternative views of reduction and antireduction. In this paper
I wish to complement previous literature on Schaffner’s model in two
ways. First, I articulate a previously unexplored critique that arises from
noticing a tension internal to the model. The model fails on its own terms.
Indeed, previous external criticisms regarding the model’s logical empir-
icist assumptions about laws and reduction functions provide an inade-
quate and incomplete picture of the weaknesses of the model.
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Second, I advocate reconstructing a Schaffner-like model. Some types
of mathematical laws and reduction functions are pertinent to theoretical
biology. Moreover, theoretical biology (e.g., parts of evolutionary theory
and systems theory) obeys important regulative ideals concerning the
search for derivational, and embedding, deductive relations among ab-
stract mathematical structures. In this context, distinct levels of biological
organization are often associated with different types of mathematical
structures (e.g., models of gene regulatory networks and models of mor-
phological development). Since Schaffner’s model captures laws, reduction
functions, and the regulative ideal better than other available accounts
of theory reduction, reconstructing something like it is worthwhile. Such
a model would also shed light on the epistemology of mathematical
practices.

This paper is structured as follows. For the remainder of this section,
I document the importance of Schaffner’s model. I also present a skeleton
version of my critique. In Section 2, I elucidate the model. Section 3
explores the internal critique. Section 4 evaluates whether there is any
escape for Schaffner’s model. Section 5 assesses the relevance of a recon-
structed mathematical account of theory reduction for contemporary the-
oretical biology.

1.1. The Continuing Relevance of Schaffner’s Model. Schaffner’s ac-
count continues to be discussed. Batterman (2005) contends that Schaff-
ner’s analysis is a “sophisticated Nagelian type schema.” In the context
of proposing a new unified gene concept, Beurton claims that Schaffner’s
views on general reduction are shared by “most molecular biologists”
(2000, 308). Third, Sarkar (1998) and Brigandt and Love (2008) examine
Schaffner’s model at great length.

Why should this be? After all, the standard view seems to be that
Schaffner’s model is inadequate since biology lacks theoretical laws from
which to deductively derive anything. Current proposals of reduction fo-
cus on mechanistic, causal or ontological reduction (e.g., Sarkar 1992,
1998; Rosenberg 1997, 2006; Darden and Tabery 2005; Weber 2005; Wim-
satt 2007; Brigandt and Love 2008). In general, theory reduction seems
to have been abandoned in the philosophy of biology as a viable option.

However, other efforts in the philosophy of science provide two reasons
for holding that this model is not a dead letter. First, recent work defends
the existence of mathematical laws in evolution and ecology (e.g., Cooper
1996; Brandon 1997; Sober 1997; Waters 1998; Lange 2000). These anal-
yses taken in conjunction with some recent scientific work in evolutionary
theory and systems biology (with roots in systems theory) suggests that
we should accept the existence of a theoretical, mathematical biology (e.g.,
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Okasha 2007; Winther 2008). External critiques of Schaffner’s model that
do so by rejecting laws tout court may therefore miss their mark.

Second, Schaffner’s model captures important scientific norms regard-
ing derivational and embedding relations, which are also connected to
unification (e.g., Friedman 1974, 1983; Kitcher 1981, 1989, 1999; van
Fraassen 1989; Halonen and Hintikka 2005). These ideals are operative
in theoretical biology. Given that Schaffner’s model of reduction respects
these ideals as well as the pertinence of laws for theoretical biology, it
deserves our continued attention.

1.2. An Internal Critique of Schaffner’s Model. Very briefly, here is the
internal critique. Two desiderata are essential to his model: (1) effecting
a heterogeneous reduction between two conceptually distant theories and
(2) satisfying the sets of closeness constraints pertinent to both deductive
inference and theory correction. I show that both sets of closeness con-
straints cannot be simultaneously satisfied given significant conceptual
distance. The constraints are in tension.

2. The Basics of Schaffner’s Model. The basic logical empiricist account
of reduction views scientific explanation as a deductive relation between
theories (e.g., Hempel and Oppenheim 1948; Nagel 1949, 1961, 1979;
Hempel 1966). For a theory T1 to reduce a theory T2 is for T2 to be
deducible from T1:

T j T . [1]1 2

Following convention, we call T1 the ‘reducing theory’ and T2 the ‘re-
duced theory’. Nagel distinguishes between homogeneous and heteroge-
neous reduction. Homogeneous reduction “generates no special logical
puzzles” (1961, 339) because the two theories have similar formalizations
and also contain directly connectable, even identical, terms. Terms are
the objects, predicates, and relations pertinent to the theory. But hetero-
geneous reduction does elicit philosophical problems since the two theories
differ in their formalizations and terms. Moreover, they are conceptually
distant.

The basic logical empiricist account holds that a theory consists roughly
of theoretical and observational components: (1) axiomatic theoretical
laws, and experimental-observational laws, (2) theoretical and observa-
tional vocabularies, and (3) bridge principles connecting theoretical and
observational components (e.g., Hempel 1966). Nagel makes the existence
of (1) laws and (2) vocabularies the first two “formal conditions for re-
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duction” (1961, 345–351).1 Nagel’s third and last explicit condition for
reduction requires the background structure given by the first two con-
ditions. This third condition consists of two “formal requirements that
must be satisfied for the reduction of one science to another” (352): de-
rivability and connectability. Bridge principles are the “assumptions” (352–
353) that ground these two formal requirements. Again, the requirements
are trivially satisfied for homogeneous reductions. However, for hetero-
geneous reductions, satisfying them is challenging; communal effort over
historical time is required.

The “condition of derivability” (354) requires that the laws and theo-
retical assumptions of the reduced science must be deductively derivable
from those of the reducing science (Nagel 1961, 354). Indeed, there are
many important similarities between Hempel’s Deductive-Nomological
model of explanation and Nagel’s account of theory reduction.

