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ABSTRACT 

The LIBOR Market Model has become one of the most popular models for pricing 

interest rate products. It is commonly believed that Monte-Carlo simulation is the only 

viable method available for the LIBOR Market Model. In this article, however, we 

propose a lattice approach to price interest rate products within the LIBOR Market 

Model by introducing a shifted forward measure and several novel fast drift 

approximation methods. This model should achieve the best performance without 

losing much accuracy. Moreover, the calibration is almost automatic and it is simple 

and easy to implement. Adding this model to the valuation toolkit is actually quite 

useful; especially for risk management or in the case there is a need for a quick 

turnaround. 
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The LIBOR Market Model (LMM) is an interest rate model based on evolving 

LIBOR market forward rates under a risk-neutral forward probability measure. In 

contrast to models that evolve the instantaneous short rates (e.g., Hull-White, Black-

Karasinski models) or instantaneous forward rates (e.g., Heath-Jarrow-Morton (HJM) 

model), which are not directly observable in the market, the objects modeled using 

the LMM are market observable quantities. The explicit modeling of market forward 

rates allows for a natural formula for interest rate option volatility that is consistent 

with the market practice of using the formula of Black for caps. It is generally 

considered to have more desirable theoretical calibration properties than short rate or 

instantaneous forward rate models. 

In general, it is believed that Monte Carlo simulation is the only viable numerical 

method available for the LMM (see Piterbarg [2003]). The Monte Carlo simulation is 

computationally expensive, slowly converging, and notoriously difficult to use for 

calculating sensitivities and hedges. Another notable weakness is its inability to 

determine how far the solution is from optimality in any given problem.  

In this paper, we propose a lattice approach within the LMM. The model has 

similar accuracy to the current pricing models in the market, but is much faster. Some 

other merits of the model are that calibration is almost automatic and the approach is 

less complex and easier to implement than other current approaches. 

We introduce a shifted forward measure that uses a variable substitution to 

shift the center of a forward rate distribution to zero. This ensures that the distribution 

is symmetric and can be represented by a relatively small number of discrete points. 

The shift transformation is the key to achieve high accuracy in relatively few discrete 

finite nodes. In addition, we present several fast and novel drift approximation 

approaches. Other concepts used in the model are probability distribution structure 

exploitation, numerical integration and the long jump technique (we only position 

nodes at times when decisions need to be made). 
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This model is actually quite useful for risk management because normally full-

revaluations of an entire portfolio under hundreds of thousands of different future 

scenarios are required for a short time window (see FinPricing (2011)). Without an 

efficient algorithm, one cannot properly capture and manage the risk exposed by the 

portfolio. 

The rest of this paper is organized as follows: The LMM is discussed in Section 

I. In Section II, the lattice model is elaborated. The calibration is presented in Section 

III. The numerical implementation is detailed in Section IV, which will enhance the 

reader’s understanding of the model and its practical implementation. The conclusions 

are provided in Section V. 

 

I. LIBOR MARKET MODEL 

Let ( , F , 
0ttF ,P ) be a filtered probability space satisfying the usual 

conditions, where   denotes a sample space, F  denotes a  -algebra, P  denotes a 

probability measure, and  
0ttF  denotes a filtration. Consider an increasing maturity 

structure NTTT = ...0 10  from which expiry-maturity pairs of dates ( 1−kT , kT ) for a 

family of spanning forward rates are taken. For any time 1− kTt , we define a right-

continuous mapping function )(tn  by )(1)( tntn TtT − . The simply compounded forward 

rate reset at t for forward period ( 1−kT , kT ) is defined by 
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where ),( TtP  denotes the time t price of a zero-coupon bond maturing at time T and 

),(: 1 kkk TT −=   is the accrual factor or day count fraction for period ( 1−kT , kT ). 

Inverting this relationship (1), we can express a zero coupon bond price in 

terms of forward rates as: 
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LIBOR Market Model Dynamics 

Consider a zero coupon bond numeraire ),( iTP •  whose maturity coincides with 

the maturity of the forward rate. The measure iQ  associated with ),( iTP •  is called iT  

forward measure. Terminal measure NQ  is a forward measure where the maturity of 

the bond numeraire ),( NTP •  matches the terminal date NT . 

For brevity, we discuss the one-factor LMM only. The one-factor LMM (Brace et 

al. [1997]) under forward measure iQ  can be expressed as  
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where tX   is a Brownian motion. 

