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Logical Indefinites∗

Jack Woods

Abstract

The best extant demarcation of logical constants, due to Tarski, classifies logical 
constants by invariance properties of their denotations. This classification is 
developed in a framework which presumes that the denotations of all expressions 
are definite. However, some indefinite expressions, such as Russell’s indefinite 
description operator η, Hilbert’s ε, and abstraction operators such as ‘the number 
of’, appropriately interpreted, are logical. I generalize the Tarskian framework in 
such a way as to allow a reasonable account of the denotations of indefinite expres-
sions. This account gives rise to a principled classification of the denotations of 
logical and non-logical indefinite expressions. After developing this classification 
and its application to particular cases in some detail, I show how this generalized 
framework allows a novel view of the logical status of certain abstraction operators 
such as ‘the number of’. I then show how we can define surrogate abstraction 
operators directly in higher-order languages augmented with an ε-operator.

1.  Introduction

We have known since Tarski’s 1936 “The Concept of Logical Consequence” 
how to develop a precise account of logical truth and consequence given a 
fixed set of logical expressions. We typically fix these logical constants 
by enumeration. ‘And’, ‘not’, and ‘every’ are logical constants. ‘Square’, 
‘the father of’, ‘Jack’, and ‘is larger than’ are not. This sort of procedure is 
more than adequate for most mathematical applications since the consequence 
relation developed à la Tarski on the back of conjunction, negation, identity, 
and a quantifier or two suffices to characterize a wide array of mathemati-
cal structures. When we turn a more philosophical eye towards accurately 
characterizing the concepts of logical truth and logical consequence as 
they appear in the informal background logic with which we actually do 

∗ T hanks to Aldo Antonelli, Paul Benacerraf, John Burgess, Paul Egré, William Hanson, 
Robbie Hirsch, Barry Maguire, Jimmy Martin, Noel Swanson, and a couple of anonymous 
referees for valuable feedback. Thanks also to audiences at the Bristol Postgraduate Confer-
ence in Philosophy at Bristol University and the Logic, Truth, and Language Conference at 
Princeton University. Thanks especially to Aldo Antonelli for the conversation that inspired 
this piece.
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mathematics, things get more complicated. Though our list seems adequate 
in the main, there is no obvious principled connection between those expres-
sions on the list and those not. Philosophers and logicians have thus attempted 
to give a principled account of the members of the list that explains why ‘and’ 
and ‘every’ are logical, why ‘square’ and ‘Bob’ are not, and that settles in a 
reasonable way disputed cases like ‘is identical to’ and ‘most’. One of these 
attempts, also initiated by Tarski, has risen almost to the level of widespread 
acceptance in more mathematical contexts: logical expressions are those 
whose meaning does not depend on the characteristics of particular objects.

Since logical constants do not depend for their meaning on the charac-
teristics of particular objects, their meaning should not change if we switch 
objects around or substitute some objects for others. Working within a 
widely held model of the denotations of various expressions, we can develop 
a formal analogue of this intuitive constraint, selecting out a set of objects 
invariant under certain transformations as the potential denotations of logi-
cal constants. This framework, though useful, carries with it certain limiting 
presumptions about the potential meaning of expressions in the language it 
is modeling. In particular, the framework presumes that the meanings of all 
expressions are definite in a precise sense spelled out below. This presump-
tion systematically perverts the intended meanings of indefinite expressions 
such as the English indefinite article. So perverted, indefinite expressions 
have no hope of being logical constants. However, indefinite expressions 
are common enough in informal mathematical reasoning and plausible 
enough as candidate logical constants that our best principled account of 
logical constants should not exclude them by being built on an inadequately 
accommodating framework.

My aim in this paper is to amend this framework to allow indefinite 
expressions a reasonable chance at logicality. The structure of the paper is 
as follows. In 2, I describe Tarski’s account of logical truth and logical 
consequence. In 2.1, I turn to describing the standard framework in which 
the invariance criterion of logicality has its home, show how the invariance 
criterion classifies the denotations of various expressions as logical and 
non-logical, and explain the intuition behind the criterion. Section 2.2 is a 
discussion of the adequacy of this criterion as a classification of the logical 
status of indefinite expressions. Having seen that the criterion is inadequate 
by virtue of the presumptions of the framework, I propose in sections 3 and 
3.1 a more general framework without such presumptions and show how 
to extend the invariance criterion to this new setting. Section 4 examines the 
consequences of this extended criterion for a number of cases: a version of 
Hilbert’s ε operator [4.1], abstraction operators [4.2], and a new type of 
abstraction operator defined from ε [4.3]. I close in 5 by summarizing the 
reasons for accepting my proposed amendment of Tarski’s framework and 
the resulting criterion of logicality.
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2.  Tarski on Logical Truth and Logical Consequence

A logical truth is a sentence true in virtue of its logical form. A sentence 
A is a logical consequence of some sentences B0, …, Bn if the truth of A is 
guaranteed by the truth of B0, …, Bn, … in virtue of the logical form of A 
and the logical form of the Bs. (Tarski, A. 1936) gives an analysis of ‘true 
in virtue of logical form’ according to which a sentence is a logical truth if 
and only if every way of reinterpreting the non-logical expressions occur-
ring within A results in a true sentence. Likewise A is a logical consequence 
of B0, …, Bn, … if every way of reinterpreting the non-logical expressions 
occurring within A and the Bs that makes all of the Bs true makes A true. 
With one small amendment, Tarski’s analysis has become the standard 
account of logical truth and logical consequence.

The amendment concerns the connection between true sentences contain-
ing only logical vocabulary and logical truths. We can express claims about 
how many things there are using only standard logical vocabulary. This 
means that according to the above account such sentences are logical truths. 
This has the frustrating upshot that sentences expressing facts which are 
presumably not capable of being sussed out a priori are nonetheless logical 
truths.1 Contemporary accounts of logical truth avoid this consequence and 
others by modifying the above definition like so: a sentence is a logical truth 
if and only if no matter what things there are, every way of reinterpreting 
the non-logical expressions occurring within A results in a true sentence. 
Similarly for logical consequence. The technical details of Tarski’s approach 
and our modern variants are not important for this paper, so I set them 
aside. Details that matter will be filled in below. Almost all of what I say 
below can be easily adapted to the older approach and, in fact, the results 
in 4.3 are even better on that approach.2

Tarski’s definition depends on a distinction between logical and non-
logical expressions. In his 1936 paper, Tarski expresses doubt about whether 
a precise criterion of logicality for expressions could be found. He suggests 
that though it might be possible to find “objective” arguments that justified 
the traditional choices of logical constants — the monadic quantifiers ‘every’ 

1 S ee (Hanson, W.H. 1997, section 1) for a discussion of problems with the older style 
of approach relating to the aprioricity of logic. These concerns, unfortunately, are beyond 
the scope of this paper. Doing them and other concerns about the nature of logic justice 
would require much fuller treatment than I can manage here. I hope to address this issue 
elsewhere.

2 I  also bracket the interesting historical question of whether Tarski had the amended 
version already in mind, but failed to mention this due to the informality of the paper. See 
Gomez-Torrente, M. (2000); Hanson, W.H. (1997); Etchemendy, J. (1990) and Sher, G. 
(1991) for discussions of this matter and Mancosu, P. (2010) for an updated survey of the 
current evidence on offer.
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and ‘there is’, negation, conjunction, etc. — it might also turn out that his 
analysis yields only a definition of logical truth relative to a choice of 
logical constants. In later work Tarski suggests a criterion that distinguishes 
logical from non-logical notions where notions are, in a sense to be spelled 
out precisely below, the denotations of expressions.3 His approach is 
entirely extensional; he does not distinguish between expressions with dif-
ferent meanings that denote the same notion. What he offers can be viewed 
as a necessary condition for being a logical constant — a logical constant 
denotes a logical notion — and a necessary and sufficient condition for 
being a logical notion. This goes some way towards settling the choice of 
logical constants though, as he notes, it does not fully settle the question 
about logical truth and logical consequence.

2.1.  Tarski’s Invariance Criterion

To spell out the details of Tarski’s criterion, we need to introduce a bit of 
terminology. We define a type-symbol as follows:
•	 ‘e’ and ‘t’ are type-symbols.
•	I f S1, …, Sn, and S are type-symbols, (S1,  S2, …,  Sn & S) is a type sym-

bol.
Given a set of objects (a domain) D, we interpret the type-symbols defined 
above against D thus:
•	 e denotes D
•	 t denotes {T,  F}
•	 (S1,  S2, …,  Sn & S) denotes the set of functions from the Cartesian 

product of S1, …, Sn to S.

For example, (e & t) denotes the set of functions from D to {T,  F} and 
((e & t) & t) the set of functions from functions from D to {T,  F} to {T,  F}. 
When the right-hand side of a type-symbol is ‘t’, the members of the 
denoted type will be characteristic functions. We can be slightly perverse 
and identify a set with its characteristic function and think of, for example, 
(e & t) being a set of subsets of D (the power set). Likewise, we can think 
of ((e & t) & t) as the power set of the power set of the domain. Taking 
the union of all the interpretations of all the type-symbols, we obtain a col-
lection of sets we can call the type-hierarchy over D.