The “condition of connectability” requires that the terms of the reduced
theory be connected to the terms of the reducing theory (Nagel 1961,
353–354). Derivability entails connectability, but not vice versa (355).
Nagel (1961) is, unfortunately, none too concerned with specifying the
nature of these connections.2 He simply notes that “assumptions of some
kind must be introduced” in order to connect the terms of the two theories
(353). Such “assumptions” have been named “bridge principles,” “bridge
laws,” and “correspondence rules” (e.g., Nagel 1961, Hempel 1966, Kitcher
1984, Sarkar 1998). I follow Schaffner and call them ‘reduction functions’.
This terminology reminds us that the principles and rules justifying the
connections are intended to be functions in the technical sense, subject
to the formal constraints of mapping elements in the domain (set of all
inputs) to elements in the range (set of all outputs). Schaffner’s view is
even stronger. Each reduction function must be extensionally injective
(one-to-one) and surjective (onto), that is, it must be bijective. By focusing
on relations across theories, this terminology also disambiguates two
senses of ‘bridging’: (1) linking theoretical and observational terms of the
same theory (e.g., Hempel’s main use), or (2) connecting terms, of either
vocabulary, across theories (e.g., Nagel’s and Schaffner’s primary use).

1. Nagel observes that informal, pragmatic conditions must also be met for a theory
reduction of the form [1] to be scientifically interesting. Since Schaffner agrees with
these pragmatic conditions, I will not consider them further.

2. But see Nagel 1979, 103–107, where he develops a sketch of an extensional account
in rough outline similar to Schaffner’s account. This chapter is rarely, if ever, cited in
the subsequent literature.



SCHAFFNER’S MODEL OF THEORY REDUCTION 123

In what follows, I employ Schaffner’s sense of reduction functions.3 I
return to this point in Section 5.

Schaffner concurs with Nagel’s two formal conditions. He supplements
the formal account by (1) introducing corrected reduced theory and (2)
clearly characterizing reduction functions.

First, theory correction. In response to Nagel’s account of theory re-
duction, Feyerabend argues that the reducing and reduced theories are
incommensurable. Specifically, the intensions of their respective terms, as
well as their respective ontological commitments, are not commensurate.
It is impossible to directly connect terms in a reduced science to terms in
an uncorrected reducing science. Indeed, putative theory reduction is ac-
tually theory replacement (Feyerabend 1962, 1965). Schaffner addresses
this problem by introducing the notion of a corrected reduced theory.
Roughly, Schaffner holds that the original reduced theory, T2, and the
corrected reduced theory, , belong to a set, K, of versions of the sameT*2
theory:

K p {T , T*, T**, . . .}. [2]2 2 2

Between any pair of theories of the set K there are relations of “ap-
proximate equality, close agreement, and strong analogy” (Schaffner 1976,
617; see also 1993a, 429). These are stringent constraints on the similarity
between any two versions of the same theory. These closeness constraints
define what it is to be part of the set K.4 Schaffner’s response to Feyer-
abend’s incommensurability objection, then, is that the corrected reduced
theory ( ) serves as the commensurability link between the original re-T*2
duced (T2) and reducing (T1) theory.5

What about the correction of the reducing theory? For two reasons, I
will not address this here. First, Schaffner rarely mentions it (e.g., Schaff-
ner 1969, 332; 1993a; Hull 1976, 662; and Kitcher 1984, 338, briefly discuss
the necessity of reducing theory correction). Second, and more impor-
tantly, this kind of theory correction does not make any difference to my
argument. In fact, considering it would only make the conceptual distance

3. Nagel (1961) argues that it is actually the theoretical component of T1 that reduces
the “experimental laws” (and “if it has an adequate theory, its theory as well”) of T2.

(352). However, significant portions of Nagel’s argument as well as subsequent dis-
cussions on theory reduction bracket this point. Indeed, the promises and pitfalls of
intertheory reduction can be addressed without loss of philosophical generality even
when the distinction between theoretical and observational components of each theory
is set aside.

4. Kenneth Waters provided critical feedback on this point.

5. Another strategy for linking terms in the two theories is to use Hartry Field’s (1973)
notion of “partial denotation.” For a recent related effort, see Psillos 1999 (especially
Chapter 12).
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larger or maintain it. Moreover, we would now be concerned with si-
multaneously satisfying the closeness constraints (1) pertinent to deductive
inference from to and (2) those relevant to theory correction ofT* T*1 2

both T1 to and T2 to .T* T*1 2

Schaffner also supplements Nagel’s account by characterizing reduction
functions. According to Schaffner, reduction functions connect equivalent
terms of the two theories through coextensional referencing (1976, 614–
615, 620–624; see discussion in 1993a, 466–477). That is, the extension
of a particular term of the corrected reduced theory is identical to the
extension of the equivalent term in the reducing theory. Synthetic identities
between the vocabularies of the two theories are established. Such re-
duction functions can be schematically represented thus (see Schaffner
1976, 618; 1993a, 429):

Term p function (Term ), where 1 ≤ i ≤ n. [3]i,T2 i i,T1*

Here, the terms—that is, the natural kinds—can be of entities, predi-
cates, or relations, or combinations thereof. The total number of terms
in the reduced theory is n. Each reduction function i has two further,
technical properties. Each reduction function must be injective in that
every element of the domain term i of the reducing theory maps uniquely
to one element of the range term i of the reduced theory. That is, the
mapping must be one-to-one, not many-to-one (n.b., one-to-many element
relations are already prohibited by the very definition of function). Second,
each reduction function must be surjective in that no element of the range
term i is extensionally unmapped to an element of the domain term i,
and vice versa. The reduction functions are thus bijective. The terms are
extensionally equivalent. This bijective mapping structure guarantees that
every term of the reduced theory has a one-to-one correspondence with
a single term of the reducing theory. Now, since the reducing theory is
more general, it may contain further terms that map bijectively to terms
in other reduced theories. The existence of bijective reduction functions
is necessary but not sufficient for the justification of the deduction from
the reducing to the reduced theory. Moreover, these reduction functions
impose closeness constraints.

