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Most Ways I could Move: Bennett’s Act/Omission 

Distinction and the Behaviour Space 

FIONA WOOLLARD 

The distinction between action and omission is of interest in both theoretical and 

practical philosophy. We use this distinction daily in our descriptions of behaviour 

and appeal to it in moral judgements. However, the very nature of the act/omission 

distinction is as yet unclear. Jonathan Bennett’s account of the distinction in terms of 

positive and negative facts is one of the most promising attempts to give an analysis 

of the ontological distinction between action and omission. According to Bennett’s 

account, an upshot is the result of an agent’s action if and only if the relevant fact 

about her conduct is positive. A proposition about an agent’s conduct is positive if 

and only if most possible movements of the agent would not have made that 

proposition true. However, Bennett’s account will fail unless it is possible to make 

sense of claims about ‘most possible movements of the agent’. We need a way of 

comparing the size of subsets of the behaviour space (the set of possible movements). 

I argue that Bennett’s own method of comparison is unsatisfactory. I present an 

alternative method of comparing subsets of the behaviour space. 

 

1. The act/omission distinction 

Some things occur because I do something; other things occur because I do not do 

something. The words on this page appeared because I typed them. The dirty dishes 

remained in the sink because I did not wash them. This distinction is known as the 

act/omission distinction: something is the result of my action if (and only if) it 

occurred because I did something; it is the result of my omission if (and only if) it 
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occurred because I did not do something. The act/omission distinction is one of the 

fundamental ways we divide up the world of human behaviour. It is of great interest 

in both theoretical and practical philosophy. It is a natural target of investigation for 

those working in the ontology of action, but is also relevant to causation, where we 

face the task of explaining whether and how omissions can be causes, and the law, 

which treats harmful action and harmful omission very differently.  

My interest in the act/omission distinction began in considering its role in 

normative ethics. Commonsense morality seems to assign significance to the 

act/omission distinction, particularly in cases involving harm to others. It seems to 

matters morally whether harm comes to another because I did something or because I 

did not do something. It is obviously wrong to send poisoned food to people in 

underdeveloped countries. However, it seems permissible not to send them food even 

if they will die without it. Good reason is required for failing to throw a life preserver 

to a drowning man, but a much stronger reason is required to justify holding his head 

under water or moving the life preserver out of his reach. Harmful actions (sending 

the poisoned food, holding down the man’s head, moving the life-preserver) seem 

harder to justify than harmful omissions (not sending healthy food, not throwing the 

life-preserver). 1  

                                                 
1 These examples are frequently cited in discussion of the moral significance of the act/omission 

distinction and the doing/allowing distinction. The poisoned food case is referred to by Philippa Foot 

(Foot 1967, p. 273) and Jonathan Glover (Glover 1977, p. 93) among others. Versions of the life-

preserver case are mentioned by Warren Quinn (Quinn 1989, p. 368) and Kadri Vihvelin and Terrance 

Tomkow (Vihvelin and Tomkow 2005, p. 184). My focus in this paper is the act/omission distinction 

rather than the doing/allowing distinction. In the example, moving the life-preserver out of the 

drowning man’s reach may count as merely allowing harm. This is easier to justify than holding the 

man’s head under water until he drowns. For example, it may be permissible to retrieve the life-
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It seems that if the act/omission distinction (or some distinction like it) is not 

of moral significance, then we need to make radical revisions to commonsense 

morality. Either harmful omissions are much harder to justify than we think they 

are—so we should be doing much more to help the needy—or harmful actions are 

much easier to justify than we think they are—so we may kill to protect our personal 

projects. Such adjustments will leave morality either far more demanding than 

commonsense suggests or far more permissive. So a morality which did not assign 

moral significance to the act/omission distinction would be highly counterintuitive. 

None the less, it is far from obvious that the act/omission distinction can bear this 

moral weight. When the consequences are the same in each case, how can it matter 

whether these consequences occur because I did something or because I did not do 

something?   

The best way to approach these issues is to investigate what the difference 

between action and omission is. What does it mean to say that a given upshot 

occurred because I did something rather than because I did not do something? Why do 

typing, posting food and grabbing a life-preserver count as actions while leaving the 

dirty dishes, not sending food and not throwing a life-preserver count as omissions? It 

is only when we understand the nature of the act/omission distinction that we will be 

                                                                                                                                            
preserver to save your own life or to save the lives of five others, but impermissible to hold the man’s 

head under water for this reason. None the less, moving the life-preserver still involves action. 

Moreover, this harmful action seems harder to justify than merely failing to throw him a life preserver. 

It would be impermissible to move the life-preserver out of the man’s reach to save one other person’s 

life or to avoid sacrificing your savings. This suggests (a) that the act/omission distinction and the 

doing/allowing distinction are not the same for an agent may allow harm through an action; (b) that 

commonsense morality treats both distinctions as morally significant. I thank the anonymous referee 

whose comments made me clarify this. 
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able to start working out whether it matters morally whether an outcome occurs 

because of action or omission, whether we should draw a legal distinction between 

actions and omissions and whether, and how, an omission can be a cause. 

One of the most promising accounts of the act/omission distinction is Jonathan 

Bennett’s account based on the distinction between positive and negative facts, 

presented first in his Tanner Lectures and then in his book, The Act Itself (Bennett 

1981; 1995).2 Bennett illustrates his account using two examples, Push and Stayback, 

in which a vehicle is on a slope leading to a cliff edge. In Push, the vehicle is standing 

at the top of the slope; Agent pushes it and it rolls over the cliff edge to its 

destruction. In Stayback, the vehicle is already rolling; Agent could, but does not, 

interpose a rock that would stop it and the vehicle rolls over the cliff edge to its 

destruction (Bennett 1995, p. 67). The destruction of the vehicle is the result of 

Agent’s action in Push, but the result of mere omission in Stayback. 

According to Bennett’s account, an upshot of an agent’s behaviour is the result 

of an action if and only if the relevant fact about the agent’s behaviour is positive; an 

upshot is the result of an omission if and only if the relevant fact about the agent’s 

behaviour is negative. When an upshot is the result of an agent’s action or omission, 

the upshot depends in some way on some fact about the agent’s conduct. I will say 

that a fact upon which the upshot depends in this way is relevant to the upshot. Cases 

of pre-emption have taught us that the dependence will not be simple counterfactual 

                                                 
2 Bennett himself argues that we should abandon talk of acts and omissions and refer instead to 

negative and positive facts about an agent’s behaviour (Bennett 1995, p. 29–88).  I think it is more 

fruitful to retain the widely used terminology of acts and omissions and analyse these concepts in terms 

of positive and negative facts.    
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dependence.3 The vehicle’s destruction is the result of Agent’s push even if someone 

else would have pushed the vehicle down the slope if Agent had not done so. So there 

are interesting issues about how exactly to specify the relationship of relevance.4 

There are also interesting issues about how to pick out the relevant fact. For the 

purposes of this paper I will rely on our intuitive ability to pick out the relevant fact 

about an agent’s conduct. In Push, the relevant fact about Agent’s conduct is that he 

pushed the vehicle. We say that the vehicle was destroyed because Agent pushed it. 