There is no requirement for what kind of instantaneous volatility structure 

should be chosen during the life of the caplet. All that is required is (see Hull-White 

[2000]): 
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where k


 denotes the market Black caplet volatility and   denotes the strike. Given 

this equation, it is obviously not possible to uniquely pin down the instantaneous 

volatility function. In fact, this specification allows an infinite number of choices. People 

often assume that a forward rate has a piecewise constant instantaneous volatility. 
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Here we choose the forward rate )(tFk  has constant instantaneous volatility regardless 

of t (see Brigo-Mercurio [2006]). 

 

Shifted Forward Measure 

The )(tFk  is a Martingale or driftless under its own measure kQ . The solution 

to equation (3b) can be expressed as 
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where ),;0()0( 1 kkk TTFF −=  is the current (spot) forward rate. Under the volatility 

assumption described above, equation (5) can be further expressed as 
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Alternatively, we can reach the same Martingale conclusion by directly deriving the 

expectation of the forward rate (6); that is 
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where tX , tY  are both Brownian motions with a normal distribution (0, t) at time t, 

)|(:)( tt EE F•=•  is the expectation conditional on the tF , and the variable substitution 

used for derivation is 

ktt
tXY −=       (8) 

This variable substitution that ensures that the distribution is centered on zero and 

symmetry is the key to achieve high accuracy when we express the LMM in discrete 

finite form and use numerical integration to calculate the expectation. As a matter of 
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fact, without this linear transformation, a lattice method in the LMM either does not 

exist or introduces too much error for longer maturities. 

After applying this variable substitution (8), equation (6) can be expressed as 
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Since the LMM models the complete forward curve directly, it is essential to 

bring everything under a common measure. The terminal measure is a good choice for 

this purpose, although this is by no means the only choice. The forward rate dynamic 

under terminal measure NQ  is given by 
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The solution to equation (10) can be expressed as 
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where the drift is given by 
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where  )(1/)()( sFsFs jjjjj  +=  is the drift term. 

Applying (8) to (11a), we have the forward rate dynamic under the shifted 

terminal measure as 
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Drift Approximation 

Under terminal measure, the drifts of forward rate dynamics are state-

dependent, which gives rise to sufficiently complicated non-lognormal distributions. 
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This means that an explicit analytic solution to the forward rate stochastic differential 

equations cannot be obtained. Therefore, most work on the topic has focused on ways 

to approximate the drift, which is the fundamental trickiness in implementing the 

Market Model.  

Our model works backwards recursively from forward rate N down to forward 

rate k. The N-th forward rate )(tFN  without drift can be determined exactly. By the 

time it takes to calculate the k-th forward rate )(tFk , all forward rates from )(1 tFk+  to 

)(tFN  at time t are already known. Therefore, the drift calculation (11b) is to estimate 

the integrals containing forward rate dynamics )(sF j , for j=k+1,…,N, with known 

beginning and end points given by )0(jF  and )(tF j . For completeness, we list all 

possible solutions below. 

Frozen Drift (FD). Replace the random forward rates in the drift by their 

deterministic initial values, i.e., 
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Arithmetic Average of the Forward Rates (AAFR). Apply the midpoint rule 

(rectangle rule) to the random forward rates in the drift, i.e.,  
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Arithmetic Average of the Drift Terms (AADT). Apply the midpoint rule to 

the random drift terms, i.e.,  
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Geometric Average of the Forward Rates (GAFR). Replace the random 

forward rates in the drift by their geometric averages, i.e., 
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Geometric Average of the Drift Terms (GADT). Replace the random drift 

terms by their geometric averages, i.e., 
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Conditional Expectation of the Forward Rate (CEFR). In addition to the 

two endpoints, we can further enhance our estimate based on the dynamics of the 

forward rates. The forward rate )(sF j  follows the dynamic (9) (The drift term is 

ignored). We can derive the expectation of the forward rate conditional on the two 

endpoints and replace the random forward rate in the drift by the conditional 

expectation of the forward rate. 

Proposition 1. Assume the forward rate )(sF j  follows the dynamic (9), with 

the two known endpoints given by )0(jF  and )(tF j . Based on the conditional 

expectation of the forward rate )(sF j , the drift of )(tFk  can be expressed as 
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where the conditional expectation of the forward rate is given by 
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 Proof. See Appendix A. 

Conditional Expectation of the Drift Term (CEDT). Similarly, we can 

calculate the conditional expectation of the drift term and replace the random drift 

term by the conditional expectation. 
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Proposition 2. Assume the forward rate )(sF j  follows the dynamic (9), with 

the two known endpoints given by )0(jF  and )(tF j . Based on the conditional 

expectation of the drift term j , the drift of )(tFk  can be expressed as 
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where the conditional expectation of the drift term is given by 
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 Proof. See Appendix A. 

 The accuracy and performance of these drift approximation methods are 

discussed in section IV. 