Thus, Schaffner’s full account of theory reduction can be expressed as

{T , {reduction functions},1

{various types of initial conditions}} j T*. [4]2

Note that the deduction is to the corrected reduced theory (as he in-
dicates in his formalizations in 1976, 618; 1993a, 429), and that a large
number and variety of bijective reduction functions are explicitly included
in the deduction. Initial conditions such as background assumptions re-
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garding ‘normal conditions’, must also be expressed and held fixed for
the deduction to go through. In contrast, in Nagel’s model, there is no
explicit notion of a corrected reduced theory and the reduction functions
are only implicit.

Before detailing my internal critique, I mention three external criticisms
of Schaffner’s model. These arose in the context of Schaffner applying
his account to genetics. First, a number of commentators argue that mo-
lecular genetics does not have any strong, integrated theory (Hull 1972;
Wimsatt 1976; Kitcher 1984; Sarkar 1992, 1998). Therefore, Schaffner’s
account premised on deductive intertheoretical relations must fail. Second,
Hull questions the very possibility of providing corrected reduced theories
that satisfy Schaffner’s closeness constraints. Hull argues that “similarity
in substantive content . . . is not sufficient for individuating scientific
theories. The substantive content of science changes too rapidly and spo-
radically for that” (1976, 656). Instead, he endorses a view individuating
scientific theories genealogically, rather than according to substantive
content.

Third, it is argued that there are few, if any, one-to-one correspondence
reduction functions between classical (T2) and molecular (T1) genetics (e.g.,
Hull 1972, 1974, 1976, 1981, 2002; Rosenberg 1978, 1985, 2002; Kitcher
1984; Sarkar 1998; see Ruse 1976 for a response). There are two separate
arguments for the absence of such functions:

1. The reduction functions are extensionally one-to-many in that the
elements of (at least some of) the single terms of T1 map to elements
of two or more terms of T2 (no ‘type-type reduction’), and each
element of T1 maps uniquely onto a single element of T2 (‘token-
token reduction’). Since mappings exist across the terms of T2, such
relations cannot be reduction functions in the sense of [3] (Brigandt
and Love [2008] call this “context-dependence of molecular fea-
tures”).

2. The reduction functions are extensionally many-to-one in that the
elements of (at least some of) the single terms of T2 map to elements
of two or more terms of T1 (no ‘type-type reduction’) and we accept
standard token-token reduction. Again, since mappings occur across
terms, such relations cannot be reduction functions in the sense of
[3] (this is the “multiple realizability argument”; see Fodor 1974,
Kim 1992; Sober 1999).

Because of these two criticisms, neither the connectability condition nor
the derivability condition can be satisfied (but see Waters 1990, 2000 on
connectability). In short, Schaffner insists on the bijectivity of each ideal
pair of terms and on type-type reduction. His critics deny bijectivity (and
type-type reduction), while accepting token-token reduction. Antireduc-
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tionist critics claim that there are one-to-many and many-to-one exten-
sional mappings across pairs of actual terms in T1 and T2.

I bracket the first two external criticisms since my critique is internal.
I will return to the third worry because even an internal critique must
consider it explicitly.

3. The Internal Critique. The internal critique of Schaffner’s account
arises from noticing a tension regarding closeness constraints. Given a
large conceptual distance, if the corrected reduced theory ( ) is of theT*2
same type as the original reduced theory (T2) (i.e., they both belong to
the set K of [2]), thereby satisfying closeness constraints on theory cor-
rection, it will not be possible to articulate simple, bijective reduction
functions. Conversely, in so far as suitable reduction functions can be
expressed, thereby satisfying closeness constraints on deductive inference,
the corrected reduced theory will not be of the same type as the original
reduced theory. In short, both sets of closeness constraints cannot be met
simultaneously when a large conceptual distance is to be covered. Satisfy
one constraint, and you will not be able to satisfy the other. The con-
straints are in tension, even by the model’s own standards. I justify my
critique by further exploration of the two sets of closeness constraints and
the idea of conceptual distance.

Consider theory correction. Schaffner does not suggest methods, formal
or otherwise, for such transformations. Sarkar observes that a “contro-
versial element” in Schaffner’s model is that “there seemed to be no con-
text-independent characterization of the relation between T2 and . . .,T*2
let alone a formal one. In such a circumstance, no model of reduction
that relies only on formal criteria for delineating theories and relations
between them can be constructed” (Sarkar 1998, 27; formalism changed
for consistency). Indeed, for Schaffner the relation between T2 and isT*2
“informal” (1976, 617). It remains unclear whether any characterization
of theory correction consistent with logical empiricist assumptions could
be given. Despite this external criticism, Schaffner insists that theory cor-
rection can be done and that there are closeness constraints. He states:
“traditional genetics (T2) is not radically reanalyzed; it is rather corrected
and enriched” (1993a, 445). Original and corrected theories must be
strongly similar, in both formal and substantive respects.6

