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ABSTRACT 
Scientists use models to understand the natural world, and it is important not to conflate 
model and nature.  As an illustration, we distinguish three different kinds of populations 
in studies of ecology and evolution: theoretical, laboratory, and natural populations, 
exemplified by the work of R.A. Fisher, Thomas Park, and David Lack, 
respectively.  Biologists are rightly concerned with all three types of populations.  We 
examine the interplay between these different kinds of populations, and their pertinent 
models, in three examples: the notion of “effective” population size, the work of 
Thomas Park on Tribolium populations, and model-based clustering algorithms such as 
Structure.  Finally, we discuss ways to move safely between three distinct population 
types while avoiding confusing models and reality. 

 

What are the relationships among the populations that biologists postulate in idealized 

theoretical models, the populations they set up in experimental laboratories, and the populations they 

survey and sample in the wild?  We describe three qualitatively different kinds of populations at the 

heart of distinct styles of scientific practice in ecology and evolution, viz., theoretical, laboratory, and 

field investigations.  Distinguishing three types of populations—theoretical, laboratory, and natural—

provides a useful lens for viewing both past and contemporary work in ecology and evolutionary 

biology. 

 

Three examples illustrate the value of distinguishing theoretical, laboratory, and natural 

populations: the concept of “effective” population size, the work of Thomas Park on flour beetle 

populations, and the use of model-based genetic clustering algorithms such as Structure.  In keeping with 
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the “Genomics and Philosophy of Race” theme of the special issue in which this article appears, our 

trichotomy can assist analyses of the implications of genomic studies for claims about the existence (or 

the non-existence) of human races.  In the conclusion, we suggest ways to avoid conflating the three 

kinds of populations.  Researchers can cycle through natural, laboratory, and theoretical populations, 

expressing genuine interest in each population type.  Theoretical, laboratory, and natural populations 

also pertain to fields beyond ecology and evolution, including statistics. 

 

We analyze scientific practice. Although questions regarding realism and anti-realism, the 

concept-world relation, and the general ontology of science lurk, our trichotomy is not intended as a 

rubric for determining how much a model does or does not correspond to reality.  Admittedly, an 

overarching aim of population biology is to understand the complex structure and dynamics of 

populations “in the wild.”  Even so, the multiple ontologies of scientific practice are complex—arguably 

there is a world in a theoretical model (e.g., Morgan 2012) or in an experimental system (e.g., Leonelli 

2007).  Second, this article does not provide a singular, complete, and strict delimitation of the 

“population” concept.  Other classifications and analyses of the concept are compatible with our view.  

We are pluralists about population concepts, about the kinds of complex objects and processes one 

could delimit as populations, and even about distinct classifications of populations (e.g., Matthen and 

Ariew 2002; Stegenga 2010; Earnshaw-Whyte 2012). 

 

Our analysis side-steps explorations of the metaphysics of science and alternative classifications. 

We advocate “taking a look” (Hacking 2007, 36-38) at styles of practice of working biologists. Which 

kinds of populations do biologists believe they are studying? Which figures in the history of biology 

might shine through as exemplars (Kuhn 1970) of distinct styles of practice regarding populations? 

Which tools allow biologists to avoid conflating different kinds of populations and to perform 

important work internally, within each style of practice?  

 

2. Three Kinds of Populations 

 Three kinds of populations used in the history and philosophy of population genetics, 

population biology, and evolutionary ecology can be distinguished: theoretical, laboratory, and natural. 

1. Theoretical populations are groups of abstracted individuals (or genes) whose properties and 

behaviors are studied in formal models constructed with idealized assumptions. 

2. Laboratory populations are collections of actual organisms—or parts of organisms, such as cell 

lines—assembled in an experimental setting.  
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3. Natural populations are collections of actual organisms living in the wild—settings that are not 

constructed expressly for studying the organisms. (But researchers might modify the habitat.) 

Each of these kinds of populations is associated with its own kind of models, methods, and ontologies.  

Each can also be enriched by including stipulations about shared ancestry, proximity, or interactions 

between population members, such as competition, cooperation, or interbreeding. In practice, 

researchers may modify their use of the term “population” to suit the questions they pursue, which has 

two implications.  First, elaborated definitions may not capture all appropriate uses of the three 

“population” concepts.  For our purposes, only the minimal definitions in 1-3 above are needed.  

Second, populations are not exactly identical with the set of individual organisms composing them, 

whether in the mind or theory, the lab, or the field.  The researcher also imposes the concept 

“population” onto organisms.  Thus, although we describe the three kinds of populations as types of 

collections of objects, they might also be viewed as three distinct population concepts—in this way, 

laboratory and natural populations are also, in some sense, “theoretical.”  Populations are abstractions 

even when their members are not.  Differently put, scientists use the construct “population” to select 

attributes in which they are interested.  These features are chosen because of particular goals, 

assumptions, and practices scientists bring to their objects of study in three contexts: the theorist’s mind, 

the experimenter’s labscape, and the fieldworker’s landscape (Kohler 2002).  Paraphrasing the biologist 

Jean Rostand’s quip “populations pass; the frogs remain.”   

 

All three types of populations have received philosophical attention. Morrison (2000, 2002) 

shows which assumptions and idealizations were necessary to overcome conflicting notions of 

theoretical populations in the Biometrician-Mendelian debate in the early 20th century.  We take work by 

Ankeny and Leonelli (2011) to be about laboratory populations, and contributions by Millstein (2009, 

2010) to be about natural populations. 1  Each type of population has a rich history of use in biology and 

originated in its own way (e.g., Mitman 1992; Kingsland 1995; Kohler 2002).  We sidestep these 

histories and focus on one exemplary student of each kind of population: R.A. Fisher (theoretical), 

Thomas Park (laboratory), and David Lack (natural). 