 

II. THE LATTICE PROCEDURE IN THE LMM 

The “lattice” is the generic term for any graph we build for the pricing of 

financial products. Each lattice is a layered graph that attempts to transform a 

continuous-time and continuous-space underlying process into a discrete-time and 

discrete-space process, where the nodes at each level represent the possible values of 

the underlying process in that period.  

There are two primary types of lattices for pricing financial products: tree 

lattices and grid lattices (or rectangular lattices or Markov chain lattices). The tree 

lattices, e.g., traditional binomial tree, assume that the underlying process has two 
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possible outcomes at each stage. In contrast with the binomial tree lattice, the grid 

lattices (see Amin [1993], Gandhi-Hunt [1997], Martzoukos-Trigeorgis [2002], Hagan 

[2005], and Das [2011]) shown in Exhibit 1,  which permit the underlying process to 

change by multiple states, are built in a rectangular finite difference grid (not to be 

confused with finite difference numerical methods for solving partial differential 

equations). The grid lattices are more realistic and convenient for the implementation 

of a Markov chain solution.  

This article presents a grid lattice model for the LMM. To illustrate the lattice 

algorithm, we use a callable exotic as an example. Callable exotics are a class of 

interest rate derivatives that have Bermudan style provisions that allow for early 

exercise into various underlying interest rate products. In general, a callable exotic 

can be decomposed into an underlying instrument and an embedded Bermudan option.  

We will simplify some of the definitions of the universe of instruments we will 

be dealing with for brevity. Assume the payoff of a generic underlying instrument is a 

stream of payments  iiiii CTFZ −= − )( 1  for i=1,…,N, where iC  is the structured coupon. 

The callable exotic is a Bermudan style option to enter the underlying instrument on 

any of a sequence of notification dates 
ex

M

exex ttt ,...,, 21 . For any notification date ex

jtt = , we 

define a right-continuous mapping function )(tn  by 
)(1)( tntn TtT −
. If the option is 

exercised at t, the reduced price of the underlying instrument, from the structured 

coupon payer’s perspective, is given by 
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where the ratio )(
~

tI  is usually called the reduced value of the underlying instrument 

or the reduced exercise value or the reduced intrinsic value. 

Lattice approaches are ideal for pricing early exercise products, given their 

“backward-in-time” nature. Bermudan pricing is usually done by building a lattice to 
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carry out a dynamic programming calculation via backward induction and is standard. 

The lattice model described below also uses backward induction but exploits the 

Gaussian structure to gain extra efficiencies.  

First we need to create the lattice. The random process we are going to model 

in the lattice is the LMM (12). Unlike traditional trees, we only position nodes at the 

determination dates (the payment and exercise dates). At each determination date, 

the continuous-time stochastic equation (12) shall be discretized into a discrete-time 

scheme. Such discretized schemes basically convert the Brownian motion into discrete 

variables. There is no restriction on discretization schemes. At any determination date 

t, for instance, we discretize the Brownian motion  to be equally spaced as a grid of 

nodes tiy , , for i = 1,…, tS . The number of nodes tS  and the space between nodes 

titit yy ,1, −−=  at each determination date can vary depending on the length of time and 

the accuracy requirement. The nodes should cover a certain number of standard 

deviations of the Gaussian distribution to guarantee a certain level of accuracy.  We 

have the discrete form of the forward rate as 
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The zero-coupon bond (2) can be expressed in discrete form as 
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We now have expressions for the forward rate (21) and discount bond (22), conditional 

on being in the state tiy ,  at time t, and from these we can perform valuation for the 

underlying instrument.  

At the maturity date, the value of the underlying instrument is equal to the 

payoff, i.e., 

)(),( ,, NN TiNTiN yZyTI =      (23) 
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The underlying state process tX  in the LMM (11) is a Brownian motion. The 

transition probability density from state ( tix , , t ) to state ( Tjx , , T ) is given by 
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Applying the variable substitution (8), equation (24) can be expressed as 
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Equation (20) can be further expressed as a conditional value on any state ( tiy ,

, t ) as: 
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This is a convolution integral. Some fast integration algorithms, e.g., Cubic 

Spline Integration, Fast Fourier Transform (FFT), etc., can be used for optimization. 

We use the Trapezoidal Rule Integration in this paper for ease of illustration. 

Incomplete information handling. Convolution is widely used in Electrical 

Engineering, particularly in signal processing. The important part is that the far left 

and far right parts of the output are based on incomplete information. Any models that 

try to compute the transition values using integration will be inaccurate if this problem 

is not solved, especially for longer maturities and multiple exercise dates. Our solution 

is to extend the input nodes by padding the far end values on each side and only take 

the original range of the output nodes. 