3 S ee Tarski, A. (1986). Tarski’s discussion therein is limited to logical notions. He artic-
ulates a clear connection between logical constants and logical notions in Tarski, Alfred and 
Givant, Steven R. (1987), 57 where, in the context of developing set theory in a variable-free 
formalism, he gives the denotation of a logical notion as a necessary and sufficient condition 
for being a logical constant. Thanks to a helpful reviewer.
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A notion-in-extension σ is a function that assigns, to some domains D, 
some element σD of the type-hierarchy over D.4 A total notion is one 
defined on every domain. We can understand expressions as picking out 
notions-in-extension. So, for example, the English quantifiers or the formal 
symbols 7, 6 pick out notions that assign to every domain D a function 
of type ((e & t) & t). Again being slightly perverse, ‘6’ picks out the 
singleton of the domain {D} and ‘7’ the set consisting of non-empty sub-
sets of the domain. Type 〈1〉 generalized quantifiers such as ‘There are at 
least four’ and ‘There are finitely many’ can likewise be treated as picking 
out subsets of the power set of the domain. Type 〈1, 1〉 quantifiers such as 
‘as many A as B’ are of type (((e & t), (e & t)) & t) and can thus be 
thought of as subsets of the Cartesian product of the power set with itself.5 
And so on. Notions are presumed to be total unless otherwise noted. Partial 
notions have a tenuous claim to logicality, failing to have universal appli-
cation.6

Many distinct expressions of natural language will pick out the same 
notion. ‘Universal quantification’ picks out the notion that sends a domain 
to its singleton, but so does ‘mock universal quantification’ which is univer-
sal quantification if there are at least 43 things and existential otherwise.7 
The expressions here differ in meaning, so we are not classifying expres-
sions, whether natural or formal, as logical or non-logical, but only notions.

Tarski’s approach to classifying notions as logical proceeds in terms of 
in-variance of notions under permutations of the domain. As McGee puts it:

Any operation which is disturbed by a permutation must somehow discriminate 
among individuals in the domain, and any consideration which discriminates 
among individuals lies beyond the reach of logic, whose concerns are entirely 
general. (McGee, V. 1996)

A permutation of a set is a bijection (one-to-one correspondence) from it 
to itself. Given a permutation π of a domain D, we can extend π in a 
straightforward way to a function π+ on all members of the type-hierarchy 
over D. We set π+ (T) = T, π+ (F) = F. For all d in D, let π+ (d) = π(d). For 
an ordered n-tuple 〈m1, …, mn〉 of members of the type-hierarchy,

π+ (〈m1, …, mn〉) = 〈π+ (m1), …, π+ (mn)〉.

4 I  will typically abbreviate this to ‘notion’.
5 S ee Peters, S. and Westerståhl, D. (2006) for a useful overview of generalized quanti-

fiers.
6 T his point will be discussed further below in the context of abstraction operators 

defined only on domains of a certain cardinality.
7 T hat is, if there are actually 43 things. There are other potential problems with expres-

sions which are universal quantification on domains with more than 43 things and existential 
otherwise.
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Given a function f from Si to Sj , π+ ( f ) is the function composed of π+, f, 
and the inverse of π+: π+ % ( f % π+ –1). It is easy to check that this is the func-
tion g from π+ (Si) to π+ (Sj) such that

g(π+ (x)) = π+ (y) iff f (x) = y.
When f is a characteristic function, then we can simplify the above since 
π+ is constant on t. Writing Cf for {a | f (a) = T},

π+ (Cf ) = π+({a, β, …}) = {π+(a), π+(β), …}.
We will say that σD is invariant under π iff π+(σD) = σD and σD is permu-
tation invariant iff σD is invariant under π for every permutation π on D. 
We can now formulate Tarski’s criterion of logicality.

Tarski’s Criterion of Logicality.  A notion is logical just in case on every 
domain it denotes a permutation-invariant member of the type-hierarchy of 
that domain8.

This is not quite right — a quantifier W that denotes the operation of 
existential quantification on domains containing wombats and universal 
quantification otherwise is sensitive to the characteristics of the particular 
individuals making up the domain, but passes Tarski’s criterion with flying 
colors.9 We can fix this problem and others like it by moving from invari-
ance under permutations of a domain to invariance under isomorphisms 
between domains.10

As with permutations, given an isomorphism ζ from D to D' we can 
induce a function ζ+ from the type-hierarchy over D to the type-hierarchy 
over D' exactly as above. We will say that σD is invariant under ζ  : D " D' 
iff ζ+ (σD) = σD' and σD is isomorphism invariant iff σD is invariant under 
ζ for every isomorphism ζ with domain D. A notion σ is isomorphism 
invariant if σD is isomorphism invariant for every domain D.

Tarskian Criterion of Logicality.  A notion is logical just in case on every 
domain it denotes an isomorphism-invariant member of the type-hierarchy 
of that domain.

8 T his account, developed in the posthumous Tarski, A. (1986), was anticipated by Maut- 
ner, F.I. (1946).

9 T he example is inspired by McGee’s discussion of wombat disjunction in McGee, V. 
(1996).	

10  An isomorphism between domains is simply a bijection or one-to-one correspondence. 
Because of this, the property of isomorphism invariance is sometimes called invariance 
under bijections. Note that one-to-one correspondences between domains typically do not 
extend to isomorphisms between structures in the model-theoretic sense.
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The notions denoted by the usual logical constants are isomorphism 
invariant. Consider the operation of universal quantification. If ζ is an iso-
morphism between D and D'  then

{ζ(d) | d ! D} = D' so ζ+ (6D) = {D'} = 6D'.
So the operation of universal quantification is isomorphism invariant.  
A little work confirms that all the usual logical constants are isomorphism 
invariant.11 Consider now the relation ' which holds between a, b ! D iff 
a is less than or equal to b and they are both positive integers. For any 
isomorphism ζ from Z+ to N, ζ+ (' Z+)  !  ' N, since 0 5 N i for i in N. 
A little work confirms that typical non-logical expressions are not isomor-
phism invariant.

2.2.  Adequacy of the Isomorphism Invariance Criterion

Isomorphism invariance enjoys widespread acceptance as a demarcation of 
logical notions in mathematical contexts such as abstract model theory.12 
Insofar as philosophers make use of a principled semantic criterion of 
logicality, the going account is that logical constants denote isomorphism-
invariant notions.13 I have no objection to taking isomorphism invariance 
as the criterion of logicality for notions. However, it is inadequate as a full 
classification of the denotations of expressions into the logical and the non-
logical. The isomorphism invariance criterion only classifies denotations of 
expressions that can be represented as functions from domains to members 

11  All truth-functions come out as trivially logical on the invariance criterion. We can 
give a more nuanced account of the logical status of the truth-functions, but doing so here 
would be a distraction.

12 S ee Barwise, J. (1974) and Lindström, P. (1966). Vaananen, J. (2004) contains a use-
ful overview of both Barwise and Lindström’s work and subsequent developments.

13 S ee, for example, Kit Fine’s use of invariance criteria to distinguish good from bad 
abstraction principles in Fine, K. (2008). Solomon Feferman (1999) and Denis Bonnay 
(2008) have developed more subtle variations on the isomorphism invariance criterion with 
the aim to exclude quantifiers like ‘There are "18 many’. Such variations do not matter for 
the treatment of indefinite expressions like Hilbert’s ε and Russell’s η — my suggestion for 
these cases can easily be modified for any extant variation. My later treatment of abstraction 
operators, and, in particular, my account of the logical status of ε-abstraction operators, 
would need to be modified. For example, my treatment of the logical status of Hume’s 
principle requires that = is a logical constant, which it is not on Feferman’s account. The 
question of how my treatment of abstraction operators fares on accounts like Bonnay or 
Feferman’s, suitably amended, would take us too far afield from my present purpose. I hope 
to address it elsewhere. There is also an entirely separate tradition of proof-theoretic accounts 
of logicality arising from Gentzen, G. (1935). See also Dummett, Michael (1993). The 
relationship between this latter tradition and the account discussed here is beyond the scope 
of this paper.	
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of the appropriate type in the type-hierarchy over those domains.14 Not all 
expressions of natural or logico-mathematical language are usefully thought 
of this way. Russell’s indefinite and definite description operators η and ι, 
Hilbert’s ε operator, and abstraction operators such as ‘the number of’ are 
all cases of expressions which do not fit nicely into the framework just 
given. These operators have some claim to being logical constants so we 
should extend our framework in a principled way to allow the isomorphism 
invariance criterion to give a verdict on their status.

η, ι, ε, and abstraction operators are all examples of what are sometimes 
called “variable-binding term operators”.15 They attach to formulas with 
one or more free variables to form a term that denotes an object in the 
domain. η, for example, attaches to a formula A(x) with x free to form the 
term η.xA(x) which denotes an arbitrary object o in the domain that satis-
fies A(x). If there is no such object, η.xA(x) fails to denote. ε is a total 
version of η; ε.xA(x) denotes an arbitrary object from the domain if A(x) 
is unsatisfiable. In our present framework, variable-binding term operators 
have to denote functions of type ((e & t) & e); that is, total functions from 
the power set of the domain to the domain.16 It is a trivial fact that no total 
function of this type in the type-hierarchy over a non-singleton domain is 
permutation invariant, a fortiori that no total function of this type is iso-
morphism invariant. If we force the denotation of expressions like ε into 
Tarski’s framework, we would face the unpleasant choice of rejecting the 
Tarski-Mautner criterion of logicality or accepting that no variable-binding 
term operator denotes a logical notion. Fortunately, we do not have to 
face this choice. We can adapt our framework in a natural way to allow a 
principled and non-trivial demarcation of the logical from the non-logical 
variable-binding term operators.