We would not say that the vehicle was destroyed because Agent did not read a 

magazine or because he pushed with his right hand. In Stayback, the relevant fact 

about Agent’s conduct is that he did not interpose the rock. We say that the vehicle 

was destroyed because Agent did not place the rock in its path. We would not say that 

the vehicle was destroyed because Agent performed a cartwheel. 

A positive fact about an agent’s behaviour tells us what he has done: it picks 

out some action, x, and tells us that he has performed x. In contrast, a negative fact 

about an agent’s behaviour tells us what he has not done: it picks out some action, y, 

                                                 
3 The literature on causation is full of examples of preemption and overdetermination.  For a classic 

discussion see Lewis 1986.  

4 Often when an agent is relevant to an upshot, this will be because some fact about his behaviour is 

causally relevant to the upshot. However, relevance is not always causal relevance. There are non-

causal consequences of behaviour. A non-causal consequence of an agent’s behaviour is a state of 

affairs that occurs as a result of the agent’s behaviour, but that is not causally connected to the agent’s 

behaviour (See Bennett 1995, p. 127). Suppose an agent has promised not to sit down. If he sits down, 

his behaviour does not cause his promise to be broken; the connection between his sitting and the 

breaking of the promise is not a causal one. Rather, in sitting down he breaks his promise. The fact that 

he sat down when conjoined with the fact that he has promised not to sit down makes it the case that he 

has broken his promise. We can ask whether an agent broke a promise by action or omission.  
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and tells us that it is not true that he has performed y. The fact that Agent pushed the 

vehicle in Push is a positive fact about his conduct. The fact that Agent did not 

interpose the rock in Stayback is a negative fact about his conduct: it is the negation 

of the positive proposition ‘Agent interposed the rock’.   

To avoid circularity, we need an account of the distinction between positive 

and negative facts about an agent’s conduct which does not appeal to the notion of 

picking out an action. Bennett’s account is based on the idea that the positive/negative 

distinction is a distinction in how informative the relevant fact is. Positive facts tell us 

something fairly definite, pinning us down to a small set of alternatives. In contrast, 

negative propositions do not tell us very much about the world, only ruling out the 

relatively small set of alternatives corresponding to the positive proposition that has 

been negated.   

To analyse what it is for a fact about an agent’s behaviour to be positive (or 

negative), Bennett limits the set of alternatives under consideration. Rather than 

considering all states of affairs (which would be seriously problematic) Bennett 

considers all possible ways the agent could move. Instead of asking whether a fact is 

informative overall, Bennett asks whether a fact is informative about the agent’s 

movements. If a fact about an agent’s conduct is negative, this fact does not tell us 

much about his movements; whereas if a fact about an agent’s conduct is positive, this 

fact tells us that he moved in one of a relatively small number of ways.5 Thus: 

                                                 
5 Bennett’s account analyses the act/omission distinction in terms of bodily movements. None the less, 

action is not the same thing as bodily movement. Whether a person is waving or simply stretching 

depends on his understanding of what he is doing as well as on his physical movements. A full theory 

of action should explain this. However, this does not affect the act/omission distinction. Whether I am 

fasting or just not eating depends on my understanding of my behaviour, but fasting is still an omission 
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A proposition is a negative proposition about the conduct of an agent if 

and only if most possible movements of the agent’s body are such that if 

he had moved that way, the proposition in question would have been true 

(Bennett 1995, pp. 91–5). 

 

A proposition is a positive proposition about the conduct of an agent if 

and only if most possible movements of the agent’s body are such that if 

he had moved that way the proposition in question would not have been 

true (Ibid). 

 

Bennett uses a square to represent the agent’s behaviour space—all the ways the 

agent could have moved. If P is a negative proposition about an agent’s behaviour, 

then P will correspond to a large subspace of the behaviour space.6 This subspace will 

be much larger than the subspace corresponding to the proposition not-P. The 

converse will be true if the proposition about the agent is positive. This is illustrated 

below: 

Figure 1: P is a negative proposition 

                                                                                                                                            
not an action. Fasting is not eating for certain reasons. The act/omission distinction is based on whether 

a certain fact picks out that the agent did something or that the agent did not do something. It is not 

affected by the fact that some ways of describing what we did or did not do stipulate that these acts or 

omissions must be performed with certain intentions.        

6 Each point in the square represents a proposition stating that the agent moved in some absolutely 

specific way. Subspaces of the behaviour space are areas of the square; each area corresponds to the 

disjunction of all the propositions represented by the points it contains.   See Bennett 1995, p. 91. 
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Figure 2: P is a positive proposition 

 

In Push, the relevant fact about Agent’s conduct is that he pushed the vehicle. Most of 

the things Agent could have done would not have involved pushing the vehicle. 

Intuitively, Push is represented by something like  

Figure 3: 

Figure 3: Push 

 

The proposition ‘Agent pushed the vehicle’ corresponds to a very small subset of the 

behaviour space. It is a positive fact about Agent’s behaviour. Thus, in Push, Agent is 

relevant to the vehicle’s destruction through a positive fact about his behaviour. This 
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fits the intuition that in Push Agent is relevant to the vehicle’s destruction through 

action rather than omission. 

In Stayback, the relevant fact about Agent’s behaviour is that he did not 

interpose the rock. Most of the things Agent could have done would have involved 

failing to interpose the rock. The proposition ‘Agent did not interpose the rock’ will 

only be false in a very small number of cases—those cases where Agent does actually 

interpose the rock. Thus it seems intuitively as if the situation in Stayback will be 

represented by something like Figure 4. 

Figure 4: Stayback 

 

The proposition ‘Agent did not interpose the rock’ corresponds to a very large 

subset of the behaviour space. It is a negative fact about Agent’s behaviour. Thus, in 

Stayback, Agent is relevant to the vehicle’s destruction through a negative fact about 

his behaviour. This fits with the intuition that in Stayback Agent is relevant to the 

vehicle’s destruction through an omission rather than an action. 

Bennett’s account is an attractive analysis of the act/omission distinction. It 

gives us the correct results in a wide range of cases. It seems to fulfil Bennett’s 

desiderata of stating the distinction ‘in terms which are clear, objective, and deeply 

grounded in the natures of things.’ (Bennett 1981, p. 48) Whether most ways the 

agent could have moved would have made a given proposition true does not seem to 

depend on how we describe things or think about things. Moreover, it is intuitively 
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appealing to link the act/omission distinction to a positive/negative distinction 

analysed in terms of how informative the relevant fact is about the agent’s 

movements. This fits with the idea that performing an action involves doing 

something fairly specific whereas omitting merely involves avoiding some fairly 

specific behaviour.          