Next, we determine the option values in each final notification node. On the 

last exercise date, if we have not already exercised, the reduced option value in any 

state Miy ,  is given by 
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Then, we conduct the backward induction process that is performed by 

iteratively rolling back a series of long jumps from the final exercise date ex

Mt  across 

notification dates and exercise opportunities until we reach the valuation date. Assume 

that in the previous rollback step ex

jt , we calculated the reduced option value: 

);,(/),( ,, jiN

ex

jji
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j yTtPytV . Now, we go to ex

jt 1−
. The reduced option value at ex

jt 1−
 is 
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where the reduced continuation value is given by 
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We repeat the rollback procedure and eventually work our way through the first 

exercise date. Then the present value of the Bermudan option is found by a final 

integration given by 
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
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



 +
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


   (29) 

The present value or the price of the callable exotic from the coupon payer’s 

perspective is: 

)0()0()0( _ instrumentunderlyBermudanpayer pvpvpv −=     (30) 

This framework can be used to price any interest rate products in the LMM 

setting and can be easily extended to the Swap Market Model (SMM). 

 

III. Calibration 
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First, if we choose the LMM as the central model, we need to price interest rate 

derivatives that depend on either or both of cap and swaption markets. Second, we 

will undoubtedly use various swaptions to hedge a callable exotic. It is a reasonable 

expectation that the calibrated model we intend to use to price our exotic, will at least 

correctly price the market instruments that we intend to hedge with. Therefore, in an 

exotic derivative pricing situation, recovery of both cap and swaption markets might 

be desired. 

The calibration of the LMM to caplet prices is quite straightforward. However, it 

is very difficult, if not impossible, to perfectly recover both cap and swaption markets. 

Fortunately for the LMM, there also exist extremely accurate approximate formulas for 

swaptions implied volatility, e.g., Rebonato's formula. 

We introduced a parameter   and set ii 


=  where i


 denotes the market 

Black caplet volatility. One can choose different   for different i
 . For simplicity we 

describe one   situation here. By choosing 1= , we have perfectly calibrated the LMM 

to the caplet prices in the market. However, our goal is to select a   to minimize the 

sum of the squared differences of the volatilities derived from the market and the 

volatilities implied by our model for both caps and swaptions combined. 

In the optimization, we use Rebonato’s formula for an efficient expression of 

the model swaption volatilities, given by 
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where ij
 =1 under one-factor LMM. The swap rate )0(

,
S  is given by 

 +=
=



 1, )0()0()0(
i ii FwS     (31b) 
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Assume the calibration containing   caplets and G swaptions. The error 

minimization is given by 
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   (32) 

where 
swn

Nj ,+
  denotes the market Black swaption volatility. The optimization can be 

found at a stationary point where the first derivative is zero; that is, 
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    (33) 

In terms of forward volatilities, we use the time-homogeneity assumption of 

the volatility structure, where a forward volatility for an option is the same or close to 

the spot volatility of the option with the same time to expiry. The time-homogeneous 

volatility structure can avoid non-stationary behavior. 

In the LMM, forward swap rates are generally not lognormal. Such deviation 

from the lognormal paradigm however turns out to be extremely small. Rebonato 

[1999] shows that the pricing errors of swaptions caused by the lognormal 

approximation are well within the market bid/ask spread. For most short maturity 

interest rate products, we can use the lattice model without calibration (33). However, 

for longer maturity or deeply in the money (ITM) or out of the money (OTM) exotics 

we may need to use the calibration and even some specific skew/smile adjustment 

techniques to achieve high accuracy. 

 

IV. NUMERICAL IMPLEMENTATION 

In this section, we will elaborate on more details of the implementation. We will 

start with a simple callable bond for the purpose of an easy illustration and then move 
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on to some typical callable exotics, e.g., callable capped floater swap and callable 

range accrual swap. The reader should be able to implement and replicate the model 

after reading this section. 

 

Callable Bond 

A callable bond is a bond with an option that allows the issuer to retain the 

privilege of redeeming the bond at some points before the bond reaches the maturity 

date. For ease of illustration, we choose a very simple callable bond with a one-year 

maturity, a quarterly payment frequency, a $100 principal amount (A), and a 4% 

annual coupon rate (the quarterly coupon 1=C ). The call dates are 6 months, 9 

months, and 12 months. The call price (H) is 100% of the principal. The bond spread 

(  ) is 0.002. Let the valuation date be 0. A detailed description of the callable bond 

and current (spot) market data is shown in Exhibit 2.  

For a short-term maturity callable bond, our lattice model can reach high 

accuracy even without calibration (33) and incomplete information handling. 