3.  Modifying the Framework

There are two problems involved in modifying our framework. The less 
serious problem has to do with partial functions. It was implicitly assumed 
above that that a member of a type (T1,  …,  Tn & S) is a total function on 

14 T his is not a peculiarity of my exposition of the invariance criterion. It is a common 
assumption in the literature on permutation invariance.	

15 T he theory of variable-binding term operators is developed in Corcoran, J., Hatcher, W. 
and Herring, J. (1972) and da Costa, N.C.A. (1980).	

16 O f course, this is only on the presumption that a closed term like η.xA(x) denotes, on 
a domain, an entity if A(x) is satisfiable. If we do not require this, we could — as I discuss 
below — interpret η and like operators in such a way that this does not happen. On at least 
one way of doing this, the resulting denotation of η is isomorphism invariant. However, this 
way of interpreting the denotation of η does not accurately represent its intended meaning.
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the denotations of T1, …, Tn. However, some expressions do not denote 
total functions. Russell’s ι operator, for example, is most naturally inter-
preted as the partial function17

	 )(
undefined otherwise

if
X

X
D

d
i

d
=

= !
*

+

We can fix this problem by expanding the type-hierarchy to allow partial 
functions. We interpret (Si & Sj) as denoting the set of functions from 
subsets of Si to Sj; analogously for more complex types. This is a friendly 
amendment, clearly in the spirit of Tarski’s approach. It does require 
complicating definitions of satisfaction to accommodate non-denoting 
expressions, but such complications are not relevant here.18 No change is 
necessary for our account of isomorphism invariance and applying it to ι 
gives the desired result that ι is a logical operator. We will assume this 
amendment in the remainder of our discussion.

3.1.  Indefinite Expressions and Generalized Notions

The more serious problem arises with operators like η and ε. The denotation 
of ι on a domain is the unique partial function that takes singletons to their 
members. The objects denoted by closed terms such as ι.xA(x) are thus 
determined by the domain. Indefinite expressions like Russell’s η and Hil-
bert’s ε are different. The domain does not determinately specify a single 
object to serve as the denotation of a closed term like ε.xA(x), since the 
closed terms formed with ε and η denote arbitrary satisfiers of the formula 
the operators attach to. Modeling this sort of arbitrariness is not entirely 
straightforward. A first approach is to assign arbitrary, but definite functions 
of the appropriate type to ε and η on every domain. This would fail to dis-
tinguish the notion denoted by η, say, from the notion denoted by some 
definite expression that denotes the same function as η on every domain, 
but, as noted above, many distinct expressions intuitively differing in mean-
ing will denote the same notion. A more worrisome consequence of this 
approach is that the notion assigned to η and ε will not be isomorphism 
invariant and thus will fail the Tarski-Mautner test for logicality. However, 

17  ι can be interpreted as a total function though this interpretation is not especially 
natural. Scott, D. (1967) does this by positing an object outside the ordinary domain of dis-
course for ι.xA(x) to denote when A(x) is not uniquely satisfied. This is a convenient way 
of modeling ι for certain purposes, but it does violence to the intended meaning of this 
expression.

18  Presumably we need such complications anyways to deal with the many expressions 
of ordinary natural and mathematical language that cannot be assumed to denote.
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the intended meanings of ε and η are not sensitive to underlying character-
istics of the members of the domain. Since this property was what we are 
trying to model with isomorphism invariance, something has gone wrong 
in our account of the meanings of these expressions.

On the approach just mooted, η denotes on any domain D an arbitrary 
partial function from the set of non-empty subsets of D to D such that for 
all X 3 D, ηD(X ) ! X.19 Such a function is called a ‘choice function’.20 
Note that any choice function on this set would do exactly as well as any 
other as the denotation of η.21 Our first attempt at specifying a denotation 
for η misses this fact. What the domain determines for the denotation of η 
is not a particular function, but rather a range of admissible functions 
which, in some sense, could serve as the denotation of η. Our account of 
the denotation of operators like η and ε should respect this fact. We can do 
so by slightly generalizing our account of the denotations of expressions.

Let a generalized notion be a function which sends some domains D to a 
set of objects of the same type as one another in the type-hierarchy over D. 
A total generalized notion is a generalized notion defined on every domain. 
We can take the denotation of expressions such as η and ε to be generalized 
notions; the former will denote the function sending D to the set of choice 
functions on the non-empty subsets of D, the latter to the set of choice-
functions on the full power set. We can also take the denotation of expres-
sions that are more definite to be generalized notions. What a domain deter-
mines for the denotation of ι can be seen as a range of admissible functions, 
but in this case there is always only one. Using σD now to denote the image 
of the generalized notion denoted by σ on D, ιD is always the singleton 
containing the function from all singletons in the power set of D to their 
members. Let a definite generalized notion be one whose denotation on 
every domain is a singleton. An indefinite generalized notion is one whose 
denotation on some domains is not a singleton.22

19 S trictly speaking, a function f of type ((e & t) & e) is a choice function if for all g 
of type (e & t), g( f (g)) = T if the range of g is not {F}.

20 T he denotation of ε on a domain is a slight extension of a choice function with an 
arbitrary member of the domain assigned to Q to make ε total. I will also call this a choice 
function to simplify my exposition. No confusion should arise.	

21 T he assignment of choice functions as the denotations of operators like η or ε pre-
sumes that such operators are extensional in the sense that their application to distinct, but 
co-extensional formulas results in distinct complex expressions having the same denotation. 
This is natural given the extensional framework we are working in. We could develop a 
version of my account without this presumption, but this would require complicating the 
framework in ways that would obscure my main point. If one objects to taking quasi-natural-
language expressions like ε and η as extensional, let the meaning of ε and η be regarded as 
stipulated. So regarded, their meaning is clear and extensional.	

22  We assume that generalized notions are undefined on domains where their denotation 
would otherwise be Q. Nothing turns on how we accommodate partial generalized notions.
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Since we can view a set of functions of type T as the characteristic set 
of a function of type (T & t), it is tempting to identify the denotation of an 
expression like ε with a function of slightly higher type. The account of 
expressions like ε and η is not best developed in this way; we want to dis-
tinguish cleanly between the denotation of a predicate of functions of type 
((e & t) & e) — which is of type (((e & t) & e) & t) — and the set of 
choice functions assigned to an expression like ε. This means that if we 
want to preserve the fact that these expressions function differently at the 
level of their denotations, we need to distinguish between a set of objects 
of type T and a function of type (T & t). And we do want to preserve this 
fact since we want ε.xF(x) to be a referential expression.23 The use of gen-
eralized notions allows us a formal representation of the indefiniteness of 
certain denotations which allows us to preserve the thought that term-form-
ing operators like ε really are referential expressions — i.e. their semantic 
type is of the form “… & e)” — of a certain indefinite sort.

Using generalized notions instead of Tarskian notions allows us to mark 
distinctions which are otherwise obscured. The indefinite generalized notion 
denoted by η is isomorphism invariant.

Proof. Given D, D', let ζ be an isomorphism from D to D'. We show 
ζ+ (ηD) = I. Given f ! ηD, ζ+ ( f ) = ζ+ % ( f % ζ+−1). This is a choice function 
on the power set of D' and is thus in ηD'. So ζ+ (ηD) 3 ηD'. Given f ! ηD', 
consider ζ+−1

% ( f % ζ+). This is a choice function on the power set of D and 
hence is in ηD. Taking the image of this function under ζ+ and resolving 
yields f, so f ! ζ+ (ηD) and thus ηD' 3 ζ+ (ηD).� ¡

Consider now the generalized notion σ≤ which consists of the class of func-
tions sending non-empty subsets of a domain to the least natural number in 
them and some arbitrary member of the domain otherwise. σ≤ is not iso-
morphism invariant.

Proof. Let f be a member of σ≤
{1, 2, 3}. Let ζ(1) = 2, ζ(2) = 3, and ζ(3) = 1. 

ζ is an automorphism on {1, 2, 3}, but ζ+ (σ≤
{1, 2, 3}) ! σ≤

{1, 2, 3} since ζ+ ( f ) 
({1, 2}) = 2 ! 1 = f ({1, 2}).� ¡

23  We could also move up the denotations of all expressions, but the resulting account 
differs from my account only in labeling. Note that no matter how we proceed, we have to 
amend Tarski’s framework in some fashion if we want to maintain that ε.xF(x) is a well-
formed referential expression which denotes something along the lines of ‘the result of 
applying that which is denoted by ε to that which is denoted by F(x)’ while also maintain-
ing that the denotation of ε is isomorphism invariant. I will use my terminology in what 
follows, though I acknowledge that this is somewhat a matter of taste.
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In both cases, the admissible functions are not themselves isomorphism 
invariant. But in the case of η, the set of admissible functions on any domain 
is isomorphism invariant. As I just showed, this is not the case for σ≤ .

This formal difference between η and σ≤ tracks an intuitive difference 
between the admissible functions for each. One way for an admissible func-
tion to be isomorphism variant is for the image of that function under an 
isomorphism to not be admissible. Such is the case with the σ≤-admissible 
functions. Call this sort of failure strong isomorphism variance. Another way 
is for every isomorphism to take admissible functions to admissible, though 
not necessarily identical, functions. Such is the case with the η-admissible 
functions. Call this sort of failure weak isomorphism variance. It is strong 
isomorphism variance which exposes sensitivity to features of objects in 
the domain. Thus our conception of the logicality of the denotations of 
expressions ought to disallow only those generalized notions containing 
strongly isomorphism-variant objects.