 

2.1. Fisher on Theoretical Populations 

 In the preface to the first edition of The Genetical Theory of Natural Selection, Fisher reflected on a 

remark by Arthur Eddington: “We need scarcely add that the contemplation in natural science of a 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 In this issue, Millstein (2015) suggests that while her analysis of populations “is in the spirit” of natural populations, her 
analysis could also be applied to laboratory populations. 
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wider domain than the actual leads to a far better understanding of the actual” (Eddington, 1929, 266-

267; Fisher 1958, viii).  Fisher wholeheartedly agreed with Eddington.  Fisher observed that practical 

biologists may deem it ludicrous to “work out the detailed consequences experienced by organisms 

having three or more sexes,” but this is precisely what they should do if they “wish to understand why 

the sexes are, in fact, always two” (Fisher 1958 [1930], ix).  Fisher recognized that:  

ordinary mathematical procedure in dealing with any actual problem is, after abstracting 
what are believed to be the essential elements of the problem, to consider it as one of a 
system of possibilities infinitely wider than the actual, the essential relations of which may 
be apprehended by generalized reasoning, and subsumed in general formulae, which may 
be applied at will to any particular case considered. (Fisher 1958 [1930], ix) 	
  

 

As Fisher understood, the creative power of mathematics lies partially in its capacity for generality, 

abstraction, and idealization.  Very roughly, generality concerns the breadth of situations to which a 

mathematical structure applies; abstraction relates to the paucity of assumptions and axioms of the 

structure.  The sparser the set of assumptions and axioms under which a theorem is derived, the more 

abstract it is, and the more concrete cases it can subsume, perhaps incompletely (Cartwright 1983).  

Idealization is reasoning about representations that may not be physically realized, such as infinitely long 

lines in geometry (e.g., Cartwright 1989; Ohlsson and Lehtinen 1999; Jones 2005; Winther 2014a).  

Mathematical activity involves proofs and applications of general, abstract, and idealized mathematical 

structures, deductively hitched (Hacking 2014). 

 

 Fisher argued that certain properties of groups of organisms could be understood without 

detailed knowledge about individual organisms (Fisher and Stock 1915).  Specifically, Fisher considered 

the effects of selection in the aggregate, “borrow[ing] an illustration from the kinetic theory of gases” 

(Fisher & Stock, 1915, 60).  Just as the statistical physicist studies the behavior of idealized gas particles 

in a theoretical aggregate, Fisher studied the behavior of abstracted and idealized organisms in a 

theoretical population, a theoretical aggregate that was “independent of particular knowledge about 

individuals” (Fisher and Stock, 1915, 61).  In part through analogizing gas laws and selection laws, 

Fisher constructed a novel notion of population.  Fisher’s analogy between physics and biology was 

deliberate and ongoing (Edwards 1994, 2014; Morrison 2000, 2002).  By 1918, Fisher assumed that a 

population consisted of many “randomly mating” individuals 2 , each of which contained many 

independent genetic factors (Fisher 1918, 401).  In describing his later fundamental theorem of natural 

selection (FTNS), Fisher stipulated that “the [fundamental] theorem is exact only for idealized 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 We write “randomly mating” in quotes because the individuals in Fisher’s populations are abstractions and do not literally 
mate, although they do join their genetic factors randomly to give rise to the next generation. 
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populations” (1958, 38).  Just like “laws of gases” ensure averaged behavior across individual particles, 

so the FTNS ensures averaged behavior across individual organisms (1958 [1930], 39-40).  As Morrison 

(2002) notes: “The idealised nature of the assumptions from that domain [statistical mechanics] served 

as a methodological model or analogy on which he based his own views about how to characterise a 

Mendelian population” (see also Morrison 2000, Chapter 7).  Indeed, despite certain differences (e.g., 

the FTNS is not an irreversible law), both the second law of thermodynamics and the fundamental 

theorem of natural selection 

are properties of populations, or aggregates, true irrespective of the nature of the units 
which compose them; both are statistical laws; each requires the constant increase of a 
measurable quantity… entropy of a physical system… [and] fitness… of a biological 
population. (Fisher 1958 [1930], 39)   
 

Importantly, the biology-physics analogy pertained more to method than to content, involving particular 

mathematical approaches, approximations, and assumptions, especially the “averaging strategy” of 

abstracting and averaging across the properties and processes of individuals (the parts) to identify 

central tendencies of the population (the whole) (Sober and Lewontin 1982; Wade 1992; Sterelny and 

Kitcher 1998; Okasha 2004; Winther, Wade, and Dimond 2013).3  The FTNS and the analogy behind it 

show that general, abstracted, and idealized theoretical populations were Fisher’s object of study.   

 

Later population-genetic theory has followed Fisher’s mathematical method of generalization, 

abstraction, and idealization.4  Fisher’s construction of theoretical populations in biology may also have 

informed the “population” concept he introduced to statistics.  We return to this possibility in the 

conclusion.  

 

2.2. Park on Laboratory Populations 

The work of ecologist, evolutionary biologist, and entomologist Thomas Park illustrates the use 

of laboratory populations.  Park spent much of his career at the University of Chicago developing, 

modifying, and observing the Tribolium flour beetle laboratory system.  We examine his remarkable 

paper co-authored with Jerzy Neyman and Elizabeth Scott from the University of California, Berkeley 

(Neyman, Park, and Scott, 1956). Respecting the difficulties meeting the researcher studying 

“populations…in the field,” Neyman, Park, and Scott suggested two kinds of models that could 

substitute for fieldwork: “mathematical or laboratory-experimental” (1956, 42).  Both kinds of models “depict 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 There are various ways to understand the FTNS (e.g., Frank and Slatkin 1992; Plutynski 2006; Okasha 2008; Ewens 2011; 
Edwards 1994, 2014).  However, the power of Fisher’s overarching mathematical procedure is widely accepted.  
4 Via his breeding experiments at Rothamsted Experimental Station (e.g., Fisher 1937; see Wade 1992; Winther, Wade, and 
Dimond 2013).  