6. It is worth noting that Kitcher does provide an explicit account of how to specify
the set K of [2]: “Classical genetics persists as a single theory with different versions
at different times in the sense that different practices are linked by a chain of practices
along which there are relatively small modifications in language, in accepted questions,
and in the patterns for answering questions” (1984, 353). Although Kitcher appeals
to continuity of practice rather than to theory correction, he seems to maintain that
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Now consider reduction functions of the form of [3]. In discussing the
reduction of classical to molecular genetics, Schaffner provides the ex-
ample of linking the classical genetic term “dominance” to coextensive
combinations of molecular genetic (1) predicates: “DNA sequence” and
“amino acid sequence” and (2) relations: “chemically causes” (see 1976,
623; 1993a, 442 for details).7 This bijective reduction function, with a
molecular genetic term that combines molecular predicates and relations
in a particular way, would indeed satisfy the closeness constraints on
deductive inference. However, it is questionable whether this is a legitimate
reduction function. Indeed, Schaffner simply assumes that the molecular
basis of dominance will only involve the production of amino acid se-
quences from DNA, and will furthermore be robust to other causes and
background conditions (for criticisms of these assumptions, see Sarkar
1998, 168–173; Bagheri 2005). Despite this external criticism, Schaffner
insists on the availability of reduction functions to ground deductions of
all the terms of . Such functions impose one-to-one correspondenceT*2
extensional mappings, and thereby force and T1 to be close.T*2

Now, the tension between the two closeness constraints arises because
the conceptual distance between T1 and T2 is large. After all, this fact is
what makes—or at least, would make—a reduction between them inter-
esting and useful. As Sarkar contends in a more general context: “Unless
there is some such difference between where the explanans and the ex-
planada come from, there is little sense in calling an explanation a re-
duction” (2001, 238). Moreover, Nagel observes that heterogeneous re-
ductions, and not homogeneous reductions, are problematic: “Difficulties
are frequently experienced in comprehending the import of a reduction
as a consequence of which a set of distinctive traits of some subject matter
is assimilated to what is patently a set of quite dissimilar traits. In such
cases, the distinctive traits that are the subject matter of the secondary
(reduced) science fall into the province of a theory that may have been
initially designed for handling qualitatively different materials and that
does not even include some of the characteristic descriptive terms of the

different versions of the same theory must be continuous and similar to one another.
Furthermore, there is useful literature on constraints on analogical inference (e.g., Gent-
ner 1983; Holyoak and Thagard 1989; Markman 1997). Analogical inference is one
possible epistemic manner of correcting theories. Holyoak and Thagard (1989) distin-
guish among three types of constraints on ‘analogical mapping’ between a base and a
target (e.g., between T2 and ): structural consistency, semantic similarity, and prag-T*2
matic centrality. Both Kitcher’s account and work on analogical inference in cognitive
science could provide a more detailed articulation of theory correction and closeness
constraints on theory correction.

7. Hull (1976) complains that this is basically the only reduction function Schaffner
provides.
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secondary science in its own set of basic theoretical distinctions” (Nagel
1961, 339–340). The two theories have “quite dissimilar traits,” handle
“qualitatively different materials,” “include . . . [different] descriptive
terms,” and have their own “theoretical distinctions.” They are concep-
tually distant. Given the proximity of Schaffner’s analysis to Nagel’s
model, and the general force of these arguments, Schaffner would have
to agree that heterogeneous reductions imply a large conceptual distance.

Furthermore, the two theories will be strikingly dissimilar in most ac-
tual, historical cases. They have distinct formalizations, key concepts,
ontological commitments, historical origins, and developmental routes.
Any theory reduction of one to the other would be a nonautomatic,
communal accomplishment. This is an empirical argument for the signifi-
cant conceptual distance between T1 and T2.

How exactly is my critique internal? Hull, Kitcher, and Rosenberg argue
that much of the original meaning (intension) of the term ‘dominance’ in
uncorrected classical genetics is lost when any effective reduction function
is articulated. In fact, terms of any T2 lose much of their intension as they
get transformed and restricted into terms that can ground the deduction
of from T1. Can I then legitimately grant Schaffner the possibility ofT*2
stating sufficiently simple reduction functions? If I concede this possibility,
then how do I respond to Hull’s, Kitcher’s, and Rosenberg’s worries? If
I do not grant it, then how is my critique internal?

In my view, Hull, Kitcher, and Rosenberg are justified in insisting on
the necessary complexity of reduction functions if and only if they take
the starting points of the reduction to be the uncorrected theories T2 and
T1 (or theories that are extremely close to T1 and T2). But Schaffner need
not accept this. Bijective reduction functions can be legitimately attained
between and T1. Thus, Hull’s, Kitcher’s, and Rosenberg’s criticismT*2
are external in that they dismiss Schaffner’s two-step model and primarily
consider deductive inference of T2 from T1 (see [1]). In contrast, my critique
is internal in that it shows how his account then lacks the resources for
dealing with the overall complexity of reducing an uncorrected theory to
a reduced uncorrected theory, across a great conceptual distance. That is,
contra Hull, Kitcher, and Rosenberg, Schaffnerian reduction functions,
which are simple, effective, and bijective, are legitimately possible. How-
ever, because of conceptual distance, the simplicity in the reduction func-
tion comes at the cost of hiding complexity in (i) other unstated reduction
functions not included in [4], (ii) the initial conditions of [4], or (iii) the
transformation of to . Put differently, the external criticisms can beT T*2 2

justifiably bracketed for either deductive inference or theory correction,
but not for both simultaneously. Indeed, by only considering deductive
inference, Hull, Kitcher, and Rosenberg have not identified the full extent
of the problem for Schaffner’s model.
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To summarize, we have seen that theory correction requires close prox-
imity between T2 and , whereas deductive inference necessitates a closeT*2
fit between and T1. These respective closeness constraints cannot beT*2
satisfied for the same case of heterogeneous reduction.

4. Can the Internal Tension Be Eliminated? There are three possible ways
to eliminate the internal tension: (1) deny that there is a large conceptual
distance, (2) weaken and qualify the constraints on theory correction, and
(3) weaken and qualify the constraints on deductive inference. If we could
meet one or more of these, then both sets of closeness constraints could
be simultaneously satisfied even with a large conceptual distance. In gen-
eral, however, none will work.