We can extract a plausible account of logical generalized notions from 
the preceding discussion: A generalized notion is logical if and only if its 
denotation on any domain is isomorphism invariant. That is, a generalized 
notion is logical if the set of admissible members of the type-hierarchy over D 
that it denotes on D is isomorphism invariant.24 It is immediate that a gen-
eralized notion is logical if and only if every admissible function in its 
denotation on a domain is not strongly isomorphism variant. This criterion 
is thus in the spirit of Tarski’s proposal, but allows us to classify the deno-
tations of indefinite expressions such as variable-binding term operators 
operators as well as definite expressions. This criterion is non-trivial since, 
as demonstrated above, η denotes a logical generalized notion, whereas σ≤ 
does not.

4.  The Logical Status of some Variable-Binding Term Operators

We can now apply our criterion of the logical status of generalized notions 
to some cases. This will both test the adequacy of our amendment and 
highlight the virtues of our shift in framework. We focus on variable-bind-
ing term operators since they are the most salient expressions left out by 
the earlier account of logical notions. The model theory for variable-bind-
ing term operators has been developed both under the assumption that no 
variable-binding term operator is logical and under the assumption that all 

24 N ote that on this way of describing generalized notions, there is only one admissible 
member of the appropriate type in the type-hierarchy over a domain for definite predicates 
like ‘cat’ — the function which takes cats in the domain to T.
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are.25 It is somewhat surprising that no one has attempted a principled 
demarcation of the logical variable-binding term operators from the non-
logical since the criterion just given is a natural extension of a well-known 
demarcation of logicality.26 We will start with ε for reasons which will become 
apparent in our discussion of the abstraction operator ‘the number of’.

4.1.  The Logical Status of ε

The ε operator is governed by the laws
	 F(x) " F(ε.xF(x))� (I)
	 6x (F(x) ) G(x)) " ε.xF(x) = ε.xG(x)27� (E)

Terms like ‘ε.xA(x)’ are to be interpreted similarly to the referential expres-
sion ‘an object such that if anything is A, it is one’. The use of the indefinite 
English expression ‘an’ in explicating the intended meaning of ε is crucial 
— ε is an operator of indefinite choice.

Some indefinite variable-binding term operators like ε can be contextually 
eliminated by quantifying over functions. Since we can express that a func-
tion is a choice function using only higher-order logical vocabulary, we can 
rewrite f(ε.xf(x)) as

7f [ f is a choice function and f( f (f(x)))]

Some linguists have attempted to account for indefinite descriptions in 
natural language this way.28 This may be the correct way to treat natural 

25 C orcoran, J. and Hatcher, W. and Herring, J. (1972) develops model-theoretic account 
for variable-binding term operators on which they are non-logical, da Costa, N.C.A. (1980) 
one on which they are all logical.

26 T he closest anyone has come to my suggestion that we shift from notions to generalized 
notions is Newton da Costa who, in his (da Costa, N.C.A. 1980), associates each variable-
binding term operator with a “smooth operator” which is something very much like a 
generalized notion. However, the role of smooth operators is merely to restrict the possible 
denotations of expressions like ε. On particular models, each variable-binding term operator 
denotes some particular member of the smooth operator associated with a variable-binding 
term operator. His use of smooth operators to account for the meaning of this class of expres-
sions is limited to the stray remark that smooth operators “(are) in some sense the semantical 
meaning of a vbto (variable-binding term operator)” (134). Since he is attempting to prove 
standard model-theoretic results for a theory including variable-binding term-operators, his 
rather definite account of the denotations of indefinite expressions is not entirely surprising 
since the assignment of a definite value to expressions like ε simplifies their treatment.

27 G iven an operator σ that obeys I but not E, we can define ε in higher-order logic by 
means of ι. Let ε.xf(x)  =df  ι.y7X (6x(Xx ) f(x)) / y = σ.xXx). Thanks to John Burgess 
for this point.

28 S ee Reinhart, T. (1997) for a careful development of this sort of account of indefinite 
descriptions. I will bracket the question of whether or not the sort of account I give of the 
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language indefinite articles like ‘a’, but it seems drastic for ε since ε can be 
conservatively added to first-order logic whereas adding quantification over 
functions to first-order logic is extremely non-conservative. This situation 
is similar to the case of identity. We can contextually eliminate = in second-
order logic, but this does not show that we are covertly engaging in higher-
order quantification when we make an identity claim.29

I should also guard the reader against a potential misunderstanding. 
The arbitrariness of the intended interpretation of indefinite expressions like 
ε and η is not merely epistemic. We do not understand ε.xF(x) as being 
some particular F whose identity is determined by its domain of application 
in some way we are blocked from knowing. Rather, it is essential to under-
standing an indefinite expression like ε.xF(x) that we recognize that its 
value really is arbitrary in the sense that facts about the domain do not 
determine which F, if any, it denotes.30 We should not attempt to explain 
away the indefiniteness of expressions like ε.xF(x) by making them cov-
ertly definite. Assigning generalized notions as the denotations of indefinite 
expressions is a broad-brush though extensionally adequate account of their 
meaning. It serves to bring indefinite expressions into the fold as the sort 
of expressions whose denotations can be assessed for logicality.

denotation of a formal expression like ε is plausible as the basis for an account of English 
indefinites such as the ‘A’ in ‘A student passed the exam.’ since the complexities of the seman-
tics of natural language indefinites is well known. Some analyses, such as Kratzer, A. (1998), 
do interpret indefinite expressions as denoting choice functions on a domain. Kratzer’s 
analysis amounts to interpreting ‘If a student passes, I’ll be thrilled’ as ‘If f (being a student) 
passes, I’ll be thrilled’ where f is a free variable assigned a choice function relative to the 
background conversational context. Such a choice function can be more or less specific, of 
course, and this is a desirable feature since it is plausible that there are both specific and 
unspecific uses of indefinites in natural language (Fodor, J.D. and Sag, I.A. 1982). On Kratzer’s 
view, the intended interpretation of ε would be roughly equivalent to the the indefinite ‘a/an’ 
in the maximally unspecific conversational context.

29 N ote also that we would also need to extend our quantificational apparatus even fur-
ther to contextually eliminate ε operators of higher type.	

30  After writing the above, I discovered that Ofra Magidor and Wylie Breckenridge have 
recently suggested an epistemic interpretation of the arbitrariness in claims like ‘Let a be an 
arbitrary F’ (Breckenridge, W. and Magidor, O. 2012). They hold that the totality of facts 
about a domain (including primitive semantic facts) determines the meaning of expressions 
much like ε.xf(x) on that domain. Though I am not sure I fully understand their proposal, 
it seems untenable: if I were to pick a marble out of a sack of indiscernible marbles, dub it 
‘Charlie’, and replace it, wondering which marble Charlie is would not be senseless, though 
it would not be sensible. Likewise, if an omniscient being knows, but I cannot, which object 
ε.xF(x) denotes, then it is silly, but not senseless, to wonder which. The same cannot be 
said about wondering which F I picked out with ‘Let a be an arbitrary F’. Their sin is one 
of insufficient boldness. They should refuse to let any facts, even “primitive semantic facts”, 
determine the value of an arbitrarily chosen object. It is worth mentioning that the isomor-
phism invariance criterion misclassifies indefinite expressions even if we adopt their view 
(which can be modeled by assigning an indefinite term like ε to a fixed but arbitrarily cho-
sen choice function on the domain). Thus they should welcome the amendment I suggest.
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A trivial modification of the above proof that the generalized notion 
denoted by η is isomorphism invariant shows that the generalized notion 
denoted by ε is also isomorphism invariant. We further note that there are 
two obvious extensions of standard ways of evaluating the denotations of 
complex expressions on a domain to a language containing ε terms on the 
present account of their meaning. The first pushes the arbitrariness of ε back 
into the metalanguage, assessing the value of sentences containing ε terms 
relative to an arbitrary choice function. The second eliminates arbitrariness 
in the metalanguage, assessing the denotations of sentences containing ε 
terms relative to all choice functions. Choosing between these candidates 
is an ideological matter which I cannot enter into here; it is enough to point 
out that either account can be developed so that the laws I and E are vali-
dated without disrespecting the intended reading of ε.31 However, to fix 
ideas, I will briefly sketch how the latter option would work.

The principle requirement of an account of ε is that it preserve the sense 
in which ε is an indefinite expression. Let an ε-specification of a domain D 
be a pair 〈D, 𝔣〉 where 𝔣 is a choice function on the power set of D. For 
ε-specifications, we can work with notions instead of generalized notions. 
For any expression ρ not containing an ε term, writing ρD for the value of 
ρ on D, we let ρ 〈D, 𝔣〉 = ρD. So, for example, if f = Fa,

Fa 〈D, 𝔣〉 = FaD = FD(aD)32

We evaluate ε terms on an ε-specification of D as follows
ε.xf 〈D, 𝔣〉 = 𝔣(f 〈D, 𝔣〉)33

This, essentially, is to treat ε as a function constant when evaluating it on 
an ε-specification. Given an expression f, we let

fD = {f 〈D, 𝔣〉 : 𝔣 !  εD}

31 I t is worth briefly noting that we could still motivate a generalized criterion of logical-
ity even if we accepted, which I do not, a restriction to assigning notions as the denotations 
of expressions on domains. We would need an account of an admissible denotation for an 
expression on a domain which captures the sense in which distinct choice functions on the 
domain are equally good choices to assign as the denotation of ε on that domain. We would then 
say that an expression σ is logical (in our generalized sense) if, for all domains D, D', the set

{i+ (σD) : i is an isomorphism from D to D'}
consists of all and only the admissible denotations for σ on D'. It can easily be seen that this 
agrees with our above classification. It is, however, much less natural as the restriction to 
notions gives a misleadingly precise account of indefinite expressions.	