Winther, Giordano, Edge, Nielsen   The Mind, the Lab, and the Field 

	
   6 

the workings of at least a part of nature” and, moreover, “enhance the interaction of certain factors” 

while diminishing or eliminating others (42).  Most generally, both models are “abstractions of nature 

designed to illumine natural phenomena” (43).  Since we have already explored mathematical theoretical 

populations, we set the first kind of model aside, focusing on laboratory populations.  

 

 In the first of two parts of the paper, “Biological Aspects,” written primarily by Park, “a 

laboratory-experimental model” is presented:  

 
A population exhibiting a relatively rapid life cycle in a not too artificial laboratory habitat; 
cultured under easily controlled, yet manipulatory, environmental and trophic conditions; 
for which repeated censuses of all stages can be taken with negligible disturbance, and for 
which adequate replication is feasible. (Neyman, Scott, and Park 1956, 45) 
 

This statement compresses a list of 10 characteristics that make a laboratory system optimal “for study 

of population phenomena.”  Tribolium has many of the listed characteristics.  Flour can easily be sieved 

to bring forth eggs, larvae, pupae and adults, facilitating censuses.  Moreover, flour is simultaneously the 

“climactic,” trophic, and spatial habitat, simplifying a potentially complex environment.  Finally, species 

can be mixed in the same flour, enabling studies of interspecific behavior.  Park used Tribolium to study 

processes such as cannibalism, interference among individuals of the same and of different species, 

oviposition, predator-prey interactions, and host-parasite interactions (43) (Mitman 1992; Winther 2005).  

The influence of the Tribolium model continues through the work of Park’s students, including Monty B. 

Lloyd, David B. Mertz, Michael R. Nathanson, and Michael J. Wade. 

 

 Neyman, Park, and Scott worry that their laboratory model will be criticized as “artificial” (45).  

They accept that their model, though not simple, is simplified (45-6), but they reject the implication that 

artificial models are trivial.  Laboratory populations are abstract compared with natural populations: 

many features of natural populations are eliminated in laboratory populations (e.g., rain, presence of 

predator species).  Constructing a laboratory population is also an idealization: a previously nonexistent 

entity, the laboratory population, is granted reality in the counterfactual—or better yet, counternatural—

experimental setting.  Finally, the authors believe their model to be general, citing Park’s (1955) claim that 

the “unrealistic aspects” of laboratory models “may be a virtue instead of a vice,” and that such models 

“can contribute to the maturation of ecology, at least until… they are no longer needed” (Neyman, Park, 

Scott 1956, 46).  Simplified, abstract, ideal, and general laboratory population models support some 

inferences about natural populations, with the caveat that laboratory and natural populations are not 

identical. 
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Figure 1. From Neyman, Park, and Scott (1956), 48. 
 

The position of laboratory populations between theoretical and natural populations raises a 

question: Are laboratory populations models of natural populations or are laboratory populations 

themselves objects of further mechanistic or mathematical models?  Put differently, are they 

representations or targets of other representations?  Neyman, Park, and Scott think that laboratory 

models can “accelerate the understanding of all populations” (45), and represent, in many respects, 

natural populations.  But they also hold that a laboratory population is itself a target of mathematical 

models (p. 59, ff.) and mechanistic models (Figure 1, 48), as we describe in Section 3.2 below. A 

laboratory population can also be a model for another laboratory population, potentially even of other 

species under distinct conditions.5  In short, laboratory populations are both representation and target.  

 

Laboratory populations could be further compared with other “concrete models” such as 

“remnant models” in the museum (Griesemer 1990, 1991), “model organisms” (Ankeny and Leonelli 

2011) or “compositional models” (Winther 2006b, 2011) in the laboratory, and “scale models” in 

engineering (Weisberg 2013).  The main lesson for us is that laboratory populations represent natural 

populations imperfectly and serve as limited instantiations of theoretical populations.   

 

2.3. Lack on Natural Populations 

The ornithologist David Lack, known for studying Darwin’s finches in detail, was an early 

evolutionary ecologist and a student of natural populations. In the preface to the first edition (1983 

[1947]) of his influential Darwin’s Finches, he sketched the nature of the book:  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 We thank Roberta Millstein for this point. 
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This is a work of natural history, based on a study of living birds in the Galapagos 
and of dead specimens in museums. The evidence is circumstantial, not experimental, 
so that theories must be presented cautiously. They should not, however, be excluded. 
(p. xiii) 
 

By studying natural populations, including remnant models stored in the museum (see Griesemer 1990, 

1991)6, Lack was able to investigate plumage in the context of sexual selection, beak size differences 

among finches on different islands, and hybridization.  

 

Natural populations are the basic unit of Lack’s investigations.  Lack circumscribes his 

populations using features of the Galapagos finches that interest him, viz., few competitors for food, 

few predators, and, crucially, “owing to geographical conditions,” division into “a number of partly, but 

not completely, isolated populations, some of which are of very small size” (Lack, 1945, 115-116).  Lack 

identifies natural populations using an important feature, geographical isolation. 