4.1. Denying a Large Conceptual Distance. Thus far, the discussion has
been premised on Schaffner’s commitment to a large conceptual distance
between theories. There is an ambiguity regarding reduction functions in
Schaffner’s account that provides a way to deny this assumption. Let us
see how.

In Section 3, I argued that reduction functions obtained between the
corrected reduced theory and the reducing theory. I call this the CTRF
(corrected theory reduction function) interpretation. But another inter-
pretation of Schaffnerian reduction functions is possible. They could be
seen to hold between both original theories. I call this the OTRF (original
theory reduction function) interpretation.

Let us see how an OTRF interpretation is possible. Schaffner follows
“modern logicians such as Quine in construing predicates in an extensional
manner. From this perspective, a predicate is simply a class of those things
or entities possessing the predicate” (1976, 621). How are these set-the-
oretic predicates linked across two theories? Schaffner answers, “The sim-
plest and least question begging way to do this seems to be to require (i)
that the entity terms (e.g., ‘gene’ or ‘DNA’) to be associated, be construed
as extensionally referring to the same entity, even though that entity is
described in different ways and (ii) that predicates and relations (e.g.,
‘dominant’) in the two theories, be interpreted as referring to the same
states of affairs, characterized with the help of the entity relations spoken
above” (614). Synthetic identity is premised on extensional identity. In-
tensions are set aside. Extensional equivalence alone provides meaning
equivalence.

An OTRF interpretation of Schaffnerian synthetic identities is plau-
sible. Note that Schaffner refers to the “two theories” simpliciter, sug-
gesting that these are uncorrected classical and molecular genetics. Fur-
thermore, in his discussion of reduction functions as “dictionary entries
that aid a translator” (1976, 622; 1993a, 441), he explicitly holds that the
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functions are between the original reduced and reducing theory (see also,
e.g., 1976, 623–624).

Prima facie, it seems that the OTRF interpretation would drastically
shrink the conceptual distance since it directly and bijectively maps the
extension of the set of terms of T1 onto the set of terms of T2. Any failure
of bijectivity within or across pairs of terms is eliminated. Initially large
conceptual distance is diminished through the formalized mappings en-
forced by Schaffnerian reduction functions. But what about the external
criticisms as well as Schaffner’s own commitment to a large conceptual
distance? Here are three possible ways of characterizing the OTRF in-
terpretation’s relevance to conceptual distance. Only the third can legit-
imately diminish such distance.

(i) The mapping relation between terms in T2 and T1 is indeed unsuc-
cessful because of concerns with Schaffnerian reduction functions.

(ii) The mapping relation between terms in T2 and T1 actually collapses
to a mapping relation between terms in and T1 and we returnT*2
to my internal critique.

(iii) Same collapsing as in (ii), but the internal critique is avoided because
an appropriate middle distance exists for a few cases of pairs of
actual theories.

Possibility (i) hardly needs much elaboration. Here the OTRF inter-
pretation is seen as a narrow Nagelian deductive model as represented
by [1]. This model is subject to the context-dependence and multiple real-
izability external critiques that Hull, Kitcher, Rosenberg, Fodor, and Kim
forwarded.

But perhaps the OTRF interpretation collapses to the CTRF interpre-
tation. That is, the simple reduction functions might really be between
terms in T1 and terms in what I call T2(I). The ‘I’ in T2(I) stands for
‘Idealized’. That is, T2(I) is the original T2 as acutely idealized by a rational
reconstructor of the theory (e.g., Schaffner). The idealization occurs when
“the basic principles of the reducing and reduced theories have been cod-
ified and . . . the primitive terms of both theories have been determined”
(Schaffner 1976, 614). Indeed, terms of T2 are reconstructed in light of
knowledge of T1. This imposition of bijectivity warps the intension and
purpose of the terms of T2. Moreover, T2(I) is already extremely close to

and theory correction happens ‘for free’. We return to the CTRFT*2
interpretation of Schaffner’s two-step model.

Possibilities (ii) and (iii) pertain to this collapse. Either (ii) my original
internal critique goes through or (iii) there are some (historically rare)
pairs of theories expressing the appropriate amount of conceptual distance
such that the reduction between them counts as heterogeneous and the
closeness constraints of both forms of inference are also met. Only for
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such middle-distance cases could Schaffner’s model be immune to my
internal critique.

The internal critique was considered in Section 3 and will not be further
discussed here. Now, despite Schaffner’s commitment to the significant
conceptual distance of interesting heterogeneous reductions, might there
not exist middle-distance theories that survive my internal critique as well
as the external criticisms (i.e., the context dependency and multiple real-
izability objections to simple, bijective reduction functions, and worries
concerning the possibility of finding appropriate methods for, and criteria
of, theory correction)? It is possible. But such theory reductions would
be less interesting and would also be historically rare. Moreover, an ex-
plicit metric of conceptual space will have to be articulated in order for
this issue to be fully addressed. Such a metric is needed to measure the
conceptual distance between the reduced theory and the reducing theory,
as well as the distance between each of these and . The burden of proofT*2
seems to lie on a defender of a (reconstructed) Schaffner-like model to
make such a metric explicit. In the conclusion, I provide a few tentative
suggestions for how to do this in the context of mathematical theory in
contemporary theoretical biology. However, my proposal does not pertain
to a Schaffnerian set-predicate, extensional logical approach to reduction
functions.

For the purposes of the current section, the point is simple: for the most
part, large conceptual distance is intrinsic to interesting theory reduction
and to most actual scientific theories. Only possibility (iii) can eliminate my
internal critique, but this possibility requires further investigation.