32  We are following tradition in playing a bit fast and loose with the difference between 
expressions and what they denote. This should cause no confusion.

33 S trictly speaking, we should say that ε.xf 〈D, 𝔣 〉 = 𝔣(f 〈D, 𝔣 〉) where f 〈D, 𝔣 〉 is the function
of type (e & t) in the type-hierarchy over D such that f 〈D, 𝔣 〉 (d ) = T if and only if d satisfies
‘A(x)’ relative to 〈D, 𝔣〉. Such complications involving variable-binding are being ignored
for comprehensibility.	
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The result is that the denotation of an expression on a domain is the set 
consisting of the denotations of that expression on all ε-specifications on 
that domain. When f is a referential expression — an expression whose 
denotation would typically be a member of D — we have the possibility 
that fD is a non-singleton set. This indicates that the value of f on D is 
indefinite. When f is an expression whose denotation would typically be a 
truth-value, we have the possibility that fD is {T}, {T, F}, or {F}.34 We say 
that fD is true on a domain D if fD = {T} and false otherwise. The result 
is that expressions involving epsilon terms are generally true only when 
they are true on every specification. So, for example, [λ.x (Prime(x) 0 Compo- 
site(x))ε.y y = y]N = {T} and hence is true, yet [λ.x (Prime(x) ε.y y = y]N = 
{T, F} = [λ.x (Composite(x) ε.y y = y]N and hence neither is true.

This is what we ought to expect if ε.y y = y really is indefinite; it is defi-
nitely prime or composite, but not definitely prime or definitely composite. 
The resulting semantics is akin to a supervaluational semantics where we 
identify truth with truth on every ε-specification. We can generalize this 
style of account easily to accommodate any indefinite specification, letting 
a specification simpliciter be a domain supplemented with a choice of 
definite denotation for every indefinite notion. The non-classicality of this 
semantics is mild — like standard supervaluational semantics, it is conserva-
tive over the base classical semantics, merely allowing for the indefinite 
notions which were blocked on the base semantics.

4.1.1.  ε is a Logical Constant
Still, we may worry that ε is not truly a logical constant and thus that our 
account of logical generalized notions overgenerates, marking as logical 
some indefinite generalized notions that ought to be marked non-logical. 
The best response to this worry is to point out the naturalness of the crite-
rion, the fact that it correctly classifies the denotations of expressions that 
are plausibly logical, and the fact that it extends Tarski’s thought that log-
ical notions are insensitive to characteristics of the underlying domain to 
the more general case. I have argued for the first and third parts of this 
response already, but to shore up the second I note a number of reasons to 
hold that ε is a logical constant. I can see at least five such reasons:

(1)	T here is historical precedent for viewing the ε symbol as a logical 
constant. We find ε treated as a logical operator by Hilbert, Carnap, 
and Bourbaki.35

34  We are ignoring the complication of partial notions.	
35 S ee Bourbaki, N. (2004), Carnap, R. (1961) and Hilbert, D. and Ackermann, W. (1939). 

Of course, these mathematicians and philosophers had varied attitudes to the importance of 
separating logical from mathematical vocabulary. Carnap explicitly argues that ε is a logical 
constant, albeit a non-standard one.
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(2)	T he natural language expressions we formalize with η and ι are so 
closely related that to mark ι as logical (which requires merely allowing 
for partial Tarskian notions) without so marking η would be rather 
implausible. Since ε is simply η brute-forced into a total function, 
it would likewise be implausible to count η as logical without so 
counting ε.

(3)	I  and E can be conservatively added to the standard proof rules or 
axioms for standard first-order logic. That is, adding the proof rules 
or axioms for ε to a standard deductive system for first-order logic 
does not allow us to prove any ε-free sentence we could not already 
prove.36 ε thus satisfies Nuel Belnap’s widely accepted existence cri- 
teria for logical constants. You might think, following Restall, G. (2010), 
that ε should satisfy the additional requirement that given another 
operator τ obeying I and E, ε.xf(x) should be identical to τ.xψ(x) 
when f(x) and ψ(x) are co-extensional. ε dramatically fails this 
requirement. Is this problematic? No, since to impose the stronger 
requirement is tantamount to requiring that ε be definite. Such a 
demand is entirely inappropriate.

(4)	I t is plausible that we tacitly assume in our ordinary mathematical 
discourse the acceptability of indefinite expressions that function 
similarly to ε. Consider the practice of using expressions like ‘Let 
a be an F’ in the course of proving a generalization. We intend a to 
pick out an arbitrary F and treat a afterwards as a referential expres-
sion. In constructing formal proofs, we mirror this practice with the 
use of eigenvariables (sometimes called ‘dummy names’).37 As Kit 
Fine notes, the epicycles we go through to eliminate eigenvariables 
in our formal proofs do little justice to how we actually reason and 
as he and Allen Hazen both note, students do better constructing 

36 G iven the completeness of first-order logic, this means that we also do not extend the 
first-order consequence relation by the addition of I and E. Of course, ε is not conservative 
over every base theory. ε is not conservative over ZF when we allow ε-terms inside of the 
separation schema — we can then prove a version of the axiom of choice. This is to be 
expected; the epsilon calculus is more expressive than standard first-order logic. The culprit, 
however, is not ε, but rather the underlying unexploited strength of separation. See also fn. 57.

37 N ote that I am not claiming that we are forced to interpret our practice as involving 
a notion like ε and I am certainly not claiming that we have to interpret our formal use of 
eigenvariables this way. We can, for example, regard the formal use of eigenvariables as 
a mere technical convenience in formal inference. The informal use of expressions like ‘Let 
a be an F’ is more difficult, but some eliminative story could surely be told. My claim is 
rather that interpreting our ordinary use of ‘Let a be an F’ in terms of indefinite expressions 
like ε is natural. It provides a useful rational reconstruction of what we are doing when we 
say something like ‘Let a be an F’ and then go on to talk about a. The instrumental use of 
eigenvariables provides another such rational reconstruction, but it is less elegant and does 
not do justice to our actual practice.
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proofs when they are taught to interpret eigenvariables as denoting 
objects arbitrarily chosen.38 If we take mathematical discourse at face 
value, we ought to allow the use of indefinite choice. This does not 
yet speak directly to the logicality of ε, but to the acceptability of the 
arbitrary interpretation of ε. However, our use of these expressions 
makes no special claim about the nature of the domain or the content 
of the premises or conclusion of the particular proof in which they 
are employed. We can thus regard the practice of choosing of arbi-
trary satisfiers of formulas as part of the framework of proofs just as 
we can so regard the quantifiers and the connectives.39 Being part of 
the framework of proofs in this sense is a plausible proof-theoretic 
criterion of the logicality of expressions.40

(5)	T hough it is not at all plausible that all the components of a definition 
of a logical constant are themselves logical, nevertheless, as pointed 
out by Neil Tennant, it is plausible that if we can define σ by means 
of a definition employing σ' as the sole primitive expression, then if 
σ is logical, so too is σ'. Applying this to the case of ε, we note that 
we can implicitly define 7 by means of ε (in the presence of I and E) 
with the schema 7xf(x) ) f(ε.xf(x)).41

This concludes my case for the logical status of the expression ε. Each of 
the above is independently compelling; jointly they constitute a strong case 
for including ε in our logical vocabulary. Even stronger cases can be 
mounted for ι and η. If the expressions ε, ι, and η are logical, then we 
should expect their denotations to satisfy our criterion of logicality. The 
criterion of logicality for generalized notions gets this exactly right. In the 
absence of plausible examples of non-logical expressions whose denotations 
are marked logical by the criterion I have given, we need not be worried 
that the above criterion overgenerates. Of course, abstraction operators like 
‘the number of’ are also variable-binding term operators, and we might start 
to worry if our criterion marked the denotation of abstraction operators as 
logical. This case is more complicated and deserves fuller treatment.

38 F ine introduces arbitrary objects to correspond to our talk about objects arbitrarily 
chosen (Fine, K. 1985). Increasing one’s ontology this way seems less preferable to increas-
ing one’s ideology with indefinite expressions so as to mirror ordinary reasoning.

39  Hazen, A. (1987) shows how to use ε to replace the use of eigenvariables in a proof-
theoretic setting.

40 S ee Dosen, K. (1989) for an account of this criterion for the case of formal deductions. 
A similar point can be made with respect to the natural language expressions formalized 
with η, ι, and ε. As stressed to me by Paul Egré, these expressions have the surface appear-
ance of functional expressions like quantifiers rather than substantive expressions.	