Therefore, we set 1=   and ii 


= . The valuation procedure for a callable bond 

consists of 4 steps: 

Step 1: Create the lattice. Based on the long jump technique, we position 

nodes only at the determination (payment/exercise) dates. The number of nodes and 

the space between nodes at each determination date may vary depending on the 

length of time and the accuracy requirement. To simplify the illustration, we choose 

the same settings across the lattice, with a grid space (space between nodes) 2/1=

, and a number of nodes S=7. It covers 3)1( =−S  standard deviations for a standard 

normal distribution. The nodes are equally spaced and symmetric, as shown in Exhibit 

3.  
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Step 2: Find the option value at each final node. At the final maturity date 4T

, the payoff of the callable bond in any state iy  is given by 

( )CAHyTVV ii +== ,min),(: 44,     (34) 

where A denotes the principal amount, C denotes the bond coupon, and H denotes the 

call price. The option values at the maturity are equal to the payoffs as shown in Exhibit 

3. 

Step 3: Find the option value at earlier nodes. Let us go to the penultimate 

notification date 3T . The option value in any state iy  is given by 

( )CVHyTVV c

iii +== 3,33, ,min),(:    (35) 

Equation (35) can be further expressed in the form of reduced value as 
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where );,(/ 433, i

C

i yTTPV  denotes the reduced continuation value in state iy  at 3T  given 

by 
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where   denotes the bond spread. Similarly we can compute the reduced callable bond 

values at 2T . All intermediate reduced values are shown in Exhibit 3. 

Step 4: Compute the final integration. The final integral at valuation date 0 is 

calculated as 



 17 

( )

( )

399.80
2

)(
exp

);,(

),(

2

)(
exp

);,(

),(

22

exp
),0(

2

)(
exp

);,(

),(

2

exp
),0()0(

2

2

221

142

12

7

2
2

2

22

42

2

2

2

4

2

2

22

42

2

2

2

4

=
















 +
−+

















 +
−

−
=








 +
−

−
=

−

−

−

=



T

Ty

yTTP

yTV

T

Ty

yTTP

yTV

T

T
TP

dY
T

TY

YTTP

YTV

T

T
TPV

j

j

j

j

j

j

j















 

(37) 

Moreover, we need to add the present value of the coupon at 1T  into the final 

price. The final callable bond value is given by 

398.81),0()exp()0()0( 11 =−+= CTPTVV     (38) 

The pseudo-code is supplied in Appendix B for the implementation program. 

The convergence results shown in Exhibit 4 indicate what occurs for a given grid space 

  when we increase the number of nodes S. The speed of convergence is very fast, 

ensuring that a small number of grids are sufficient. All calculations are converged to 

100.7518. One sanity check is that the callable bond price should be close to the 

straight bond price if the call prices become very high. Both of them are computed as 

103.3536. 

 

Callable capped floater swap 

A callable capped floater swap has two legs: a regular floating leg and a 

structured coupon leg. The structured coupon rate of the j-th period ( jj TT ,1− ) is given 

by 

}],),(max{min[ 1
F
j

C
jjjjjjjj KKTFAC −+=     (39) 

where jA  is the notional amount, C

j
K  is the rate cap, F

j
K  is the rate floor, j

  is the 

spread and j
  is the scale factor. For j

 > 0, it is called a callable capped floater swap. 

For j
 < 0, it is called a callable inverse floater swap. 
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We choose a real middle life trade with more than 10 years remaining in its 

lifetime. The floating leg has a quarterly payment frequency with step-down notionals 

and step-up spreads. The structured coupon leg has a semi-annually payment 

frequency with varying notionals, spreads, scales, rate caps, and rate floors. The call 

schedule is semi-annual. 

 

Callable range accrual swap 

A callable range accrual swap has two legs: a regular floating leg and a 

structured coupon leg. The structured coupon rate of the j-th period ( jj TT ,1− ) is given 

by 

 += −
= j
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jiiij

i
0

),;(1 maxmin 
   (40b) 

where R is the fixed rate, minjK  and maxjK  are the accrual range of the j-th period,  

),;( +iii tttF  is the LIBOR rate,   is the range accrual index term, jM  is the total 

number of the business days in the j-th period. 

 We choose a real 10 years maturity trade. The floating leg has a quarterly 

payment frequency and the structured coupon leg has a semi-annually payment 

frequency with varying accrual ranges. It starts with the first call opportunity being in 

3 years from inception, and then every year until the last possibility being 9 years from 

inception. The range accrual index term is 6 months. 

The lattice implementation procedure for a callable capped floater swap or a 

callable range accrual swap is quite similar to the one for a callable bond except the 

valuation for the underlying instrument. 
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The convergence diagrams of pricing calculations are shown in Exhibits 5 and 

6. Each curve in the diagrams represents the convergence behavior for a given grid 

space as nodes are increased. All of the lattice results are well converged. If the grid 

space is smaller, the algorithm has better convergence accuracy but a slower 

convergence rate, and vice verse. 