 

 Lack’s units of study are natural populations, but similarly to our two other exemplars, Fisher 

and Park, his investigations draw on insights from other types of populations.  Lack changed his 

theoretical interpretation but repeatedly referred to the same data from natural populations found in the 

field or stored in the museum. For example, in his earlier work, Lack (1945) hypothesized that most 

variation across populations was non-adaptive, attributable to the “Sewall Wright effect” (119, 135).  By 

his 1947 book, in part due to Julian Huxley’s influence, Lack’s views changed significantly.  He now 

postulated that interspecific competition fine-tuned the variation among populations, and species, of 

Darwin’s finches.  Cross-population variation was now understood as adaptive.  Either way, Lack 

abstracted the properties of individuals from natural populations using data models including data tables, 

histograms, and maps.   

 

Peter and Rosemary Grant took Lack’s research program further, studying repeated bouts of 

selection in natural populations of Galapagos finches for over three decades.  Discussing their precursor, 

in a review of a subsequent book by Lack, Peter Grant (1977) observed that “Lack himself was not a 

tester of ideas so much as an explainer of observations and hence a generator of ideas” and “Lack’s field 

work strategy was to be a generalist, sacrificing some depth for breadth” (299).  The Grants have 

maintained Lack’s focus on natural populations, adding new insights about evolutionary, ecological, 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 We suggest that specimens in a museum are better thought of as samples, potentially un-representative, of natural 
populations rather than as constructed laboratory populations. 
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ethological, genetic, and physiological processes while remaining close to populations in the wild (Grant 

and Grant 1989; Weiner 2014 [1994]).   

 

Many others have investigated natural populations.  Among famous cases, consider the work by 

Theodosius Dobzhansky that “took him into the field and caused him to abandon his beloved 

Drosophila melanogaster, the standard fly, for a wild cousin, D. pseudobscura,” and that inspired historian 

Robert Kohler to write an entire book on the lab-field cultural border in biology (Kohler 2002, xiii).  Or 

recall studies of variation in natural populations of the snail Cepaea nemoralis, in England (Cain and 

Sheppard 1950) and France (Lamotte 1959).  Examples could be multiplied, as Endler (1986) does in a 

table presenting 140 “Direct Demonstrations of Natural Selection” (Table 5.1, 129-153).   In all of this, 

natural populations are simultaneously assumed, abstracted, constructed, and investigated by those 

doing fieldwork and interested in natural processes.  

 

 
 

 
Table 1. Key contrasts among theoretical, laboratory, and natural populations.  
 

To summarize, theoretical, laboratory, and natural populations are each important and can be 

distinguished (see Table 1).  To say that these types of population can be distinguished is not to say that 

they cannot also be integrated.  It is often necessary to invoke multiple types of population in the course 

of a single inquiry.   

 

3. Reifying Populations 

We now turn to three examples of the ways in which distinct types of population can be 

conflated, and ways of avoiding such conflations.  First, as population geneticists since Sewall Wright 

have recognized, it would be a mistake to conflate the census size, Nc, of a natural population with its 

 Theoretical 
Population 

Laboratory 
Population 

Natural 
Population 

Core definition Groups of 
abstracted 
individuals (or 
genes) studied in 
formal models 

Collections of 
actual organisms 
assembled in an 
experimental setting 

Collections of 
actual organisms 
living in the wild 

Worlds studied All conceivable 
worlds 

All materially 
possible worlds 

Actual world 

Article Examples  Wright-Fisher 
model populations  
 

Park’s Tribolium Darwin’s finches  
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“effective” population size.  Second, we examine Neyman, Park, and Scott’s (1956) study of 

competition in two Tribolium species, indicating where there might be slippage between theoretical and 

laboratory populations, and why inferences from one to the other cannot be automatically justified.  

Finally, in turning to Structure analyses, we show how a tool that works perfectly well for identifying 

certain kinds of theoretical populations can fail to ground claims about natural populations.  

 

3.1. Distinguishing Theoretical from Natural Populations via “effective population size” 

 A concept that is clarified by our distinction of theoretical, laboratory, and natural populations is 

“effective population size.”  Effective population size highlights, in the semantics of the very term, 

translations that researchers must make between statements about natural and theoretical populations. 

 

As evidenced by the example of Fisher detailed above, a century ago, evolutionary genetics was 

primarily a theoretical discipline.  With little genetic data, evolutionary geneticists studied the ways in 

which evolution unfolds in theoretical populations (Haldane 1964).  As more genetic data have become 

available, evolutionary genetics has become more empirical.  Contemporary evolutionary geneticists 

study genome-wide data from both laboratory and natural populations.  Evolutionary geneticists have 

thus needed methods for translating insights between their rich theoretical heritage and their current 

empirical genomic pursuits.  Effective population size is one such bridging method. 

 

Early evolutionary geneticists studied, and contemporary evolutionary geneticists still study, 

theoretical populations with properties such as the following (Hartl and Clark 1989; Hedrick 2005; 

Winther 2006a; Kliman, Sheehy, Schultz 2008; Ewens 2009; Nielsen and Slatkin 2013): 

 

1. Mating is random. 

2. The number of individuals that breed remains constant across generations. 

3. The members of the population are hermaphroditic.  

4. Every individual has the same expected reproductive success. 

 

On the basis of her interests, the theorist might relax some of these assumptions or add other 

assumptions.7  The chosen assumptions lead to insights about the idealized theoretical populations.  For 

example, the Wright-Fisher model starts from the assumptions in 1-4 and an additional assumption 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 When considering data, the researcher might be forced to add or relax assumptions because of the features of her data. For 
example, she might have data that rule out the possibility that mating is random with respect to traits she studies. Our focus 
in this paragraph and the next one is on theory rather than empirical work. 
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about the variance in offspring number among individuals.  It ignores population structure, mutation, 

selection, two sexes, unequal numbers of breeding individuals across generations, and other non-

idealized properties (e.g., Hartl and Clark 1989, 66 ff.; Gillespie 2004, 47 ff.; Ewens 2009, equation 35).  