41 S ee Tennant, N. (1980) for a version of this argument set in a natural deduction context. 
The definition of 7 in terms of ε is due to Hilbert. See Hilbert, D. and Ackermann, W. (1939).
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4.2.  The Logical Status of Abstraction Operators

Traditionally, an abstraction operator O is a function whose range is a 
subset of a domain D, whose domain is a type in the type-hierarchy over D, 
and which is defined by the following schema:

6a, β (O(a) = O(β) ) E(F, G))42

where a, β are nth-order variables and E is an equivalence relation on class 
over which a, β range. a and β can be first-order, as in Frege’s direction 
principle:

The direction of x = the direction of y ) x is parallel to y
or second-order, as in Hume’s principle:
  The number of F = the number of G ) F is equinumerous with G43� (HP)

The most interesting abstraction operators are given by higher-order abstrac-
tion principles like HP where E is an equivalence relation on the power 
set of the domain. We will focus our discussion on the second-order case. 
We need to modify the traditional definition for our current purpose since 
we can no longer presume that expressions denote notions. We will take an 
abstraction operator to be a generalized notion — that is, a function from 
domains to a class of functions, each of which satisfies the relevant abstrac-
tion principle on that domain — with an associated equivalence relation E.44 
We can see such abstraction operators as collections of ways of indexing 
the cells of the partition induced by E on the power set of the domain with 
objects from the domain. We assume that an abstraction operator is non-
empty on any domain that permits the existence of a function satisfying the 
abstraction principle.

Some abstraction operators such as ‘the number of’ have been thought 
to be logical in some sense or other. This is a natural thought given the view 
of Crispin Wright and other neo-logicists of the Scottish variety that Hume’s 
principle is an implicit definition of the concept of cardinal number. On this 
view, acceptance of an object-language sentence expressing HP suffices to 
confer a meaning on the expression ‘the number of’.45 It is plausible that if 
‘the number of’ is implicitly defined by HP, then it inherits the logical 

42 T he initial quantifiers will henceforth be dropped for readability where appropriate. 
n can be any natural number though we will restrict our attention to second-order abstraction.

43  Both examples originate in Frege, G. (1980).
44 S trictly speaking, E is not an equivalence relation, but a function from domains to 

equivalence relations on them. We simplify for purposes of comprehensibility.
45 I  will not be overly careful in distinguishing the metalanguage schema HP from the 

object language sentence expressing it.	
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status of HP’s right-hand side.46 Others, such as Aldo Antonelli, have crit-
icized this sort of claim by arguing that the meaning conferred on abstrac-
tion operators like ‘the number of’ is not permutation invariant, even though 
the relation of equinumerosity is.47 Antonelli’s criticism is cogent within 
the Tarskian framework he is working in, but it is not immediately obvious 
what we should say about this objection within the amended framework we 
have adopted.

We can give a precise account of exactly which abstraction operators are 
isomorphism invariant and thus logical though we have set aside one way 
of understanding the role of abstraction principles. Any view on which the 
acceptance of abstraction principles somehow introduces or brings into 
existence the objects that are the range of the functions comprising an 
abstraction operator must be treated, if at all, in a way that does not pay proper 
attention to the introduction of these objects.48 The trouble is that our cri-
terion makes no provision for the genesis of the objects making up a domain, 
treating all objects comprising it on a par. In light of this, our discussion is 
restricted to views on which the functions in an abstraction operator take as 
their range some subset of the domain under consideration.49

Let an abstraction operator σ be full if, for every domain D, σD contains 
every admissible function. That is, a function f is in σD if and only if non-
E-equivalent members of the power set of D are assigned non-identical 
objects in D by f and equivalent members identical objects.

Lemma.  An abstraction operator is isomorphism invariant only if it is full.

Proof. Let σ be a non-full abstraction operator with associated equivalence 
relation E. There is then, on some domain D, a function f " σD from the 
power set of D into D which respects E. Let g be a member of σD. g ! σD, 
so g respects E. Since | D \ Ran(g) | =  | D \ Ran( f )|, there is a bijection ζ from 
D \ Ran(g) to D \ Ran( f ). Since g and f respect E, g(A) ! g(B) if and only 
if A and B are not E-equivalent if and only if f (A) ! f (B). So, for each 

46 O f course it is rather difficult to maintain that HP implicitly defines a notion since 
there is no unique function that satisfies it. This has led Wright and others to weaken the stand-
ard uniqueness criterion for successful implicit definitions. As will be seen below, we can make 
better sense of HP as an implicit definition once we switch to our amended framework.	

47 S ee Antonelli, G.A. (2010). I note that Antonelli’s paper inspired me to generalize the 
Tarskian criterion of logicality and that I found his objections important and provocative.

48  We find the strenuous rejection of this picture of abstraction principles in Anto- 
nelli, G.A. (2010). I am in full agreement with Antonelli that this picture is mysterious at 
best. We further agree that the clearest way of viewing abstraction operators is as indexings 
of the partition on the power set of a domain D with indices drawn from D.

49  We can treat such views partially by assuming that the domain with which we assess 
the logical status of operators like ‘the number of’ is that which results from the acceptance 
of abstraction principles. The logical status of the action of expanding the domain in this 
way cannot be treated here.
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E-equivalence class [A], there is a unique member of Ran( f ) and a unique 
member of Ran(g) mapped to its members by f and g respectively. Given 
this, we extend ζ to an automorphism by setting ζ' (g(A)) to f(A) for every A 
in the power set of D. ζ' + (g) = f, but f " σD, so σ is not invariant under ζ' 
and thus not isomorphism invariant.� ¡

It is an almost immediate corollary of this lemma that logical abstraction 
operators are indefinite.50 This is not surprising; non-full abstraction oper-
ators differentiate between members of a domain. They thus violate the 
intuitive constraint on logical notions which underwrites the isomorphism 
invariance criterion of logicality. In contrast, it is to be expected that full 
abstraction operators are often isomorphism invariant and hence logical. 
This is the case for operators like ‘the number of’ whose associated equiva-
lence relation (henceforth abbreviated ≈) is isomorphism invariant.51 We thus 
have an almost converse to the above lemma.

Lemma.  A full abstraction operator is isomorphism invariant if its associ-
ated equivalence relation is isomorphism invariant.

Proof. Consider a full abstraction operator σ whose equivalence relation E 
is isomorphism invariant. Let D, D' be isomorphic domains on which σD 
and σD' are non-empty and ζ an isomorphism from D to D'. Remember that 
ζ+ is the extension of ζ to the entire type-hierarchy over D. Since E is  
isomorphism invariant, ζ+ (ED) = ED'. Suppose f ! σD.
ζ+ ( f ) (ζ+ (S)) = ζ+ ( f ) (ζ+ (T )) � +  ζ+ ( f (S)) = ζ+ ( f (T ))� (df. of ζ+) 

+ f (S) = f (T ) � (ζ+ preserves =) 
+  ED (S, T )� ( f ! σD) 
+  ED' (ζ+(S), ζ+(T ))� (ζ+(ED) = ED')

So ζ+ ( f ) ! σD'. Conversely, given g ! σD', there is an f ! σD such that 
ζ+ ( f ) = g. So ζ+(σD) = σD'.� ¡

Any abstraction principle whose equivalence relation is isomorphism invar-
iant defines an isomorphism-invariant, hence logical, abstraction operator 
when we take it to denote the corresponding full generalized notion. In fact, 
the only logical abstraction operators are those with isomorphism-invariant 
associated equivalence relations.

50  We only need the fact that any respectable equivalence relation can be respected by 
more than one indexing with members of the underlying domain.

51 ≈ is not only isomorphism invariant, but expressible in purely logical vocabulary. For 
example, we can express F ≈ G thus:

7f [6x(F(x) " G( f (x))) /6y(G(y) "7!x[F(x) / f (x) = y])]
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Lemma.  An abstraction operator is isomorphism invariant only if its asso-
ciated equivalence relation is isomorphism invariant.

Proof. Let σ be an isomorphism-invariant abstraction operator and D, D' 
isomorphic domains on which σ is non-empty. Given an isomorphism ζ from 
D, D', ζ+ (σD) = σD' . Let f ! σD. We show that ζ+ (ED) = ED' as follows.

ED (S, T ) � + f (S) = f (T ) � ( f ! σD) 
+ ζ+ ( f (S)) = ζ+ ( f (T ))� (ζ+ preserves =) 
+ ζ+ ( f ) (ζ+ (S)) = ζ+ ( f ) (ζ+(T ))� (df. of ζ+) 
+ ED' (ζ+(S), ζ+(T ))� (ζ+ (σD) = σD' )

Combining these three lemmas gives us a precise delineation of the logical 
abstraction operators.