Although various putative counterexamples have been put forward, I believe 

that a Bennett-style approach can deal with these counterexamples.7 I will not discuss 

these counterexamples here. In this paper, I focus on a more fundamental objection to 

Bennett’s approach, an objection that if sound would prevent the whole analysis from 

getting off the ground. The objection is that we cannot compare the size of subsets of 

the behaviour space; it does not make sense to speak of ‘most possible movements of 

an agent’s body’. For Bennett, whether an agent is positively, or only, negatively, 

relevant to a certain event depends on whether ‘most possible movements of the 

agent’s body’ would have made the relevant proposition about the agent’s conduct 

                                                 
7 Common counterexamples to Bennett’s account fall into three main groups: (1) immobility 

counterexamples; (2) pre-emption counterexamples; (3) restricted-range-of-movement 

counterexamples. Immobility counterexamples trade on the intuition that staying still is an omission, 

thus if a significant upshot will occur if and only if the agent stays still, Bennett will classify the 

agent’s relevance as positive when it is intuitively negative. See Dinello 1971; Locke 1982; Quinn 

1989. Bennett has responded to this objection in The Act Itself (Bennett 1995, pp. 96–100, 112–14). I 

discuss pre-emption counterexamples in Woollard 2008, pp. 59–67. Restricted-range-of-movement 

counterexamples involve restrictions on the movements open to the agent. An almost-paralysed man 

can only make three movements: leaving his finger where it is, pressing it down or pressing it further 

down. Either pressing-down motion will set off a button, calling the nurse. Bennett seems to classify 

calling the nurse as an omission. I suggest that we can avoid this problem by paying proper attention to 

what makes a movement count as ‘possible’. See Woollard 2008, pp. 70–72. 
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true. So if we cannot compare the size of subsets of the behaviour space, Bennett’s 

account will not even make sense.    

I argue that the method Bennett gives for comparing subsets of the behaviour 

space is not satisfactory. It does not enable us to compare the size of subsets of the 

behaviour space. Moreover, using this method could result in contradictory results so 

that it appears that a given subset is both smaller than and bigger than another subset. 

Nonetheless, as I shall show, it is possible to compare the size of subsets of the 

behaviour space. It makes sense to speak of ‘most possible movements of an agent’s 

body’. This is an important result. Many people are (rightly!) suspicious of Bennett’s 

method of comparing the size of subsets of the behaviour space and seem inclined to 

reject Bennett’s overall approach for this reason. So showing that it does make sense 

to compare subsets of the behaviour space is an important step in giving Bennett’s 

account the hearing it deserves.8   

My way of comparing the size of subsets of the behaviour space uses quite 

complicated mathematics. It may seem absurd to propose that such complicated 

mathematical notions can be the basis for the act/omission distinction. After all, this 

distinction is used by almost everyone almost every day. It is crazy to suggest that we 

perform such feats of mathematics before drawing this most commonplace of 

distinctions.   

I do not propose that anyone actually performs these calculations before 

drawing distinctions between action and omission. My mathematical analysis is 

intended as a foundation that underlies a distinction that we are naturally equipped to 

detect (more or less) reliably. We can use mathematics and physics to calculate the 

                                                 
8 Judith Jarvis Thomson raises concerns about this in Thomson (1996), p. 550 and endnote 7. I’ve also 

encountered this worry in conversation more times than I can count. 
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point at which a bouncing ball could be caught. These calculations are fairly difficult. 

A dog certainly could not carry them out, yet a dog can catch a ball. The dog simply 

sees how the ball will bounce. I suggest that the mathematical measure underlies our 

instinctive judgements about ‘most of the ways the agent could move’ in the same 

way as the physical calculations underlie the dog’s seeing where to catch the ball. We 

do not appeal to this mathematical measure when we draw the distinction, but it is 

important to know that we have this foundation to support our intuitive judgements. 

Before beginning, I will note two things about my Bennett-style approach. 

This approach associates actions with positive facts about an agent’s behaviour and 

omissions with negative facts about an agent’s behaviour. At any given time, there are 

many different facts about an agent’s behaviour. At this moment, I am working hard; I 

am not drinking wine; I am typing on the keyboard. Some of these facts are positive 

facts, some negative facts. It follows that I am currently performing many actions and 

many, many omissions.9        

However, the account does not imply that actions must correspond to 

particular movements. Pushing the vehicle counts as an action even though there are 

quite a few different ways Agent could move his body in pushing the vehicle: he 

could push with his right hand, his left hand, from a standing start or with a run up. 

That Agent pushed the vehicle counts as a positive fact as long as most of the ways he 

could move would not make it true that he pushed the vehicle. However many 

different ways Agent could push the vehicle, there are far more ways he could move 

                                                 
9 Some of these actions and omissions are related in interesting ways. My working hard is a complex 

actions constituted by my typing and other more basic actions. However, on the fact-based account 

such interconnections do not give rise to difficulties about how to individuate actions, we must simply 

ask whether the fact that I am working hard is a different fact from the fact that I am typing. 
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that would not involve pushing the vehicle. The same applies to actions that can be 

constituted by what we would recognise as ‘different movements’. A person might 

propose marriage by getting down on one knee, writing a message in the sky or hiding 

a diamond ring in his lover’s dessert. Given the conventions of our society, each of 

these very different movements counts as a way of proposing. Bennett’s account still 

classifies proposing marriage as an action because there are far more ways a person 

can move his body without proposing marriage than ways of moving his body which 

do involve proposing marriage.10 

2. Bennett’s measure  

Bennett proposes that we compare subsets of the behaviour space using the notion of 

‘specificity’. Two propositions about how the agent moves take up the same area of 

the behaviour space if and only if they are equally specific.11 Bennett then suggests 

that we use such ‘comparable pairs’ to show that one subset is smaller than another 

(Bennett 1995, p. 95).    

In Stayback the vehicle will be destroyed unless Agent interposes a rock. 

Bennett asks us to consider the different ways Agent could interpose the rock. He 

claims:  ‘A few dozen pairwise contrary propositions would pretty well cover the 

possibilities, each identifying one fairly specific sort of movement which would get 

the rock into the vehicle’s path.’ (Bennett 1995, p. 95) We can thus divide up the 

‘Interpose’ subset of the behaviour space into a few dozen smaller regions, each 

representing a push or kick. Bennett suggests that we pair each of these regions up 

with an ‘echo’ in the ‘Non-interpose’ subset:  ‘by which I mean a proposition which is 

                                                 
10 I thank the anonymous referee who pressed me on this. 

11 Bennett (1995), p. 93.  
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very like it except its truth would not rescue the vehicle.’ (Bennett 1995, p. 95) 12 

Bennett illustrates: 

 

If [Interpose] contains a proposition attributing to Agent a certain kind of 

movement with his left foot, an echo of it might attribute to him a similar 

movement of that foot but angled so that the foot misses the rock. 