Under the Wright-Fisher model, one can determine the rate at which genetic drift occurs.  By adding 

more assumptions about mutation and selection, one can go further, determining, for example, the 

expected heterozygosity of the population (a measurement of genetic diversity) or the approximate 

probability that all individuals in the population will eventually carry a naturally selected allele.  

 

The size of a theoretical population affects its evolution.  For example, other things equal, the 

larger the Wright-Fisher population, the less the influence of drift, the greater the influence of selection, 

and the greater the expected heterozygosity.  Early researchers also noticed that deviations from 

assumptions 1-4 can affect the evolution of a theoretical population in many of the same ways as can 

changing the size of the population.  For example, modifying assumption 3 so that the population 

consists of different numbers of breeding females and males decreases the heterozygosity in the same 

way as decreasing the population size.  Sewall Wright’s (1931, 1938) effective population size, Ne, is one 

way of relating models of theoretical populations that include different assumptions.  Whereas the 

census size, Nc, is the number of organisms in the population, whether in nature, the laboratory, or in 

theory, a population has effective size Ne if its genetic characteristics match a theoretical population 

meeting assumptions 1-4 with a census size equal to Ne.  Differently put, the effective population size of 

a population is the size of an idealized population—specifically, a Wright-Fisher population—that 

would be expected to have a value of a statistic, or a theoretical property, identical to the one calculated 

or observed for the population of interest (e.g. Li 1955, 320-321; Crow and Kimura 1970, 110; Hartl 

and Clark 1989, 82; Hedrick 2005, 318, 319).  One can choose different properties on which to base the 

correspondence of the two populations, leading to different effective population sizes.  Ewens (2009) 

mentions variance, eigenvalue, and inbreeding effective population sizes, based on these three 

properties of theoretical population models.  For example, the inbreeding effective population size of a 

population is the number of idealized individuals that, in a Wright-Fisher model, would generate the 

same level of inbreeding as measured in the natural population of interest.   

 

When evolutionary geneticists study laboratory and natural populations empirically, they use the 

effective population size to relate natural and laboratory populations to theoretical populations.  

Because many natural populations do not meet the assumptions of theoretical models, the effective 
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population size is sometimes strikingly different from the census population size.  For example, though 

the census population size of humans is over 7 billion, under most measures and models, the 

heterozygosity effective population size of humans is roughly 10,000 (Takahata 1993).8  The main 

reason for this discrepancy is the super-exponential growth in recent human history (e.g., Keinan and 

Clark 2012), possibly combined with a larger variance in offspring number in human populations than 

predicted by simple population models, such as the Wright-Fisher model. 

 

Population geneticists are keenly aware that the simple theoretical models, such as the Wright-

Fisher model, may be poor descriptions of natural populations. Nonetheless, the focus of much 

population-genetic research is to relate predictions from the theoretical populations to natural 

populations.  Population geneticists fit theoretical population models to data from natural populations, 

thereby obtaining estimates of parameters such as migration rates, divergence times, and population 

sizes (e.g., Slatkin 1985; Neigel 1997; Beerli and Felsenstein 1999).  One consequence of the use of the 

term “effective population size” is that population geneticists are reminded that the estimates of 

population sizes obtained should not be interpreted as the actual number of individuals in the natural 

population.  Slatkin (1991) proposed an analogous usage of the term ‘effective migration rate’ for 

estimates of migration rates between populations.   

 

 We have already warned that conflating different types of populations leads to confusion.  The 

concept of effective population size reminds evolutionary geneticists of distinctions between natural 

populations and different types of theoretical populations.  These distinctions help population 

geneticists avoid reification errors among kinds of populations, but the effective population size itself 

can also be reified. Messer and Petrov (2013) argue that coalescent effective population size, which is 

sensitive to neutral evolution over long time scales, has been incorrectly used by some evolutionary 

geneticists as a single description of population size, leading some researchers to ignore the dynamics of 

natural selection in populations whose sizes fluctuate rapidly.  The example of effective population size 

thus illustrates both the positive benefits of distinguishing theoretical, natural, and laboratory 

populations and the risks of not doing so.  

 

3.2. Distinguishing Theoretical from Laboratory Populations in the Tribol ium Model 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 This is not to suggest that the human population meets the assumptions of a Wright-Fisher model with a theoretical 
population size of 10,000. Rather, the empirically observed heterozygosity of humans is approximately the heterozygosity 
expected in a Wright-Fisher population of size 10,000. 
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When modeling a population, one necessarily ignores some aspects of the population in 

exchange for clarity about others.  Neyman, Park, and Scott (1956) carefully articulated ways in which 

laboratory and theoretical populations of Tribolium inform one another.  As we shall see, they found a 

strange experimental result.  To investigate it, they constructed a mathematical model with unrealistic 

assumptions.  Some of the assumptions of this theoretical model were empirically false, but false models 

may still be useful (Levins 1966, 1968): their broad conclusions may still be correct, and they may point 

to further experiments (e.g., Mertz, Cawthon, and Park 1976).  In all of this, Neyman, Park, and Scott 

were careful to make their assumptions clear, and to distinguish two kinds of work and of populations – 

theoretical and laboratory. 

 

A surprising laboratory result motivated the construction of a theoretical model.  Isolated 

populations of Tribolium confusum and Tribolium castaneum were allowed to develop for 780 days in 

different, carefully controlled conditions, and their populations sizes were measured every thirty 

days.  Because the beetles react differently to temperature and humidity, in some environments T. 

confusum became more numerous than T. castaneum, and vice-versa.  In a parallel set of experiments, the 

two species were placed together in the same range of environments.  In these experiments with 

interacting populations, one species of beetle was always eliminated.  The counterintuitive result is that 

at a particular temperature and humidity, the species that was most prolific on its own was not 

necessarily the one that tended to prevail in competition.  This consequence is surprising because it 

belies the expectation that some single intrinsic property (e.g., “vigor”) determines a high number of 

individuals in a particular environment, regardless of whether the species is alone or interacting with 

others. 