4.2. Relaxing Constraints on Theory Correction and Deductive Infer-
ence. Two further potential ways of eliminating the internal critique in-
volve relaxing the closeness constraints, in a reasonable manner. By weak-
ening the closeness conditions on theory correction, one would allow more
conceptual distance between T2 and . Alternatively, by debilitating con-T*2
straints on deduction one would permit more distance between T1 and

. Relaxing either set of constraints would provide more overall con-T*2
ceptual distance and, thereby, alleviate the tension between the closeness
constraints.

Weakening the strong analogy, approximate equality, and close agree-
ment constraints may not be possible. First of all, a significantly more
explicit formulation of these constraints is required before we could even
know how to weaken them (see note 6 above). Moreover, by relaxing
them, we would quickly approach the logically dangerous point of blurring
the boundaries between theories (e.g., T1 and T2). More generally, there
would no longer be meaningful constraints on the similarity among the
elements of a given set K in [2]. Finally, any logical empiricist account of
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theory reduction seems to require explicit, stringent, and formal closeness
constraints on theory reduction. The denial of these sorts of constraints
is, after all, one important motivation for subsequent proposals of non-
formal heuristics for theory transformation (see, e.g., Sarkar 1998; Wim-
satt 2007). In short, it is unclear whether Schaffner’s account can legiti-
mately weaken these constraints.

Alternatively, one could try to relax the formal constraints on deductive
inference. However, weakening the constraints on deductive inference does
not seem warranted by any logical procedure or criteria. The determi-
nation of what counts as a deduction, and judgments of which kinds of
reduction functions could possibly be effective in justifying a deduction,
are subject to extremely strict criteria, particularly under a logical em-
piricist account.

Thus, neither of the strategies for relaxing closeness constraints can
legitimately increase the conceptual distance between T2 and or be-T*2
tween and T1. Again, the internal tension is not eliminated.T*2

5. Reconstructing Schaffner’s Model: Mathematical Reduction in Con-
temporary Theoretical Biology? Let us take stock. I have shown that there
is an internal tension in Schaffner’s model of theory reduction. Basically,
closeness constraints on theory correction and deductive inference cannot
be met simultaneously with covering a large conceptual distance between
the reduced and reducing theories. Only in one possible scenario of the
OTRF interpretation might my internal critique turn out to be ineffective,
but the jury is out on that possibility. Schaffner’s model of theory re-
duction fails, even on its own terms.

My internal critique was explored primarily in the context of the re-
duction of classical to molecular genetics. But will this critique be relevant
for every possible application? Given the general problems investigated
in Section 3 and Section 4, it seems that Schaffner’s account will fail in
other domains as well. Moreover, philosophers of physics have recently
provided powerful arguments belying the deductive closeness of phenom-
enological and statistical thermodynamics (e.g., Callender 1999; Sklar
1999).8 Furthermore, this and other paradigmatic cases of reduction in

8. But Shimony (1987) takes issue with this rather pessimistic view. In pointing out
that formal derivations in many of the key cases of reduction in physics are “not
absolutely general,” he notes “that excessive rigidity concerning the concept of reduc-
ibility [a rigidity characteristic of Nagel’s and Schaffner’s models] can mask the truly
wonderful relations between levels of description” (418). Orthodox models of theory
reduction cannot do full justice to the complexity of intertheoretical relations pertinent
to physical theories at different levels. However, a broader understanding of reduction,
including the one here sketched, might. I thank Sergio Martı́nez for discussions of this
point.
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theoretical physics involve actual historical theories that have their own
formalizations, key concepts, ontological commitments, historical origins,
and developmental routes. Although further investigation is required, we
suggest that the same internal tension would appear if we were to apply
Schaffner’s model to cases from the physical sciences.

Despite the deep problems with Schaffner’s model, I believe that it
deserves our continued attention. A reconstructed Schaffner model could
assist us in making sense of the ongoing developments in theoretical bi-
ology, particularly in large parts of systems biology and evolutionary
theory. There are currently few, if any, available philosophical analyses
that can usefully and fairly analyze theory growth, theory reduction, and
theory unification in mathematical biology, broadly construed. Rethinking
Schaffner’s account in light of other philosophical work on mathematical
modeling—including the semantic view of theories—gives us a powerful
perspective on derivation and embedding in mathematical theorizing and
modeling. In what follows, I highlight three aspects of the proposed re-
constructive project:

1. The distinction between mathematical and mereological theory
reduction.

2. The generalization of deduction to encompass derivational and em-
bedding mathematical practice.

3. The articulation of a metric of conceptual distance.

I first explore (1). After discussing GRNs (gene regulatory networks) in
systems biology, I turn to (2) and (3).

Sarkar (1998, 43ff.) distinguishes three substantive criteria for identi-
fying different forms of reduction: (1) fundamentalism,9 (2) abstract hi-
erarchy, and (3) spatial hierarchy. My distinction between mathematical
and mereological theory reduction is similar to his differentiation between
(2) and (3). Mathematical reduction involves deriving the mathematical
models of the reduced theory from those of the reducing theory; to put
it in a different, and complementary, fashion, mathematical reduction
entails embedding the models of the reduced theory into the models of
the reducing theory. Mereological reduction is also theoretical. It occurs
when a theoretical representation of higher-level parts of a system is ex-
plained in terms of a theoretical representation of lower-level parts (and
lower-level relations) of that system.

These two forms of theory reduction are separable. An example of the

9. Sarkar defines “fundamentalism” thus: “the explanation of a feature of a system
invokes factors from a different realm (from that of the system, as represented) and
the feature to be explained is a result only of the rules operative in that realm” (1998,
43).
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former without the latter is the reduction of classical to relativistic me-
chanics. Cases of the latter without the former are the “mechanistic re-
ductions” discussed by Craver (2007). Third, when morphogenetic models
are reduced to GRNs, both formal and mereological reductions are at-
tained. Schaffner’s model simultaneously refers to both forms of reduc-
tion. Moreover, a reconstructed Schaffnerian model suggests a connection:
the mathematical models of one theory representing a high level of or-
ganization are reduced to the mathematical models of another theory
representing a mereologically-nested, lower level of organization. For in-
stance, phenotypic mathematical models of development are (partially)
reduced to GRNs.