(Bennett 1995, p. 95)  

 

Pairing up each of the propositions with an echo, ensuring that the echoes are pairwise 

contraries so that their regions do not overlap, gives us something like the following 

picture: 

Figure 5: Stayback 

 

Bennett claims:   

 

My ‘degree of specificity’ criterion secures that the combined area [of 

the echoes] is the same as that of [Interpose]; and clearly they only 

take up a tiny proportion of [Non-Interpose]. (Bennett 1995, p. 96) 

 
                                                 

12 Bennett uses the subsets ‘Survive’ and ‘Destroy’ instead of ‘Interpose’ and ‘Non-Interpose’.   
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Initially, Bennett’s argument seems convincing. However, his method of 

comparison depends upon three assumptions:   

 

1. We can make sense of the idea of two propositions being ‘equally specific’ in 

a way that means they will take up equal areas of the behaviour space. 

2. The echoes that Bennett proposes will be equally specific in this way. 

3. The Interpose subset can be covered by a finite number of fairly specific 

pairwise contrary propositions. 

 

I shall argue that we cannot accept these assumptions. To be able to pair off our 

propositions with equally specific echoes, we would have to use such detailed 

propositions that infinitely many would be required to cover the Interpose subset. On 

the other hand, to cover the subset with finitely many pairwise propositions, we would 

need to use propositions of a level that would not allow us to match for specificity.   

I begin by considering (1), the claim that we can make sense of two movements 

being equally specific.  Bennett argues:   

 

This will not work with every determinable, e.g. with colours, because 

for them we have no agreed measure of specificity; but we have such 

measures for space and time, and thus for movements and for 

specificity of propositions about movements. (Bennett 1995, p. 93)  

   

We can say when two propositions about an object’s position in space are 

equally specific. Let P be the proposition that the object lies in a cube with sides of 

length 1cm centred on coordinates (1,3,5). Any proposition which states that the 
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object lies within a cube with sides of length 1cm is exactly as specific as P about the 

object’s position. Generally, two propositions about an object’s position in space are 

equally specific if the areas within which they locate the object are the same size. 

Statements about the speed of an object at a given time and about the direction of 

movement can also be compared for specificity in fairly obvious ways. 

Unfortunately, this method is not easily extended to propositions about bodily 

movements. Bodily movements involve different parts of the body moving in 

different ways. Our ordinary ways of describing bodily movements bring in 

statements about space and time in different ways. There is no canonical way in 

which ordinary language builds statements about movement out of statements about 

space and time. This makes it difficult to extend the specificity criterion.   

We might say that two propositions about movement are equally specific if 

they bring in propositions about space and time in the same way and to the same 

degree of specificity while propositions that bring in space and time in different ways 

are incomparable. Thus He walks northwards is as specific as He walks southwest. He 

moves his left leg forward at 1cms-1 to the nearest cms-1 is exactly as specific as He 

moves his left leg forward at 6cms-1 to the nearest cms-1. He walks northwards and He 

moves his left leg forward at 1cms-1 are incomparable.  

This strategy faces several problems. It may be unclear if two propositions 

bring in space and time in the same way. Can we compare the specificity of He moves 

his left leg forward at 1cms-1 to the nearest cms-1 with that of He moves his right leg 

forward at 1cms-1 to the nearest cms-1? What about comparisons between propositions 

about the speed with which he moves his right leg and propositions about the speed 

with which he moves his left arm? 
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More seriously, this strategy may give contradictory results. Two subsets of 

the behaviour space may come out as the same size using one set of propositions for 

comparison, but as different sizes using another set. According to this strategy, He 

moves his head vertically upwards is equated with He moves his head vertically 

downwards. However, it may be that, if we consider more detailed propositions about 

the movements the agent must make with his body, there are many more ways he 

could move so that his head ends up lower than there are ways he could move so that 

his head ends up higher.   

We might try and find some canonical form for propositions about movement. 

We could try and find out all the dimensions of movement: all the different ways in 

which movements can vary. If we have a proposition in canonical form, we can see 

how specific it is about each of these dimensions of movement. We then say that two 

propositions about movements are equally specific if they are equally specific about 

each dimension at each moment of time. We will only be able to say that two 

propositions are equally specific if they are in canonical form.  

However, the suggestion that we can only match up propositions in canonical 

form casts Bennett’s last two assumptions into doubt. First, it seems unlikely that we 

will be able to divide the Interpose subset of the behaviour space into a finite number 

of propositions in canonical form. Propositions in canonical form pick out a set of 

movements using the dimensions of movement. At each point in time, t, for each 

dimension, they give a set of values. A movement will be picked out by the 

proposition if and only if, at each point of time, in every dimension, its value along 

that dimension is one of the given set. It does not seem that we can divide the set of 

ways Agent could interpose the rock into a finite number of subsets of this kind.  
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Secondly, Bennett’s ‘echo’ movements may not be exactly as specific as their 

originals. We can imagine movements that are ‘very like’ our original movements, but 

which do not result in the same outcome. We can imagine movements that would 

‘make it look as though Agent were trying but failing to interpose the rock.’ (Bennett 

1995, p. 95) However, we cannot give the canonical form of these echoes and check 

they have the same degree of specificity as the originals. 

We could be sure that the echo proposition is exactly as specific as its original 

if we considered only single points in the behaviour space. A single point in the 

behaviour space represents ‘a proposition attributing to [Agent] some absolutely 

specific way of moving.’ (Bennett 1995, p. 91) We can match each absolutely specific 

possible movement in Interpose with another absolutely specific ‘echo’ movement, 

which is very like the original but differs just enough so that Agent does not interpose 

the rock.    

However, this leads us to another problem. It seems likely that there are 

infinitely many, slightly different, ways Agent could move that would involve 

interposing the rock. If so, there are infinitely many members of Interpose. If there are 

infinitely many members of Interpose, the fact that we can match up each member of 

survive with a member of Non-Interpose does not tell us anything about the relative 

sizes of the two subsets. In an infinite space, matching up members does not imply 

that two subsets are the same size in the sense that we are interested in. Every member 

of the real number line, R, can be matched up with a member of (0,1), the open 

interval from 0 to 1, without any overlap. Both R and (0,1) have infinitely many 

members, so they both have infinite cardinality.   

It seems likely that any subset of the behaviour space that corresponds to a 

proposition such as ‘Agent interposes the rock’ or ‘Agent does not interpose the rock’ 
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will also have infinite cardinality. If this is so, when we talk about proportions of 

ways the agent can move, we do not want to compare cardinalities. We want some 

other way of measuring the size of subsets. We will not get a measure of this kind by 

simply pairing up members of subsets. 