 

As described in Neyman, Park, and Scott (1956, 59-74), the theoretical population retains only a 

few attributes of the original population:  

 

1. Beetles have only one sex, there is no inter-specific variability in “voracity.”  

2. There are only two life cycle stages (edible egg and voracious adult).  

3. There is no spatial structure.   

4. Tribolium activities (egg-laying, eating, and dying) are assumed to occur according to a 

Markov process.   

 



Winther, Giordano, Edge, Nielsen   The Mind, the Lab, and the Field 

	
   14 

This model’s constrained notion of “population” offers the advantage of mathematical tractability at the 

cost of further divorce from natural populations.  In exchange for these simplifications, mathematical 

machinery produces the following insights about theoretical populations:  

1. The equilibrium population size in a single species is a tradeoff between voracity (egg eating) 

on one hand, and egg-laying and hatching time on the other. 

2. In competition between multiple species, a species with a lower equilibrium population may 

still dominate a species with a higher equilibrium population if the former has a high enough 

voracity relative to the latter. 

Having described and analyzed their new, theoretical population to come to these conclusions, they 

subjected some of the model’s details to empirical scrutiny.   

 

The assumptions of the theoretical model turned out to be inconsistent with more detailed 

experiments.  Specifically, under the theoretical model, the number of eggs at a given point in time 

depends only on the product of the number of beetles and the amount of time that has passed.  Ten 

beetles should produce the same number of eggs in five hours as five beetles in ten hours.  Figure 8 of 

Neyman, Park, and Scott (1956, 73) shows that this is not so in the laboratory population: when time is 

varied but the number of beetles is kept fixed, variation in egg production is described by a line; in 

contrast, when the number of beetles is varied and time is fixed, variation in egg production is described 

by an exponential curve.  The mathematical model is too simple.  The theoretical and laboratory 

populations do not completely coincide.  Indeed, the final section of Neyman, Park, and Scott (1956) 

describes failed attempts to make more complicated theoretical models accommodating the contrary 

data.  Critically, this paper makes the assumptions clear in part by permitting the reader to consciously 

move between levels of abstraction—natural population to laboratory, and laboratory population to 

theoretical—always aware of what assumptions have been made and what information has been lost. 

 

3.3. How to Avoid Conflating Theoretical with Natural Populations in Structure  Analyses 

We turn to another setting in which different kinds of populations can be conflated.  In the past 

15 years, population geneticists have used model-based clustering methods to assign individual 

organisms to distinct statistical clusters using genetic data (e.g., Pritchard, Stephens, and Donnelly 2000; 

Falush et al 2003, 2007; Tang et al. 2006; Hubisz et al 2009; Brisbin 2010; Maples et al. 2013).  The most 

influential algorithm for genetic clustering is Structure (e.g. Pritchard, Stephens, and Donnelly 2000; 

Falush et al 2003, 2007).  Structure analyses have been useful in understanding human genetic variation, 

especially as an exploratory tool for describing patterns of genetic diversity (e.g. Rosenberg et al. 2002; 
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Friedlaender et al. 2008).  At the same time, their use has been controversial.  Proponents of biological 

race concepts have argued that the classifications resulting from Structure analyses on human data mimic 

traditional race classifications and thereby validate a biological race concept, and biological realism 

about race (Sesardić 2013, Wade 2014; a careful defense of a biological race concept can be found in 

Spencer 2012, 2013, 2014, 2015; but see Kaplan and Winther 2013, 2014).  

 

How do Structure analyses fit into our trichotomy? In the original paper describing Structure 

(Pritchard, Stephens, and Donnelly 2000), the clusters that the algorithm produces are called 

“populations.” But what kind of populations are they?  To answer the question, consider Structure’s 

input, model, and output.  The input to Structure is genetic data.  Pritchard, Stephens, and Donnelly 

(2000) use three examples: simulated data, data sampled from three geographically distinct groups of 

Taita Thrush, and data from African and European humans.  Thus, the genetic data used by Structure 

might come from theoretical populations (e.g. simulations), laboratory populations (e.g. Whitely et al. 

2011), or natural populations.  Structure uses genetic data to estimate populations.9  That is, Structure 

estimates the population membership of each organism in the sample—organisms might be assigned to 

more than one population—and estimates the allele frequencies in each population at each genetic locus 

in the dataset.  To make these estimates, Structure compares the data provided to a model.  In the model, 

individual organisms have only two properties—population memberships, which may be fractional, and 

genotypes. Populations, in turn, have only two properties—allele frequencies and Hardy-Weinberg 

equilibrium (HWE).10  Roughly, Structure finds population memberships and allele frequencies that lead 

to the closest fit between the model and the provided data. 

 

In light of our trichotomy, then, Structure clusters are estimates of theoretical populations—they 

are the groupings that optimize the fit between a model of a theoretical population and data, which may 

come from theoretical, laboratory, or natural populations.  Pritchard, Stephens, and Donnelly (2000) 

talk about Structure in similar terms in their original paper, and the distinction between estimates and 

theoretical quantities is fundamental to statistics (e.g., Wasserman, 2004, page ix, Figure 1; Fisher 1922, 

see below).   

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 In our usage, the term “population” can apply to groups at different levels of a nested structure. Thus we call the targets of 
estimation in a Structure analysis “populations” rather than “subpopulations,” even though they may be subsets of a larger 
population. 
10 The assumption of HWE can be relaxed; see Gao et al. 2007. 
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Figure 2.  Four populations, A, B, C, and D, with their true history. 