We benchmarked our model under different drift approximation methods with 

several standard market approaches, e.g., the regression-based Monte Carlo in the 

full LMM and the HJM trinomial tree. The model comparisons for the accuracy and 

speed are shown in Exhibits 7 and 8. With regards to accuracy, as expected, the FD 

performs very badly. AAFR and GAFR do a little better but errors go in different 

directions. The same conclusions can be drawn for AADT and GADT. Both CEFR and 

CEDT are the best. In terms of CPU times, FD, AAFR, AADT, GAFR and GADT are the 

same. But CEFR and CEDT are slower, especially in the callable range accrual swap 

case.  

  

V. CONCLUSION 

In this paper, we proposed a lattice model in the LMM to price interest rate 

products. Conclusions can be drawn, supported by the previous sections. First, the 

model is quite stable. The fast convergence behavior requires fewer discretization 

nodes. Second, this model has almost equivalent accuracy to the current pricing 

models in the market. Third, the implementation of the model is relatively easy. The 

calibration is very simple and straightforward. Finally, the performance of the model 

is probably the best among all known approaches at the time of writing. 

We use the following techniques in our model: shifted forward measure, drift 

approximation, probability distribution structure exploitation, long jump, numerical 

integration, incomplete information handling, and calibration. Combining these 



 20 

techniques, the model achieves sufficient accuracy in relatively few time steps and 

discrete nodes, which makes it a very efficient method. 

For ease of illustration, we present the lattice model based on the Trapezoidal 

Rule integration. A better but slightly more complicated solution is to spline the payoff 

functions. The cubic spline of the option payoffs can achieve higher accuracy, 

especially for Greeks calculations, and higher speed. Although cubic spline takes some 

time, the lattice will require much fewer nodes (23 ~ 28 nodes are good enough) and 

can perform a much faster integration. In general, the spline method can provide a 

speedup factor around 3 ~ 5 times. 

We have implemented the lattice model to price a variety of interest rate 

exotics. The algorithm can always achieve a fast convergence rate. The accuracy, 

however, is a bit trickier, depending on many factors: drift approximation approaches, 

numerical integration schemes, volatility selections, and calibration, etc. Some work, 

such as calibration, is more of an art than a science. 
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APPENDIX A:  

Proof of Proposition 1. We rewrite (9) as  
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In the general Brownian Bridge case when the Wiener process )(tY  has )(
1

tY =a and 

)(
2

tY =b, the distribution of )(tY  at time ),(
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ttt  is normal given by  
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In our case: 01 =t , tt =2 , a=0, b= )(tY , ),0( ts , thus (A2) can be expressed as 
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Let 2/)()( 2ssYsA jjj  += . According to the linear transformation rule, )(sA j  is a 

normal given by  
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Let ( ))(exp)( sAsB jj = . By definition, )(sB j  is a lognormal given by  

( ))(),(~)( ssLogNsB AjAjj  . According to the characterizations of the lognormal 

distribution, the mean and variance of )(sB j  are 
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We have the conditional expectation of the forward rate )(sF
j  as  
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 Proof of Proposition 2. Let )()0(1)(1)( sBFsFsC jjjjjj  +=+=  where )(sB j  is 

defined above. According to the linear transformation rule,  )(sC j  is a lognormal given 

by ( ))(),(~)( svsLogNsC j


 . The mean and variance of )(sC j  are 
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On the other hand, according to the characterizations of the lognormal 

distribution, the mean and variance of )(sC j  are 
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Solving the equation (A8a) and (A8b), we get 
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We know the first negative moment of the lognormal is ( ) ( )2/)()(exp)(1 sssCE j 
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and have the conditional expectation of the drift term as 
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where )(sCj , )(sCj  are given by (A7a) and (A7b). 
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APPENDIX B:  

The following pseudo-code (C++) demonstrates how to implement the model 

to price a callable bond. For the purpose of an easy illustration, we choose the same 

settings (the number of nodes and the grid space) across the lattice and use the 

Trapezoidal Rule for numerical integration.  