Of course, these criticisms only apply if the behaviour space is infinite. If the 

behaviour space were finite, Interpose would also be finite. We could pair up each 

member of Interpose with an echo in Non-Interpose, using finitely many pairs. As 

there would be only finitely many pairs, we could deduce that Interpose is the same 

size as the subset of echoes in Non-Interpose. Because the echoes obviously would 

not take up all of Non-Interpose, we could deduce that Interpose is much smaller than 

Non-Interpose. 

Bennett argues that the behaviour space must be finite (Bennett 1995, p. 93). 

He notes that how Agent moves at time, T, is determined by the intersection of (a) the 

neuronal events that could have occurred in his brain and (b) the facts about other 

relevant factors, such as wind, gravity etc. and non-neuronal internal factors such as 

the temperature of his blood. The members of (b) are not under his voluntary control, 

so variations in the behaviour space come entirely from (a). Bennett argues that the 

number of distinct possibilities in (a) is finite ‘because it is determined by how many 

neurons Agent has and how many relevantly different states each can be in, both 

numbers being finite.’ (Bennett 1995, p. 93) He concludes:  ‘So there are, after all, 

only finitely many points in the Agent’s behaviour space and our metric can be got by 

counting them.’(Ibid) 

Variations in brain states may be more complicated than Bennett’s assumes.13 

Whether there are finitely many possible brain states is an empirical question that will 
                                                 

13 For discussion, see Penrose 1989, p. 511. 
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not be answered by philosophers, but it would be preferable if analysis of the 

act/omission distinction did not depend upon a controversial account of 

neurophysiology. Moreover, even if the number of possible brain states is finite, we 

should still expect the behaviour space to be infinite. Bennett suggests that the 

behaviour space should represent ‘ways Agent could move at time T’ (Bennett 1995, 

p. 91) However, the kind of movement we are interested in, movements such as 

pushing a vehicle or interposing a rock, take time. This realisation puts the final nail 

in the coffin for Bennett’s argument that the behaviour space is finite. Even if there 

were only a finite number of possible states in which Agent’s neurons could be in at 

time T, we are not only concerned with what happens during that instant. We are 

concerned with Agent’s behaviour over a period of time. How Agent moves during a 

period of time will depend upon the neuronal events over that whole period. His 

movement is a function of neuronal states over an interval of time: unless time is 

granular, there will be infinitely many such functions even if there are only finitely 

many neuronal states.   

3. A new measure on the behaviour space 

Bennett’s measure on the behaviour space faces some serious problems. Nonetheless, 

I believe that the Bennett’s overall approach is sound. I shall now suggest a new way 

of conceiving of the behaviour space and of comparing the size of its subsets. Using 

this new method of comparison, we can still make sense of Bennett’s account of the 

act/omission distinction.  

I begin by representing members of the behaviour space mathematically. The 

behaviour space is made up of all the ways the agent could move his body between t1 

and t2. Humans move by lengthening and contracting their muscles. The changes in 

length of a muscle over a time period can be represented by a function. Such a 
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function assigns to each moment in the time period a value representing how far the 

muscle is extended at that moment in time. We can put these functions together to 

form a more complex function that represents the overall movement by showing us 

how far each muscle is extended at each instant in time. 

First, we number each of the muscles that the agent can control directly. If 

there are N muscles under the agent’s direct control, these muscles will be numbered 

from 1 to N. It does not matter what order we number the muscles in. What is 

important is that each muscle under the agent’s direct control is assigned a number. I 

will label the right bicep, muscle number 1. 

For each n, we want fn(t) to be the function representing how much muscle 

number n has extended or contracted at each point in time during the movement. So 

f1(t) represents how far the right bicep is extended (compared with its position at the 

start of the movement) at each point in the movement.  Suppose that the movement 

involves bending the forearm upwards towards the shoulder – what weightlifters call a 

bicep curl. To find f1(t), we first note the original length of the bicep. Suppose it starts 

at length 8 units. The bicep contracts to bring the forearm upwards towards the 

shoulder. 5 seconds into the movement, the bicep is at length 4 units. To find the 

value of f1(5), we find the difference between the original length of the muscle and its 

length at t=5. We take the length at t=5 and subtract the original length. So f1(5) = 4–8 

= –4. At t=5, the bicep has contracted so that it is 4 units shorter than it was at the 

beginning of the movement. We represent the movement of the bicep over the whole 

time period by noting down the length of the bicep at t and subtracting the original 

muscle length to find out how much further the muscle has extended. For any t, f1(t) = 

l1(t) –v1, where l1 (t)  is the length of the bicep at time, t, and v1 is the original length 

of the bicep.      
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To represent the movement of the rest of the body, we perform the same 

process with each of the other muscles. We note down vn (the original muscle length 

of muscle n) and  ln(t) (the length of muscle n at t). To find out the additional 

extension of the muscle at t, we subtract the original length from the current length: 

fn(t) = ln(t)–vn. We now have a function for each muscle representing the extension 

and contraction of that muscle during the time period.    

To represent the entire movement, we put these functions together in an 

ordered list or N-tuple (f1(t), f2(t), f3(t), …, fn(t), …, fN(t)).  The first member of the 

ordered list f1(t) represents the additional extension of muscle 1 at time t; the second 

member f2(t) represents the additional extension of muscle 2 at t; the nth member fn(t) 

represents the additional extension of muscle n at t. We then represent the whole 

movement using the function, f, that matches each time, t, in the interval with the 

appropriate ordered list. More formally:   

 

f: [t1 , t2] → RN 

f(t) =(f1(t), f2(t), f3(t), …,  fn(t), …,  fN(t)) 

 

Where for each n: vn = length of muscle n at t1; ln(t) = length of muscle n at t; 

fn(t) = ln(t)–vn; RN is the set of N-tuples of real numbers. Each movement is 

represented by a unique function of this kind telling us exactly how far each of the 

agent’s muscles would be extended at each moment.  

We now want to compare the size of subsets of the behaviour space. The 

behaviour space is infinitely dense, so simply pairing up members of the two subsets 

will not work. Luckily, it is still sometimes possible to compare the size of subsets 
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when we are dealing with infinitely dense spaces. Consider Figure 6. Subset S1 is 

obviously bigger than subset S2. 

Figure 6: S1 is greater than S2 

 

There are no more points in S1 than in S2; both subsets contain infinitely 

many points. However, S1 obviously takes up a bigger area than S2. We can 

demonstrate this using a method that is similar to Bennett’s ‘echo’ idea. We start by 

thinking of a circle of a fixed radius, r. We see how many such circles are needed to 

cover S2. Call this number Mr(S2). It is clear that (so long as r is small enough) we 

will always need more than Mr(S2) circles of radius r to cover S1. In the diagram 

below S2 is covered by 10 circles of radius 5mm, it is clear that 10 circles of the same 

size will not come close to covering S1. Intuitively, whenever r is small enough, we 

will require more circles of size r to cover S1 if and only if subset S1 is bigger than 

subset S2.     