 

Treating clusters from a Structure analysis as populations with properties that are not part of 

Structure’s model can lead to inferential errors (Anderson and Dunham 2008; Weiss and Long 2009; 

Gilbert et al. 2012; Winther and Kaplan 2013; Putnam and Carbone 2014; Winther 2014b).  Consider 

four (theoretical) populations with a true history depicted in Figure 2.  Assume the populations undergo 

genetic drift but are not subject to natural selection (see e.g., Crow and Kimura 1970, Chapter 8; Hartl 

and Clark 1989, Chapter 2; Nielsen and Slatkin 2013, Chapter 2).  Also imagine that populations A and 

D and their ancestral populations are very large compared with their divergence time in generations, T1.  

Because allele frequencies in large populations drift very slowly, allele frequencies will be similar in 

populations A and D.  However, if populations B and C are smaller, with sizes similar to their 

divergence times, T2, from populations A and D, then the allele frequencies in populations B and C will 

change appreciably due to drift. 

 
Figure 3.  The results of Structure clustering by allele frequency. 

 

In this example, populations A and D will have similar allele frequencies, but populations B and 

C will have distinct allele frequencies across the genome. A Structure analysis assuming three clusters (K 

= 3) would likely infer the three clusters as {A+D, B, C} (Figure 3).  No inferential errors have been 

made yet—this is the correct clustering when one considers allele frequencies alone.  However, 
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depending on one’s interests, it may make little sense to interpret cluster {A+D} as a population that 

does not include B and C.  For example, if the researcher is interested in questions about which groups 

of organisms freely interbreed, then the Structure clusters do not correspond with the researcher’s 

purposes—A and D do not freely interbreed and have not done so for a long time.  Shared ancestry is a 

fundamental component of biological taxonomy, but Structure does not directly inform about shared 

ancestry.11 

 

Even if the researcher is interested in exactly the type of groupings that Structure finds in data, 

reifying Structure clusters can still create problems. Structure analyses find a clustering scheme in which 

individuals in the same cluster have maximally similar genotypes and individuals in different clusters 

have maximally different genotypes. Suppose that we were to perform a Structure analysis on data from 

populations B and C in the example above, excluding populations A and D. With enough genetic 

data, Structure would likely be able to distinguish between populations B and C. 

But Structure’s assignments will be imperfect, and to the extent that Structure errs, it will tend to err 

systematically, assigning “B-like” individuals from population C partial membership in population B and 

assigning “C-like” individuals from population B partial membership in population C. Thus, 

the Structure clusters corresponding to populations B and C will likely be more genetically differentiated 

than the natural populations themselves.  Estimates of population parameters, such as divergence times 

or migration rates, may thereby be prone to overestimating genetic differentiation when Structure-

inferred clusters are treated as populations.  If properties of Structure clusters are analyzed as if they were 

properties of natural populations, as is sometimes done (e.g. Jeong et al. 2014), then this potential bias 

must be kept in mind.  

 

In all of this, the statistical methodology cannot be faulted.  It has done just what we asked: 

produce groupings maximizing the fit between data and a model of populations as groups that meet 

HWE and have differing allele frequencies.  If the user’s purposes extend beyond the minimal 

population concept expressed by the model underlying Structure, then the user indeed has more work to 

do after running the analysis—supporting information is needed to make a case that a Structure cluster 

corresponds to the type of entity in which the investigator is interested.  Users who 

imbue Structure clusters with characteristics that are not part of Structure’s model without such supporting 

evidence will make confused interpretations, especially vis-à-vis ecology and history.12  Weiss and Long 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 Kalinowski 2010 reaches a similar conclusion. 
12 Putnam and Carbone 2014 consider similar issues from a more technical point of view.   
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(2009) write that “architects of structure… are well aware of the limitations of the method and state them 

clearly in their papers [citations suppressed].  However, applications of such programs are often made 

without heeding caveats or recognizing the limitations of the underlying models with respect to the 

questions and data at hand.” (704)  Weiss and Long are concerned with scientists reifying the output of 

Structure and similar programs, and they give examples of such reifications.  Similar errors can occur 

when the media report on Structure analyses.  For example, science journalist Nicholas Wade (2014, 100) 

describes a Structure analysis by Tishkoff et al. (2009) as revealing “14 different ancestral groups.”  Our 

hypothetical example above points to one way in which a Structure-inferred cluster might not even 

approximately represent an “ancestral group” – these two kinds of theoretical populations should not 

be conflated.  

 

In these cases, philosophical reflection might benefit scientific practice by demanding clarity 

about the aims and nature of the study, the kind of population(s) used in the study, and which 

inferences the populations used can legitimately support.  Philosophical attention could prevent the 

inappropriate use of methods for questions they were not designed to answer.  Keeping in mind our 

trichotomy of population types is not the only way to draw attention to these issues and avoid 

reification errors, but it is one way. 

 

In this section, we have considered three examples of biological practice in light of our 

distinction between theoretical, natural, and laboratory populations.  We viewed the effective population 

size, Ne, as a bridge between theoretical and natural populations, with the word “effective” serving as a 

helpful reminder that such a bridge is being crossed.  Thomas Park’s work on Tribolium was a case study 

in the successful use of multiple types of population in the same line of inquiry. Park and his 

collaborators, Neyman and Scott, made their assumptions explicit each time they used a new type of 

population.  We also saw that distinguishing theoretical, laboratory, and natural populations can help 

researchers avoid incorrect inferences when interpreting model-based genetic clustering results.   