Proposition.  An abstraction operator σ is logical if and only if it is full 
and its associated equivalence relation E is isomorphism invariant.
The only isomorphism-invariant abstraction operator satisfying HP is thus 
the full indefinite generalized notion. In fact, all isomorphism-invariant 
abstraction operators are indefinite generalized notions. Such generalized 
notions can be seen as arbitrary indexings of the partition given by E exactly 
as we see the denotation of ε as an arbitrary choice function.52 When we 
take abstraction operators more definitely, excluding certain otherwise 
admissible indexings, we are importing non-logical content and, as a result, 
these operators turn out to be non-logical. Our initial worry about abstraction 
operators like ‘the number of’ coming out logical on our revised criterion 
is thus misplaced. It is only a very special class of such operators that come 
out as logical — the indefinite operators — and these tell us very little 
about the nature of the members of the domain, treating all members of the 
domain alike as potential indexing devices.53

52 T he connection with ε can be drawn out more directly. I will show how this can be 
done in the next section.

53  A helpful reviewer asks whether the logical status of abstraction operators is unchanged 
when we add a cross-abstraction identity principle like those considered in Fine, K. (2008) and 
Cook, Roy T. and Ebert, Philip A. (2005). That is, suppose we have two abstraction operators 
O1 and O2 given by abstraction principles formulated with E1 and E2 and the principle

O1 (X) = O2 (Y ) ) 6Z [E1 (X, Z) ) E2 (Y, Z)]
Given the logical status of O1 and O2 without such cross-abstraction identity principles, what 
can we say about their logical status with the additional constraint? And how should we 
treat the denotations of such principles given our interpretation of certain abstraction operators 
as indefinite? The issue is too complex to be discussed in detail here, but the upshot is that, 
on the most straightforward treatment, if O1 and O2 are both logical without cross-abstraction 
identity, then they are still logical with cross-abstraction identity — as far as the criterion 
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This result allows us to arbitrate the dispute between Wright and Antonelli 
alluded to above. When we have an equivalence relation like ≈ which is 
isomorphism invariant, then the domain determines an isomorphism-invar-
iant class of functions that satisfy the corresponding abstraction principle. 
If abstraction operators like ‘the number of’ denote notions instead of gen-
eralized notions, then there is no way to assign a denotation that correlates 
exactly with the content given by the abstraction principle. On the other hand, 
on my amended account both Wright and Antonelli are right. Antonelli is 
right that isomorphism-variant abstraction operators are not intuitively log-
ical as they differentiate between members of the domain. Wright is right 
that HP succeeds as an implicit definition of a logical expression for it 
determines, at least on infinite domains, a non-empty full generalized notion 
and one which is moreover both unique and isomorphism invariant.

Hume’s principle can only succeed in defining a more definite generalized 
notion in the presence of background constraints on admissible functions. 
Such constraints undermine the logical status of ‘the number of’. Without 
such background constraints, we can take HP either as a failed attempt to 
implicitly define a definite generalized notion or as a successful attempt to 
implicitly define an indefinite generalized notion on infinite domains. The 
latter option is an interesting way of understanding Hume’s principle that 
has not been explored in the literature. We will explore this view in the next 
section once we have shown how to explicitly define abstraction operators 
using a higher-order version of ε.

Now, although we have given an account of the logical abstraction oper-
ators according to our criterion, we might still wonder if such operators are 
truly logical. Some logical abstraction operators will be empty on some 
domains since there will not be enough members of the domain to index 
every cell of the partition induced by E. Such is famously the case with 
Frege’s basic law V.

(V) T he extension of F = the extension of G  ) 6x (F(x)  )  G(x))

The operator ‘the extension of’ as defined by V is empty on every domain. 
Less disastrously, the operator ‘the number of’ is empty on all finite domains 
since we need n + 1 distinct indices to index the equinumerosity partition 
of a domain of size n. Since logical constants are supposed to have univer-
sal applicability, we might want to restrict the class of logical generalized 
notions to those that are total — that is, to those that are non-empty on 

under consideration in this paper is concerned. If exactly one is not logical without cross-
abstraction identity, then enforcing the cross-abstraction identity condition can force the 
other to be non-logical as well. Note that enforcing this sort of condition is in tension with 
the intuitive picture of the meaning of abstraction operators given above. I hope to return to 
this very interesting issue elsewhere.
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every domain. Consequently, we might want to say that though the full 
generalized notion that satisfies HP is isomorphism invariant, it is nonethe-
less not truly logical since it is not total. This is especially pressing when 
we view HP as an implicit definition since on finite domains it fails, in a 
sense, the existence requirement on good implicit definition.54 This addi-
tional constraint goes beyond the criterion of logicality I am addressing 
here and I do not want to take a definite stand on this issue — though I do 
want to note two things.

First, the general operation of abstraction on logical equivalence rela-
tions is truly logical. That is, the binary abstraction operator § given by

§(E, F) = §(E, G)  )  E(F, G)
where E is restricted to isomorphism-invariant equivalence relations denotes 
an isomorphism-invariant total generalized notion. Using ℘(D) for the 
power set of a domain D, §D is a class of partial functions from ℘(℘(D) × 
℘(D)) × ℘(D) into D. On finite domains, no member of §D will be defined 
for pairs E, F where E is equinumerosity. On infinite domains, no member 
of §D will be defined for pairs E, F where E is the equivalence relation of 
having finite symmetric difference.55 On no domain will a member of §D 
be defined for E, the equivalence relation of co-extensionality. We can view 
all such unary abstraction operators as cases of this binary abstraction oper-
ator where we fix the equivalence relation E. So even if some abstraction 
operators are not truly logical since they are not total, they can be obtained 
in particular domains from abstraction operators that are truly logical.

Second, for an abstraction operator σ whose equivalence relation is not 
only isomorphism invariant, but also expressible in logical vocabulary, we 
can define a total generalized notion which agrees with σ on domains where 
it is non-empty. We can then formulate versions of abstraction principles 
much like HP in entirely logical vocabulary. This construction avoids the 
problem with the existence requirement on implicit definitions since it is 
immediate that the generalized notion defined is non-empty. Since this con-
struction is of some independent interest, we will spend a bit more time 
developing it.

4.3.  The Logical Status of ε-abstraction Operators

The above arguments for the logicality of ε can be extended in a natural 
way to justify the logical status of ε’s higher-order cousin ε' which attaches 

54 T hat is, there exists a class of functions satisfying HP on finite domains, but only in 
the trivial sense that the empty set contains all such functions.

55 S ee Boolos, G. (2007). This equivalence relation is isomorphism invariant and can be 
expressed in entirely logical vocabulary.
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to formulas with free function variables of type ((e & t) & e). We read an 
expression like ε'. fA( f ) as denoting an arbitrary function of that type which 
satisfies A( f ) if anything does. Given D, ε' D is:

{ f | f : ℘(D℘(D)) " D℘(D) where f (S) ! S if S ! Q}.
It is easily checked that ε' D is isomorphism invariant. Letting ε'  be gov-
erned by the laws
	 A( f ) " A(ε'. fA( f ))� (I')
	 6f (A( f )  )  B( f )) " ε'. fA( f ) = ε'. fB( f )� (E')

it can be seen that ε' conservatively extends the full standard third-order 
consequence relation.56 We thus have good reason to think that ε' is a log-
ical constant if ε is.57 And ε is.

We can use ε' to define analogues of certain abstraction operators such 
as ‘the number of’. Let H( f ) be the formula:

6F6G f (F) = f (G)  )  F ≈ G
where f is a function variable of type ((e & t) & e). H( f ) holds of a func-
tion g from the power set of D to D only if g indexes the equinumerosity 
partition of the power set of D with members of D. The following is an 
almost immediate consequence of I':
	 H(ε'. f H( f ))  )  7f H( f )� (Q)

Since I' entails Q, Q is a logical truth. Expanding and rewriting ‘ε'. f.H( f )’ 
as N, we obtain:
6F6G[N(F) = N(G)  )  F ≈ G]  ) 7f6F6G[ f (F) = f (G)  )  F ≈ G]

the left-hand side of which is the familiar-looking principle
	 N(F) = N(G)  )  F ≈ G.� (HPA)

56 T his follows from the fact that we can extend any full standard model M of a third-
order language L to a model M∗ of L + ε' that assigns a fixed choice function of type

((((e & t) & e) & t) & ((e & t) & e))
to the symbol ε'. M∗ then validates both E' and I'.	

57 S ince standard third-order logic is not complete, the applicability of these results to 
higher-order deductive systems is non-trivial. We can prove, however, that E' and I' can be 
conservatively added to standard deductive systems for third-order logic if we restrict the 
comprehension schema to formulas not containing ε'. This follows from the completeness 
of this deductive system for Henkin models of third-order logic. If we add all the instances 
of the comprehension schema, E' and I' suffice to derive the axiom of choice. However, we 
can conservatively add E' and I' to the deductive system comprised of all the comprehension 
schemas, the quantifier rules, and the axiom of choice.
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ND is an arbitrary function from the power set of D into D that indexes the 
equivalence classes of the power set of D under ≈ in any domain which 
permits such an indexing, an arbitrary function otherwise. It is never unde-
fined. HP A is essentially an indefinite version of Hume’s principle. Since 
Q is a logical truth, HP A is a logical consequence of 7f H( f ). But 7f H( f ) 
is true in a domain if and only if the domain is infinite. Thus HPA is a 
logical consequence of a statement expressing that the domain is infinite. 
It is sufficient to derive second-order arithmetic in higher-order logic.

On domains in which HP implicitly defines a non-empty full abstraction 
operator, HP A will hold if and only if HP does. Making the further assump-
tion that HP is false if it defines an empty abstraction operator, HP A is 
logically equivalent to HP. So, in a sense, HP A is an explicit rendition of 
the intended interpretation of HP. The construction is perfectly general. For 
any abstraction operator σ whose associated equivalence relation can be 
expressed in a (higher-order) language L, we can define a total generalized 
notion (an ε-abstraction operator) σ' in L + ε' which agrees with σ on cases 
where it is non-empty. Moreover, if the equivalence relation E is expressible 
in purely logical vocabulary, our defined generalized notion will be truly 
logical, being both isomorphism invariant and defined on every domain. 
Since expressions definable in terms of other logical constants are intui-
tively logical, this is a welcome result. Of course, the left-hand portion of 
the instance of I' defining σ' will be false in domains where σ is empty since 
ND will then be an arbitrary function which does not respect ≈D. But this 
is as it should be.