Figure 7: S2 covered by circles of radius r 

 

Formally: 

S1 
S2 
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For any real number, r, let Mr(S) = the minimum number of circles of 

radius, r, by which S can be covered. (Note that circles are permitted to 

overlap.) 

 

S1 > S2 if and only if 

There is some positive real number, α, such that for any r, between 0 and 

α, Mr(S1) > Mr(S2). 

 

In other words, S1 is bigger than S2 iff the minimum number of circles of a given 

radius needed to cover S1 is always larger than the minimum number of circles of that 

radius needed to cover S2 (so long as the radius is small enough).  

We can now extend this idea to compare the size of subsets in other spaces. 

We used circles with a fixed radius to compare the size of subsets of 2-dimensional 

space. We need to extend the idea of circles of fixed radius to other spaces.   

First, we set up a way of making sense of the ‘distance’ between two points in 

our new set, extending this idea of distance beyond its natural domain of the real line. 

This is done this by using a metric function. A metric function on a space is a function 

that for any two points in that space gives a real number that represents the ‘distance’ 

between them. Once such a function is defined, we define ‘r-balls’ which are the 

analogue of circles of radius r. Just as a circle of radius r is the set of points which are 

less than r away from the circle’s central point, an r-ball around a given point, x, is the 

set of points which are less than r units ‘distance’ away from x.   

So suppose that S1 and S2 are subsets of a bounded metric space, we can say 

that: 
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For any real number, r, let Mr(S) = the minimum number of r-balls by 

which S can be covered. (Note that balls are permitted to overlap.) 

S1 > S2 if and only if 

There is some positive real number, α, such that for any r, between 0 and 

α, Mr(S1) > Mr(S2). 

 

Any ‘strictly greater than’ relation must have certain features: if S1 is greater than S2 

then S2 cannot be greater than S1; no subset can be strictly greater than itself; if S1 is 

greater than S2 and S2 is greater than S3, then S1 must be greater than S3. The 

relation must be asymmetric, irreflexive and transitive.  It can be shown fairly easily 

that in any space in which Mr(S) is well defined, the relation defined above meets 

these conditions.  

We can now apply this to the behaviour space. First we need to define a metric 

function on the behaviour space, a function that, for any two points on the behaviour 

space, gives us a real number that represents the distance between them. This is quite 

easy to do. Suppose that we have two different possible movements of the agent’s 

body (members of the behaviour space). We represent the first possible movement by 

a function, f, with f(t) = (f1(t), f2(t), f3(t), …, fn(t) , …, fN(t)), where fn(t) is how far 

muscle n would have extended or contracted at t if the agent had made this first 

possible movement. We represent the second possible movement by another function, 

g, with g(t) = (g1(t), g2(t), g3(t) , …, gn(t) , …, gN(t)), where gn(t) is how far muscle n 

would have extended or contracted at t if the agent had made this second possible 
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movement. It can be shown quite easily that the function d(f,g) = 

( ) 







−∑∫

=

N

n
dtgnfn

1

1

0

2  fulfils the conditions for metric functions.14   

                                                 
14A metric functions must meet three conditions: (1) The zero condition: for any two members of the 

behaviour space f and g, the distance between f and g is zero if and only if f is identical to g; d(f,g)=0 

↔ f=g. (2) Symmetry: for any two members of the behaviour space f and g, the distance between f and 

g is the same as the distance between g and f; d(f,g)=d(g,f). (3) The Triangle Inequality: for any three 

members of the behaviour space, f, g and h, the distance between f and h is less than or equal to the 

sum of the distances from f to g and from g to h; d(f,h) ≤ d(f,g) + d(g,h) 

Proof that d fulfils (1) 

Suppose d(f,g) = 0. 

Then  ( ) 0
1

1

0

2 =







−∑∫

=

N

n
dtgnfn    So ( ) 0

1

1

0

2 =







−∑∫

=

N

n
dtgnfn  

But for all f, g in the behaviour space, for any n, fn (t), gn (t) are real numbers.  So (fn–gn)2 ≥ 0. 

So   ( )∫ ≥−
1

0

2 0)( dtgnfn .   So ( ) 0
1

1

0

2 =







−∑∫

=

N

n
dtgnfn  implies that for each n, (fn–gn)2 =0 

So for each n and each t, (fn(t)–gn(t))2 =0.  So for each n and each t, fn (t)–gn(t) =0. So for each n and 

each t, fn (t) = gn(t).  So f=g.  So if d(f,g)=0 then f=g. 

 

Suppose f=g. 

Then d(f,g) = ( ) 







−∑∫

=

N

n
dtgnfn

1

1

0

2 and fn = gn 

So      d(f,g) = ( ) 







−∑∫

=

N

n
dtfnfn

1

1

0

2  =   







∑∫
=

N

n
dt

1

1

0

0 = 0. 

 

So d fulfils (1) ,the zero condition: the distance between f and g is zero if and only if f is identical to g; 

d(f,g)=0 ↔ f=g. 
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We then need to show that Mr(S) is well defined on the behaviour space, in 

other words, that there is one and only one value of Mr(S) for each subset, S, of the 

behaviour space. For a given r, Mr(S) will be well-defined if the behaviour space can 

be covered by a finite number of r-balls. If the behaviour space can be covered by a 

finite number of r-balls, then any subset, S, of the behaviour space can be covered by 

                                                                                                                                            

Proof  that d fulfils (2) 

d(f,g) = ( ) 







−∑∫

=

N

n
dtgnfn

1

1

0

2 = ( ) 







−∑∫

=

N

n
dtfngn

1

1

0

2 = d(g,f) 

So d fulfils (2), the symmetry condition: the distance between f and g is the same as the distance 

between g and f; d(f,g)=d(g,f).  

Proof that d fulfils (3) 

d(f,h) =  ( ) 







−∑∫

=

N

n
dthnfn

1

1

0

2 = ( ) 







−+−∑∫

=

N

n
dthngngnfn

1

1

0

2)()( ≤ 

( ) 







−+−∑∫

=

N

n
dthngngnfn

1

1

0

22 )()( = ( ) ( ) 







−+−∑∫ ∑∫

= =

N

n

N

n
dthngndtgnfn

1

1

0 1

1

0

22  

Given any non-negative real numbers x and y, x and y have a non-negative root. 

So we have  2√x√y ≥ 0.  So x + 2√x√y + y ≥  x + y.  So √ (x + 2√x√y + y) ≥  √ (x + y).   