 

// 2*numNodes = 2*mNumNodes = the number of nodes (S); gap = mGap = the grid space (Phi) 
double priceCallableBond (BondTrade* bd, CallableBond* cb, int numNodes, double gap) { 
       double pv; 
       cb->fillLattice(); 
 
       // The last exercise 
       CallSchedule& cs = bd->callSch[numCallSch-1]; 
       if (cs.term == bd->cFlow[numCashFlow-1].endDate) // The last exercise is at maturity 
 for (int i= -numNodes; i <= numNodes; i++) 
         cs.reducedValue[i+numNodes] = min (cs.callPrice,  

    bd->cFlow[numCashFlow-1].reducedPayoff[i+numNodes]); 
       else { // The last exercise is before maturity 
 for (int i= -numNodes; i <= numNodes; i++) { 
         pv = 0; 
         for (int j = bd->numCF-1; (bd->cFlow[j].endDate >= cs.term) && (j >= 0); j--) { 
  CashFlow& cf = bd->cFlow[j]; 
  (cf.endDate == cs.term) ? pv += cf.reducedPayoff[i+numNodes]  

           : pv += exp(-bondSpread*(cf.endDate-cs.term)) * cb->integral(i,  
         cs.vol, cf.vol, cf.endDate, cs.term, cf.reducedPayoff); 

         } 
        cs.reducedValue[i+numNodes] = min (cs.callPrice/cs.df[i+numNodes], pv); 
 } 
       } 
 
       if (numCallSch > 1) {  // The remaining  exercises 
 for (int i = numCallSch - 2; i>=0; i--) { 
        CallSchedule& cs = bd->callSch[i]; 
        CallSchedule& preCs = bd->callSch[i+1]; 
        for (int j = -numNodes; j <= numNodes; j++) { 
  pv = exp(-bondSpread * (preCs.term - cs.term))  
          * cb->integral (j, cs.vol, preCs.vol, preCs.term, cs.term, preCs.reducedValue); 
  for (int k=bd->numCF-1; k >= 0; k--)  // Count intermediate coupons 
         if ((bd->cFlow[k].endDate < preCs.term) && (bd->cFlow[k].endDate >= cs.term)) 
   pv += bd->cFlow[k].reducedPayoff[j+numNodes]  
             * exp (-bondSpread*(bd->cFlow[k].endDate - cs.term)); 
  cs.reducedValue[j+numNodes] = min (cs.callPrice/cs.df[j+numNodes], pv); 
        } 
 } 
       } 
 
       // The final integral 
      CallSchedule& preCs = bd->callSch[0]; 
      pv = cb->integral (0, 0, preCs.vol, preCs.term, 0, preCs.reducedValue) *exp(-bondSpread*(preCs.term)); 
      pv *= bd->cFlow[bd->numCF-1].endDf;  // endDf: discount factor from 0 to the end date 
      for (int k=bd->numCF-1; k >= 0; k--)  // Count intermediate coupons 



 25 

 if ((bd->cFlow[k].endDate < preCs.term)) 
          pv += bd->cFlow[k].coupon * bd->cFlow[k].endDf * exp(-bondSpread * bd->cFlow[k].endDate); 
     return pv; 
} 
 
void CallableBond::fillLattice() { 
      for (int i = mTrade->numCF-1; i>=0; i--) { 
 CashFlow& cf = mTrade->cFlow[i]; 
 if (cf.endDate < mTrade->callSch[0].term)   break; 
 for (int j = -mNumNodes; j <= mNumNodes; j++)  
         fillNode(i, j, cf.startDate, mDrift); 
      } 
} 
 
void CallableBond::fillNode(int cI, int nI, double vT, DriftAppx flag) { 
      int numCF = mTrade->numCF; 
      double avgF, expon, fwdt, drift = 0; 
      CashFlow& fl = mTrade->cFlow[cI]; 
      if (cI == numCF-1) { // At maturity 
 fl.df[nI + mNumNodes] = 1.0;   
 fl.reducedPayoff[nI + mNumNodes] = fl.notional + fl.coupon; 
      } 
      else if (fl.startDate <= 0) // Starting before valuation date) 
 fl.reducedPayoff[nI + mNumNodes] = fl.coupon * fl.endDf / mTrade->cFlow[numCF-1].endDf;  
      else { 
 fl.df[nI + mNumNodes] = 1.0; 
 for (int i = numCF - 1; i > cI; i--) { 
        CashFlow& cf = mTrade->cFlow[i]; 
         expon = (cf.vol * cf.vol * vT / 2) + cf.vol * nI * mGap; 
         fwdt = cf.fwd0 * exp(-drift + expon); 
        switch (flag) {  // The other cases are similar to either AAFR or CEFR 
        case AAFR:  // Arithemic Average Fwd Rate 
  avgF = 0.5 * (cf.fwd0 + fwdt); 
  drift += vT * fl.vol * cf.vol * cf.delta * avgF / (1 + cf.delta * avgF); 
  break; 
        case CEFR:  // Conditional Expectation of Fwd Rate 
  drift += fl.vol * cf.vol * integralFwd(cf.fwd0, fwdt, 0, vT, cf.vol, cf.delta); 
  break; 
       default: 
  break; 
        } 
        fl.df[nI + mNumNodes] /= (1 + fwdt * cf.delta);  // df: discount factor maturing at maturity 
 } 
 fl.reducedPayoff[nI + mNumNodes] = fl.coupon / fl.df[nI + mNumNodes]; 
       } 
} 
 