Now that I have briefly characterized mathematical and mereological
theory reduction, I turn to systems biology. This will motivate points (2)
and (3) of the reconstructive project. The highly mathematical strands of
systems biology have roots in earlier systems theory work by Rashevsky
(1954, 1961); von Bertalanffy ([1933] 1962, 1968); Goodwin (1963); Rosen
(1964, 1985); and Mesarovic (1968). (For reviews, see Kitano 2002;
O’Malley and Dupré 2005.) Much of this mathematical work was set
aside and ignored starting in the 1970s, perhaps as a consequence of the
‘molecular revolution’ of biology. But as increasingly sophisticated data
sets are made available and as the context dependency and complex nature
of biological systems becomes ever more evident, a systems-oriented the-
oretical approach to biology is reemerging (Winther 2008).

In the context of systems biology, GRNs are garnering significant at-
tention (e.g., Smolen, Baxter, and Byrne 2000; Davidson 2001; De Jong
2002). A variety of modeling methodologies are available. Here I review
two important ones: (1) Boolean networks and (2) coupled differential
equations.

First, in a Boolean network, a number of elements (genes) are directly
connected to one another (e.g., Thomas 1973; Kauffman 1993; Mendoza
and Álvarez-Buylla 1998). The state of each element of the system is either
0 (‘OFF’) or 1 (‘ON’) and depends on (i) its state one time unit earlier,
(ii) the states, one time unit earlier, of the other elements that serve as
input to it, and (iii) the Boolean function determining how its state changes
as a function of its input elements. Most generally:

ˆ ˆx̂ (t � 1) p f (x(t)), where 1 ≤ i ≤ n, [5]i i

where i represents the state of the ith element and i expresses the Booleanˆx̂ f
functions mapping inputs to output for each element of the n-vector ofx̂
states. The n elements of the system determine a state space of n dimen-
sions with states. The total number of possible Boolean functions2 ∧ n
is , where k is the number of inputs. For example, an element2 ∧ 2 ∧ k
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with 2 inputs (k p 2) has 16 possible Boolean functions between its inputs,
x1 and x2. Thus, there are 16 distinct binary Boolean rules, including
AND, XNOR, NAND, and material implication. These rules can usefully
be expressed in a Hasse diagram (Pemmaraju and Skiena 2003). Boolean
networks readily capture the dynamics and topology of genetic connec-
tivity. Here is an example of a single Boolean function (where n p 4 and
k p 2):

ˆ ˆ ˆx (t � 1) p x (t) NAND x (t). [6]1 2 4

By articulating the appropriate sets of Boolean functions, general dynam-
ical regulatory behavior of gene networks can be represented.

Second, coupled differential equations can also be used to model GRNs.
Here, differential rate equations express the continuous rate of production
of an element as a function of the concentrations of other elements of
the system (e.g., Goodwin 1963; Tyson and Othmer 1978; De Jong 2002).
Most generally:

dx /dt p g (x), where 1 ≤ i ≤ n, 1 ≤ j ≤ m. [7]ij ij

Here, xij is the concentration of the ith species at the jth level (e.g., a
particular mRNA, protein or metabolite), x is the vector of concentrations
of all the species at all levels, and gij is a function, often involving thresh-
olds and sigmoid curves. In dynamical control systems, output often be-
comes input, both within and across types of elements. It is important to
distinguish between feedback and coupling. Goodwin (1963) provided one
of the first models of gene control in what he called “the epigenetic
system.” He differentiated three levels of production in this system: (1)
mRNAs, (2) proteins (usually enzymes), and (3) metabolites. Goodwin
argued that gene regulation is a feedback loop: (1) r (2) r (3) r (1). A
single idealized unit component (1963, 23) is one in which mRNA is linked
only with its produced protein and metabolite. A general way of expressing
the feedback loop of a unit component is

dx /dt p a r(x ) � b x , [8]1 1n n 1 1

dx /dt p a x � b x , where 1 ! j ≤ m, [9]j j, j�1 j�1 j j

where a is a parameter of production, b is a parameter of degradation, r
is a function mapping the concentrations of metabolites to the production
of mRNA, and xj is the concentration of the particular species at the jth
level. Note that there is no indexed i since it has a single value for a given
unit component. The function r is negative for the common case of re-
pression. The concentration of species at each level (e.g., j p 2 for proteins,
j p 3 for metabolites) depends on species concentrations at lower levels.
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Moreover, we need to consider more realistic situations where multiple
unit components are connected, and the equations are coupled. For in-
stance, this would occur when metabolite species1 (e.g., repressor1) has
some influence on mRNA2, or when metabolite species2 partially controls
mRNA1, or both. For these cases, the vector x of [7] has nonzero values
in more than one column, where columns express species concentrations
(i.e., there is now more than one i). The rate equations of each unit
component are now coupled to other unit components and we would have
to index i in [8] and [9]. In short, coupled differential equations capture
(i) feedback within unit components, and (ii) connections across unit
components.

GRNs modeled through Boolean networks, coupled differential equa-
tions, or other methods, capture changes of each element of a system as
a function of what other elements are doing, over time. A number of
contemporary systems theorists take GRNs to be a convenient and pow-
erful reducing theory (T1 in Schaffnerian terms) that helps explain and
predict development and physiology. Here is Davidson: “Someday we are
going to be able to write down the regulatory network architecture [GRN]
for key features of development that are characteristic of animals rep-
resenting diverse regions of the phylogenetic diagram. . . . Differences in
the regulatory network architecture are what cause phylogenetic diver-
sification, and therein resides the ‘deep structure’ that underlies [‘phylo-
genetic’] diagrams” (2001, 23). Davidson is not the only one with high
expectations (e.g., Hartwell et al. 1999; Regev and Shapiro 2002; Fell
2007). While we must remain critical of the development and application
of mathematical GRN theory and modeling, it does hold significant
promise.