So √(√x + √y)2 ≥  √ (x + y).  So √x + √y  ≥  √ (x + y) 

( )∑∫
=

−
N

n
dtgnfn

1

1

0

2 and ( )∑∫
=

−
N

n
dthngn

1

1

0

2 are non-negative real numbers. 

So ( ) ( ) 







−+−∑∫ ∑∫

= =

N

n

N

n
dthngndtgnfn

1

1

0 1

1

0

22  

≤ ( ) 







−∑∫

=

N

n
dtgnfn

1

1

0

2  + ( ) 







−∑∫

=

N

n
dthngn

1

1

0

2   = d(f,g) + d(g,h) 

So d(f,h) ≤ d(f,g) + d(g,h). So d fulfils (3), the Triangle Inequality: the distance between f and h is less 

than or equal to the sum of the distances from f to g and from g to h. 
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a finite number of r-balls. If S can be covered by a finite number of r-balls, then either 

there will some number, N, of r-balls such that S can be covered by N r-balls but S 

cannot be covered by N-1 r-balls (in which case Mr(S) = N) or S will not need any r-

balls to cover it (in which case S is the empty set and Mr(S) = 0). So to show that 

Mr(S) is well defined, all I need to do is to show that for any r, the behaviour space 

can be covered by a finite number of r-balls. This is fairly difficult, but possible, to 

prove.15 

                                                 
15First, note two facts about human physiology. Human muscles take time to extend and contract. 

Moreover, there must be limits on how fast a given agent can extend or contract his muscles. Thus for 

any given muscle, muscle n, and any given initial muscle length, ln, there is a minimum length of time 

it takes to extend or contract this muscles from ln to ln*. Additionally, for any given interval of time, [t, 

t+δ], there is a maximum distance from ln beyond which the muscle cannot extend/contract in [t, t+δ] if 

it is at ln at t. So there exists S = sup {│f n(s) -ln│s є [t, t+δ], fn(t)= ln}. As the interval of time gets 

shorter, the maximum length of contraction gets shorter. In other words, we expect S to tend to zero as 

δ tends to zero. More than this we expect, S(ln) to tend uniformly to zero. So: 

 

(P1) For all r*>0, there exists some δn є {1/k n: kn є N} such that, for all ln є In, for all f є 

B (for all functions in the behaviour space) and for all t є [0,1]: 

fn(t) =ln → (for all s є [t, t+δn],│fn(s) -ln│< r*) 

 

In other words, given some real number r*, we can choose a small number, δn, such that if muscle n is 

at ln at some point in time, it will always be less than r* away from ln for an interval of δn around that 

time. 

Suppose we are given a positive real number, r. We need to show that the behaviour space can be 

covered by a finite number of r-balls. Let N be the number of muscles under the agent’s control. For 

each n є {1,2,3, … , N}, we will use the following method. Choose some Sn є N such that Sn ≥ (√ 

(mn
22N))/r where mn is the maximum extension of muscle n. Let r*= r/√2N. By (P1) we can then 

choose δn є {1/  kn: kn є N} such that, for all ln, for all f є B (for all functions in the behaviour space) 
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and for all t є [0,1]:  fn(t) = ln → (for all s є [t, t+δn], │fn(s) - ln│< r*).  Let SLn = {0, mn/Sn, 2mn/Sn, 

3mn/Sn, … , mn}. Let the set of selected time intervals, T = { [0,δn), [δn,2δn), [2δn, 3δn) , … , [(kn–

1)δn,1)}  We then have Sn x kn values in the set:  Gn= {fn(t)=c1Χ[0,δn) + c2Χ[δn,2δn) + c3Χ[2δn,3δn) + … + 

ckn-1Χ[(kn –1)δn,1) : ci є SLn}.   Χ[a,b) = 1 if a≤x<b and 0 otherwise.  

I will now show that given any function, f, in the behaviour space, there is some gnf in Gn such that dn 

(f,gn) < r2/N (where dn (f,g) =0∫ 1 (fn-gn)2dt) ) Given f є B, for each i є {0, … , kn–1},  let fni = fn(i δn). 

Choose cfni є SLn such that │fni - cfni│= min {│fni - ci│: ci є SLn}. 

Note that │fni - cfni│< mn/Sn. Then set   

gnf  = cfn0Χ[0,δn) + cfn1Χ[δn,2δn) + cfn3Χ[2δn,3δn) + … + cfn(kn-1)Χ[(kn –1)δn,1) 

           = ))1(,[

1

0
nini

kn

i
fnic δδ +

−

=

Χ∑   

  Set hnf  = ))1(,[

1

0
nini

kn

i
fni δδ +

−

=

Χ∑   

As d is a metric function, dn is also a metric function. Thus by the Triangle Inequality, dn(f,gnf) ≤ 

dn(f,hnf) + dn(hnf,gnf) . 

dn(f,hnf) = dthnfn f
2

1

0

)(∫ −  = dtfnifn
kn

i
nini

2
1

0

1

0
))1(,[ )(∫ ∑

−

=
+Χ− δδ  =  ∑ ∫

−

=

+

−
1

0

)1(
2))((

kn

i

ni

ni

dtfnitfn
δ

δ

 

But f є B, and fni = fn(i δn). So by choice of δn, for all s є [i δn, i δn +δn],│fn(s) - fni │< r*.   

Thus, dn (f, hnf) < ∑ ∫
−

=

+1

0

)1(
2*

kn

i

ni

ni

dtr
δ

δ

= nr
kn

i
δ2

1

0
*∑

−

=

 = kn δn r*2 . 

But  δn = 1/kn, so kn δn = 1.  So dn (f, hnf) < r*2  = (r/√2N) 2= r2/2N.  So dn (f, hnf) < r2/2N    

 

dn(hnf,gnf)  = dtgnhn ff
2

1

0

)(∫ −  = dtgnhn f

kn

i

ni

ni
f

2
1

0

)1(

)( −∑ ∫
−

=

+ δ

δ

 

= dtcnifni
kn

i

ni

ni
∑ ∫
−

=

+

−
1

0

)1(
2)(

δ

δ

  < dtSm
kn

i

ni

ni
nn∑ ∫

−

=

+1

0

)1(
2)/((

δ

δ

   (because │ fni - cfni │< mn/Sn.) 

=  nSm
kn

i
nn δ∑

−

=

1

0

2)/(  =  kn δn (mn/Sn )2  ≤ r2/2N   (because Sn  ≥  (√ (mn
22N))/r) > 0 
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So I have given a way of representing the members of the behaviour space, the 

possible movements of the agent’s body. Each possible movement is uniquely 

represented by a function from moments in the time period to an ordered list or N-

tuple, (f1(t), f2(t), f3(t), …, fn(t) , …, fN(t)). For each n, fn(t) is the difference between 

the original length of muscle n and its length at time t. Once the members of the 

behaviour space are represented in this way, we can make sense of the thought that 

one subset of the behaviour space is bigger than another. I used a metric function, 

d(f,g), to represent the ‘distance’ between any two members of the behaviour space, f 

and g. This allowed me to define r-balls, which are like ‘circles’ of radius, r. Subset, 

S1, is bigger than S2 if and only if, for any small enough r, more r-balls are needed to 

cover S1 than S2.  