For example, let ≈' be the relation that holds between the Fs and the Gs 
if and only if the symmetric difference of the Fs and the Gs is finite. Con-
sider the “nuisance principle” (Boolos, G. 2007)
	 S(F) = S(G)  )  F ≈' G.� (NP)
S is non-empty only in finite domains. We can give the same ε' treatment 
of the nuisance principle that we gave HP. Call the resulting indefinite ver-
sion of the nuisance principle NP A. NP A, like HP A, is the left-hand side of 
a biconditional logical truth Q', the right-hand side of which is its existential 
generalization. Both HP A and NPA are consistent, but jointly inconsistent. 
Is this problematic? No. Their inconsistency rests on the fact that a domain 
cannot be both finite and infinite and hence there cannot be an indexing of 
the equivalence classes under both ≈ and ≈'. So even though Q and Q' are 
both logical truths and expressible in purely logical vocabulary, their left-
hand sides are never true together. Though, if true, HP A remains true under 
every reinterpretation of its non-logical content, it is not a logical truth 
since it is false in finite domains. It is thus not a logical truth in the modern 
sense deriving from Tarski. Likewise with NP A. The situation is similar to 
that obtaining between 7x7y x ! y and 7x6y x = y. The former is true 
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only in domains containing at least two things. The latter is true in only 
singleton domains. Neither contains any non-logical vocabulary, but neither 
is a logical truth or a logical falsehood.

The ε' construction has the virtue of highlighting and improving the  
sug-gested indefinite interpretation of abstraction operators. ε-abstraction 
operators are explicitly arbitrary indexings of the partition induced by the 
equivalence relation E. ε-abstraction operators have two advantages over 
simple abstraction operators. First, an operator like ND is a total generalized 
notion, being defined on every domain. Second, HPA is not an implicit 
definition as HP is, but is rather the left-hand side of a biconditional con-
sequence of the axioms for ε', the right-hand side of which states the truth 
conditions for the left-hand side. We can thus avoid worrying about how 
the stipulated truth of HP manages to implicitly define the ‘the number of’ 
given that it does not wear its indefinite character on its sleeve and is non-
empty only on infinite domains.

One payoff of our ε-abstraction construction is a defensible and novel 
form of structuralism about the mathematical objects.58 Call the objects 
characterized using ε' abstracts. Abstracts are simply arbitrary indexing 
devices drawn from the underlying domain. They have no special properties 
— being just arbitrary ordinary objects — and none of their ordinary prop-
erties intrude on their role as indexing devices.59 This form of structuralism 
allows us to avoid many of the objections to introducing mathematical 
objects with abstraction principles. Since we are not laying down implicit 
definitions, but rather explicitly defining ε-abstraction operators, we do not 
have to worry about jointly consistent, but pairwise inconsistent abstraction 
principles. There are such collections of abstraction principles, but the 
right-hand sides of the principles like Q that they are the left-hand sides of 
are never jointly true, so we have good reason to not accept the entire col-
lection.60 Likewise, if the range of distinct abstraction operators were dis-
joint, then accepting even jointly consistent abstraction principles could 
require that there be more abstracts than objects. This is problematic if we 

58 T his view resembles eliminative or in re structuralist views rather than mystical or 
ante rem views since it does not interpret N as ranging over a distinguished class of abstract 
objects. A full discussion of this approach to Hume’s principle and how it squares with 
various members of the structuralist family is beyond the scope of this paper. I hope to 
return to this issue elsewhere.

59 D efending this picture as an account of our concept of number cannot be attempted 
here. Such a defense would have to investigate whether the indefinite indexings defined by 
N captured enough of how we conceive of numbers and how much is enough in this regard. 
This project is vastly beyond the scope of this paper.

60 I f we developed our structuralist account in terms of implicit definitions of indefinite 
operators as suggested in the previous section, then we would still have to deal with the bad 
company objection. This is a strong reason to favor ε-abstraction as the basis for this type 
of structuralism.
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expect that abstracts are members of the domain. This is the problem of 
“hyperinflation” raised by Kit Fine.61 On the structuralist view I have 
sketched, there is no such problem since the range of abstraction operators 
defined with ε' can and often do overlap.62

ε-abstraction principles have no special epistemological status. We are 
in no better position to know HP A than we are to know its existential gen-
eralization. Mutatis mutandis with NP A. This allows us to take a nuanced 
position on the logical character of Hume’s principle. Principles like 
HP A allow us to shift from talking about a partitioning of the power set 
of the domain to talking about representatives for each cell of the partition. 
Q guarantees that we can do this if there exists a mapping of cells to rep-
resentatives. The existence of such a mapping is equivalent to the claim that 
there are suitably many or suitably few things. Since the size of the domain 
is a substantial fact on which logic takes no stand, the truth of HP A is likewise 
a substantial fact on which logic takes no stand. We can thus disentangle the 
logical content of the HP A from the substantial content. N is a logical con-
stant in the fullest sense. And

H(ε'. f H( f ))  )  7f H( f )
is a logical truth. It is thus a logical fact that the claim that there are infinitely 
many things suffices for the truth of HP A and consequently for second-
order arithmetic interpreted in the structuralist fashion mooted above. The 
claim that the universe is infinite directly entails the ε-abstraction version 
of Hume’s principle. But neither HPA nor the claims of second-order arith-
metic suitably interpreted are logical truths.

Why we should care that Hume’s principle and the like are purely logical 
if they are not logical truths? 7x7y x ! y is, even if true and purely logical, 
not especially interesting. On the other hand, the ε-abstraction version of 
HP guarantees, on the basis of logic alone, that we can introduce referen- 
tial devices corresponding to the cells of the equinumerosity partition on 
the power set of a domain. That is, it allows us to introduce things playing 
the role of — or being! — numbers on the mere basis of logic, given the 

61 S ee Fine, K. (2008), p. 6. It is worth noting that Fine very briefly discusses the costs 
and benefits of adopting a variable ‘the number of’ operator (op. cit. pg. 25, fn. 13) though 
it is not entirely clear what sort of operator he has in mind.	

62 T his may remind the reader of the so-called “Caesar” problem. On the ε-abstraction 
account of HP A, this problem is misguided. If there is a function that satisfies H( f ), then 
there is a function g satisfying H( f ) such that g(F) is the object denoted by b. So we can 
use the famed conqueror of Gaul as a representative if there are enough additional things. 
On the other hand, no statement of the form ‘The number of F is b’ where b is a constant 
term denoting an object in our domain will be provable or refutable on the basis of the 
definition of N, the axioms governing ε', and our background logic. And this is how it should 
be given the view that numbers are arbitrary indexing devices.	
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non-logically true, but purely logical fact that the universe is infinite. The fact 
that this version of Hume’s principle is purely logical is actually slightly 
misleading way of describing what is so interesting about it. The most 
important fact is that the equivalence of this principle with the claim that 
the universe is infinite is a logical truth in the modern — and, obviously, 
the older — sense.

Of course, they would be logical truths in the older account mentioned in 
my discussion of Tarski’s account of logical truth and logical consequence. 
As I mentioned above, I prefer and work with the modern account, but I do 
not argue for it here. For this older account, my result is even better: 
Hume’s principle, suitably formulated with ε-abstraction principles, is an 
obvious logical truth if the universe happens to be infinite. And suitably 
formulated principles are logical truths if the universe happens to be finite. 
If we adopt the structuralist viewpoint suggested above, we can do a sub-
stantial amount of mathematics in pure logic without abandoning the thought 
that numerical expressions like ‘the number of trees in my yard’ are refer-
ential expressions without taking on additional commitments to problematic 
ontology. What we need is merely that indefinite expressions like ε and ε' 
are logical expressions and complex terms like N(F) are logical — yet still 
referential — expressions.

5.  Conclusion

With the exception of partial generalized notions like ι, all generalized 
notions newly classified as logical are indefinite in the sense defined above. 
Accepting indefinite generalized notions as our account of the denotations 
of expressions like ε or η amounts to an expansion of our ideology. It is not 
entirely dissimilar to the now widely accepted increase in ideology obtained 
by accepting irreducibly plural quantification.63 Accepting this new ideology 
allows us to give a semantic account of certain indefinite expressions with-
out perverting their intended meaning. The new ideology is useful as well, 
providing new ways of interpreting certain infamous abstraction operators 
as well as allowing the direct construction of ε-abstraction operators.

The naturalness of both the suggested amendment of the framework and 
the resulting criterion of logicality, the ability to adequately represent the 
meaning of indefinite expressions like ε and η, and the additional understand-
ing of abstraction operators and their ε-abstraction correlates are sufficient 
reason to amend Tarski’s framework. The switch to generalized notions 
vastly improves our understanding of the logical character of the indefinite 
expressions that figure in our informal logical practice. As with Tarski’s 

63 I rreducibly plural quantification was initially advocated in Boolos, G. (1984).
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original account, our broadened invariance criterion for generalized notions 
yields a plausible necessary condition for being a logical constant–logical 
constants denote isomorphism-invariant generalized notions. This, in turn, 
yields an improved account of logical truth and consequence, allowing us 
to better represent the logical relations among various claims involving 
indefinite expressions.
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