 

4. Conclusion 

The main thrust of this paper has been to distinguish three kinds of populations—theoretical, 

laboratory, and natural.  We have focused on scientific practice and have side-stepped several 

philosophical concerns, including realism and anti-realism, the concept-world relation, and the general 

ontology of science.  In concluding, we mention three ways in which our analysis is related to larger 

themes in philosophy of science, and briefly consider the application of our trichotomy to statistics. 
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First, we are not committed to any particular ontological position about populations. 

Populations have been considered from realist (e.g. Millstein 2009, 2010, 2015), and pragmatic (e.g. 

Gannett 2003) perspectives.  To our knowledge, no fictionalist account of populations has been offered 

(for fictionalism see Godfrey-Smith 2009a; Frigg 2010; Toon 2010; cf. Weisberg 2013). Our trichotomy 

might fit comfortably in such a fictionalist account.  Theoretical populations could be viewed as 

fictional objects, worthy of study for their own sake, despite their imperfect correspondence with 

objects in nature, viz., natural populations.  Laboratory populations might be seen as having 

characteristics of both fictional and material objects.  Our analysis of scientific practice is potentially 

consistent with realist, pragmatic, and fictionalist ontological perspectives. 

 

Second, our trichotomy can be viewed as a tool for assumption archaeology, the attempt to study 

the system of assumptions underlying a family of scientific models and theories (Godfrey-Smith 2009b; 

Servedio et al. 2014; Winther 2014b, under contract).  Which kinds of assumptions are at play in 

modeling and theorizing, including methodological and ontological assumptions (Kuhn 1970; van 

Fraassen 1980; Levins and Lewontin 1985; Hacking 2002; Elwick 2012)?  What are the functions of 

each assumption, and what happens when we replace a given assumption, or add new ones?  What can 

occur when we forget that certain assumptions have been made?  Many working scientists consider such 

questions carefully. We saw that Neyman, Park, and Scott analyzed their assumptions in an explicit and 

sustained manner, using a scheme similar to our trichotomy to understand their subject.13 

 

Third, the concept of “population” in ecology and evolution is a potentially useful case study of 

model, concept, and ontology pluralism in science (Levins 1966, 1968, 2006; Dupré 1993; Cartwright 

1999; Kitcher 2001; Longino 2002, 2013; Giere 2006; Winther 2006c, 2014a).  At least sometimes, 

complex phenomena can be understood as involving multiple properties, objects, and processes, and 

can be viewed from several perspectives.  For instance, Thomas Park interfaced theoretical and 

laboratory populations.  Moreover, we can learn about one type of population without having to say 

something about another.  For example, theoretical populations need not describe all aspects of natural 

populations in order to provide insight.  Consider also that careful users of Structure compare Structure 

results with a plurality of kinds of evidence related to their interests and concerns. 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13 Kaplan et al. 2015 effectively practice assumption archaeology in the “Gould on Morton” debate by carefully diagnosing 
the implicit questions and presuppositions at stake in this controversy.  
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 We have focused on evolutionary biology and ecology, but our analysis of populations may be 

applicable to other fields.  There is a historical reason for thinking this is so: one of the developers of 

the theoretical population concept in biology, R.A. Fisher, also contributed to the “population” concept 

in statistics.14  Fisher baptized the distinction in statistics between population and sample.  Already in the 

first section of Fisher (1922), he faulted previous researchers for  

apply[ing] the same name, mean, standard deviation, correlation coefficient, etc., both to the true 
value which we should like to know, but can only estimate [i.e., parameters or population 
moments], and to the particular value at which we happen to arrive by our methods of 
estimation [i.e., estimates or sample moments]. (1922, 311)   
 

The population-sample distinction became fundamental to statistics.  Fisher also states that statisticians 

proceed by “by constructing a hypothetical infinite population, of which the actual data are regarded as 

constituting a random sample15” (ibid).  In addressing the basic problems of statistics (specification, 

estimation, and distribution 1922, 313), Fisher repeatedly appeals to infinite and hypothetical populations.  

 

Are populations in statistics natural, laboratory, or theoretical?  In their introductory textbook, 

Freedman, Pisani, and Purves define a statistical population as a class of individuals about which an 

investigator wants to generalize (1998, 333).  When introducing students to statistical populations, some 

textbooks use natural populations as an illustration.  For example, Whitlock and Schluter (2015) give 

examples of populations for use in data analysis, including “all the individuals of voting age in 

Australia,” and “all paradise flying snakes in Borneo” (4-5).  Indeed, sometimes these groups are the 

targets of researchers’ interests: election analysts want to know how actual voters will vote.  But to make 

inferences, statisticians invoke theoretical models of the populations in which they are interested.  

Sometimes the features of these models are tightly tethered to known features of the natural or 

laboratory populations under study, and sometimes the models contain features that are harder to 

verify.  Either way, broad classes of statistical analyses—especially estimation and inference 

procedures—warrant claims about natural or laboratory populations to the extent that theoretical 

models reflect important features of the population of interest.  There is a close analogy between this 

“statistical population” strategy and Fisher’s strategy in mathematical population genetics. 

 

 It is natural to see Fisher’s statistical population concept as an extension of his theoretical 

population concept.  Individual elements are idealized, abstracted, generalized, and made 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14 Similar statements could be made about Karl Pearson, as one of the anonymous reviewers of this manuscript pointed out. 
15 On the history of “representative sampling,” see Kruskal and Mosteller 1980, replete with instructive diagrams for nine 
different meanings of the term.  Interestingly, we have thus far been unable to find a history of the “population” concept in 
statistics. 
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interchangeable in exchange for the ability to make claims about the aggregate.  Through Fisher’s 

influence on statistics, theoretical populations—and questions about their relationship to natural and 

laboratory populations—exist in the inferential machinery of many fields across the natural and social 

sciences. 
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