We now need to show that our method of comparing areas of the behaviour 

space gives results that match our intuitions. In the Stayback example given above, 

                                                                                                                                            
So dn (hnf, gnf)  < r2/2N.  So dn (f, gnf) ≤ dn (f, hnf) + dn (hnf, gnf) < r2/2N + r2/2N = r2/N 

So given any function f є B, for each n є {1,2,3,…, N}, we can find gnf in Gn such that dn (f, gnf) < r2/N.   

(where dn (f, g) =0∫ 1 (fn-gn)2dt) ). 

Let G = {g: gn є Gn for all n є {1,2,3,…, N} } The size of G, │G│= ПN
n=1 (SnKn)  - a finite number. 

For any f є B, let gf be the function such that (gf) (t) = (g1f (t), g2f (t), … ,  gNf (t))   for all t є [0,1] For 

any f є B, gf is a member of G.  d(f, gf) = ( ) 







−∑∫

=

N

n
dtgnfn

1

1

0

2 =  ( ) 







−∑∫

=

N

n
f dtgnfn

1

1

0

2
= 








∑
=

N

n
nfn gfd

1
),(    < Nr

N

n
/

1

2∑
=

 = r . So for all f є B, there is some gf in G such that d(f, gf) <r. 

So the set of r-balls:  {Br(g): g є G} covers B.  │G│ is finite, so │{Br(g): g є G}│ is finite. So B can 

be covered by a finite set of r-balls. 

So for any r>0 and any subset, S, of the behaviour space, S can be covered by a finite number of balls 

and Mr(S) is well-defined. 
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the Interpose subset was clearly much smaller than the Non-Interpose subset. Most of 

the ways Agent could have moved his body would not have involved Agent’s 

interposing the rock. Does our method of comparing subsets give the right result in 

cases like Stayback? 

4. Matching our intuitions 

We can show that one subset of the behaviour space is bigger than another using a 

method that is similar to Bennett’s ‘echo’ method. Bennett’s idea was to show that 

one subset was larger than another by matching up movements in one subset with 

‘echoes’ of equal size in the other. This method failed because there was no way of 

checking that the echo movement took up the same amount of space as the original. 

However, we know that an open r-ball in S1 will take up the same space as an open r-

ball in S2. If we can match r-balls in one subset with balls of equal dimension in the 

other subset, where no two balls overlap unless their counterparts do, we can give 

sense to Bennett’s idea of an ‘echo’.   

We match r-balls to r-balls using a rigid function. A function is rigid if it does 

not change the distance between two points. If F is a rigid function, then the distance 

between F(a) and F(b) will be the same as the distance between a and b. This means 

that a rigid function will map an r-ball to another r-ball. Suppose we can define a rigid 

function on S2. Then we will have matched S2 to a subset of S1, which we will call 

S2*. It can be proved quite easily that Mr(S2) = Mr(S2*). So S2 will be smaller than 

S1 if and only if S2* is smaller than S1. Thus we only need to show that S2* is a 

proper subset of S1, to show that S2 is smaller than S1.  

Any function that adds or subtracts the same value at time, t, from the same 

place in the n-tuple of every member of the behaviour space is a rigid function. So 
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long as we always add the same value at the same place and time in every member of 

the behaviour space, the distances will not change.16   

In Stayback, to interpose the rock Agent must kick the rock into the path of the 

vehicle.17 To do so, he must extend his leg to the rock. We can define a rigid function 

that takes every possible way he could kick the rock, to a possible movement that 

involves his extending his leg, but not quite far enough to kick the rock. We do this by 

decreasing the value at the places in the N-tuple that represents the extension of some 

of Agent’s leg muscles. This decrease in value ensures that Agent’s leg muscles are 

never extended enough for him to kick the rock. If we perform the same decreases in 

value to every member of an r-ball in Interpose, the distances between functions 

remain constant. By selecting the decreases in value appropriately we can ensure that 

the images of non-overlapping r-balls will not overlap.   

This gives a set of rigid functions from r-balls in Interpose to non-overlapping 

r-balls in Non-Interpose. For any reasonably small value of r, another r-ball will be 

needed to cover Non-Interpose―the ways Agent could extend his leg almost but not 

                                                 
16 Let F be a function on members of the behaviour space. Define F by F(f) = f+h where h is a function 

from [t1 , t2] → RN
 such that if f is a member of the behaviour space, f+h is a member of the behaviour 

space. Then given members of the behaviour space, f and g: 
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So F is a rigid function on the behaviour space. 

17 He might also push or pick up the rock. However, as he has only finitely many limbs and each of the 

ways he can interpose the rock involve touching the rock with a limb, we can repeat the process 

described below to find a finite number of rigid functions from Interpose to Non-interpose. 
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quite far enough to kick the rock take up nowhere near the whole of Non-Interpose. 

So our method implies that, in Stayback, most of the ways Agent could move would 

not have involved interposing the rock. This matches our intuitive judgement. Thus, 

my method allows us to compare the size of subsets of the behaviour space and gives 

results that match our intuitive judgements in cases such as Stayback. 

5. Conclusion 

Bennett’s original method for comparing subsets of the behaviour space is 

unsatisfactory: in an infinite behaviour space, Bennett’s method may lead to 

contradictory results; Bennett’s argument that the behaviour space is finite fails to 

take into account the fact that actions take place over intervals of time rather than in 

an instant. Nonetheless, an alternative method is available. It is possible to compare 

the size of different subsets of the behaviour space. We can make sense of ‘most of 

the ways an agent can move’ making some proposition true. This puts to rest a 

persistent worry about Bennett’s account of the distinction between positive and 

negative facts: it does make sense to say that a fact about an agent’s behaviour is 

positive if and only if most of the ways the agent could move would not make the 

associated proposition true. Bennett’s account thus remains one of the most promising 

attempts to analyse the act/omission distinction. 

 Bennett uses his analysis of the act/omission distinction to try to refute the 

claim that the act/omission distinction is morally significant (Bennett 1995, p. 139–

142). He states:  ‘The positive/negative distinction that I have defined obviously has 

no basic moral significance.’(Ibid, p.102) Unlike Bennett, I claim that the 

act/omission distinction is morally significant—although much work is required to 
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bring this moral significance to light.18 However, whether arguing that the 

act/omission distinction is morally significant or that it is not morally significant, 

getting clear on the nature of the distinction is an important part of the argument. 

Once we realise that we can sensibly speak about ‘most ways’ an agent could have 

moved, Bennett’s proposal is in a good position to play that part. 19 
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