What exactly do GRNs explain? There are at least two sorts of potential
theory reduction of phenotypic models to GRN models (T1): (1) qualitative
(i.e., from T2) and (2) mathematically abstracted (i.e., from ). First,T*2
some GRN models explain well-defined but qualitative phenotypic char-
acters, such as the spatial and temporal order of developmental cellular
and tissue differentiation in sea urchin embryos and Arabidopsis flowers.
In this case, T2 is a structured set of phenotypic characters. One example
is the important ABC model of qualitative phenotype of the flowers of
Arabidopsis and other plant species (e.g., Coen and Meyerowitz 1991; Es-
pinosa-Soto, Padilla-Longoria, and Álvarez-Buylla 2004). Second, other
work on GRN abstracts explicit mathematical models of morphological
and developmental phenotype (e.g., Salazar-Ciudad and Jernvall 2002;
Prusinkiewicz et al. 2007). Such phenotypic models can be thought of as
corrected models on analogy with Schaffnerian theory correction. Math-
ematically abstracted phenotypic models (i.e., ) are directly derivedT*2
from, embedded in, and, ultimately, reduced to GRN models (i.e., T1).



SCHAFFNER’S MODEL OF THEORY REDUCTION 137

Mathematical theory reduction may turn out to be only partial, yet it can
produce explanations and predictions (Davidson 2001).

The suggested reconstructive project of Schaffner’s model employs im-
portant philosophical tools surrounding the epistemology of mathematical
practices: (1) the analysis of mathematical modeling by the semantic view
of theories, and (2) the concept of mathematical embedding (e.g., Friedman
1981, 1983; van Fraassen 1989). Let us see how by returning to the second
and third aspects of the project listed earlier in this section.

Derivational mathematical practice within and across theories can be
legitimately interpreted as deductive. Thus, we can understand reduction
functions in terms of mathematics rather than in terms of logic (e.g.,
Schaffner’s extensional characterization of terms in different, logically
formulated theories). Mathematical reduction functions can powerfully
and justifiably: (1) map the same particular variables and parameters (i.e.,
term-like formalisms), and basic functions (“laws of the model”) across
mathematical theories and models of different mereological levels, or (2)
directly correlate variables, parameters, or basic functions of T1 models
to different variables, parameters, or basic functions of T2 or models.T*2
The state space approach of the semantic view provides useful resources
for constructing a mathematical account of reduction functions that si-
multaneously focuses on the importance of modeling (van Fraassen 1970,
1972, 1989; Lloyd 1988; Weisberg 2009).

Moreover, embedding is a concept important to the generalization or
mathematization, as it were, of deduction. In early work, Friedman argues
that many scientific explanations “follow a common pattern”: “obser-
vational structure[s]” are “construe[d] as substructures” of “theoretical
structure[s]”; moreover, theoretical structures have “complex and inter-
esting mathematical properties” (1983, 236; see also 1981). In discussing
“embedding” as an “aspect” of theorizing, van Fraassen makes a similar
point: “The phenomena are small but chaotic; they are treated as frag-
ments of a ‘whole’ that is much larger but orderly and simple” (1989,
230; entire sentence emphasized in the original). Embedding is here con-
sidered a mathematical subsumption relation between theoretical and ob-
servational formal structures within a single theory or set of models. I
suggest a hierarchical extension of the concept: embedding can also be
effected across mathematical theories representing different levels of or-
ganization (n.b., each theory has theoretical and observational compo-
nents, which are potentially overlapping and interacting). The mathe-
matical practice of embedding can lead to increased unification of
mathematical structure. Even though embedding has limits and biases
(Winther 2006a; Wimsatt 2007), and although theoretical and observa-
tional structures of a mathematical theory cannot always be distinguished
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sharply, embedding across theories is an important reductionist research
strategy and regulative ideal in science generally.

With a reconstructed model of mathematical theory reduction, light
could also be shed on how to quantify conceptual distance. Metrics for
measuring the formal similarity between mathematical theories repre-
senting different mereologically nested levels could be developed (e.g.,
“homeomorphism” in the sense of Lloyd 1988, or the extent of variable
or law sharing). Theories with higher degrees of formal similarity are
conceptually closer.

In conclusion, two caveats are important. First, it is perhaps unsur-
prising that something like a reconstructed Schaffner model has not been
previously attempted. Recent analyses of the biological sciences as “mech-
anistic” (e.g., Glennan 1996, 2002; Machamer, Darden, and Craver 2000;
Bechtel 2006; Craver 2007; see also Wimsatt 1976; Sarkar 1998; Schaffner
2006, 2007), “compositional” or “part-whole” (Winther 2006b, 2009), and
“experimental” (Weber 2005) often diminish the relevance of mathematical
practices for the life sciences. I do not here claim that mathematics will
replace mechanisms, let alone compositionality or experiment. Rather, I
see each of these as important, especially for the biological sciences. Sec-
ond caveat: while mathematical derivation and embedding remain im-
portant regulative ideals, it is unclear whether we could ever expect an
elegantly unified, global mathematical structure for the biological sciences.
Indeed, cogent arguments have been given for the “dappled” structure of
science (e.g., Cartwright 1983, 1999; Burian 1993; Schaffner 1993b; van
der Steen 1993). But the jury is still out. I end with a question. Should
the clear importance of mechanisms, part-whole relations, and experiment,
as well as the possibility of irreducible dappledness, continue to stop us
from even trying to understand the roles mathematical reduction, deri-
vation, and embedding play in the biological sciences?
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