// Gauss-Legendre integration for drift 
const double xArray[] = {0, 0.1488743389, 0.4333953941, 0.6794095682, 0.8650633666, 0.9739065285}; 
const double wArray[] = {0, 0.2955242247, 0.2692667193, 0.2190863625, 0.1494513491, 0.0666713443}; 
double CallableBond::integralFwd(double F0, double Ft, double a, double b, double vol, double delta) {   
       double xm = 0.5 * (b + a); 
       double xr = 0.5 * (b - a); 
       double ss = 0, dx = 0; 
       for (int j = 1; j <= 5; j++) { 
        dx = xr * xArray[j]; 
         ss += wArray[j] * (expectFwd(F0, Ft, (xm + dx), b, vol, delta)  

         + expectFwd(F0, Ft, (xm - dx), b, vol, delta)); 
      } 
      return ss * xr; 
} 
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double CallableBond::expectFwd(double F0, double Ft, double s, double t, double vol, double delta) { 
      double mean = F0 * pow ((Ft / F0), (s / t)) * exp(0.5 * vol * vol * s * (t - s) / t); 
      return delta * mean / (1 + delta * mean);- 
} 
 
// Trapezoidal Rule Integration 
double CallableBond::integral (int curPos, double curVol, double preVol, double preTerm,  

      double curTerm, double* value){ 
       double diffPos, tmpV, sum = 0; 
       for (int k = -mNumNodes; k <= mNumNodes; k++) { 
 diffPos = k*mGap - curPos*mGap + preVol * preTerm - curVol * curTerm; 
 tmpV = value[k+mNumNodes] * exp (-diffPos * diffPos/(2*(preTerm - curTerm))); 
 ((k == -mNumNodes) || (k == mNumNodes)) ? sum += 0.5 * tmpV : sum += tmpV; 
       } 
       return sum * mGap / sqrt(2 * PI * (preTerm - curTerm)); 
} 

 

EXHIBIT 1. The Grid/Rectangular Lattice 

This exhibit defines the state space for the underlying process tY  over the first two discrete time 

periods. The starting state 0y  at valuation date 0 is the single root of the lattice. At each date 

it  the underlying process 
it

Y  is discretized into a number of vertical nodes/states indexed by j. 

The value 
itjy ,  denotes the underlying process in state j at date it . The node 

1,1 ty , for instance, 

can evolve to any discrete state in 2t  with certain transition probabilities. For a Brownian motion, 

the transition probability can be easily determined by (25). 

 

 

EXHIBIT 2: The Callable Bond and Associated Spot Market Data 
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The callable bond has a one-year maturity, a $100 principal, a quarterly payment frequency, 

and a 4% annual coupon rate. Delta = (end date – start date)/365 (day count: ACT/365). The 

discount bond ),0( iTP  matures at the end date iT . The call dates are 6, 9, and 12 months. 

Cash flow index 1 2 3 4 

Start date (days) 0 92 181 273 

End date (days) 92 ( 1T ) 181 ( 2T ) 273 ( 3T ) 365 ( 4T ) 

Delta (years) 0.252055 0.243836 0.252055 0.252055 

Payoff ($) 1 1 1 101 

Call Schedule (days) - 181 273 365 

Discount bond ),0( iTP  0.999313 0.998557 0.997293 0.995667 

Black Volatility i


 - 0.337631 0.344218 0.350878 

 

EXHIBIT 3: The LMM Lattice Structure of the Callable Bond.  

The callable bond is defined in Exhibit 2. ),(
~

:
~

, ijji yTVV =  denotes the reduced value of the callable 

bond at any node (i, j). 1V  denotes the coupon at 1T . )0(V  is the value calculated by the final 

integration. )0(V  is the final callable bond value that is equal to )0(V  plus the present value of 

1V . The grid space is 5.0=  and the number of nodes is 7=S . This lattice has 3 steps and 7 

nodes. 
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EXHIBIT 4: The Convergence Results for the Callable Bond.  

The callable bond is defined in Exhibit 2. 1=  and drift approximation is AADT. Each curve 

represents the convergence behavior for a given grid space (phi) as nodes are added. All 

calculations are converged to 100.7518. 

.  

 

EXHIBIT 5: The Convergence Results for the Callable Capped Floater Swap 

The callable capped floater swap has more than 10 years remaining in its lifetime. The floating 

leg has a quarterly payment frequency. The structural leg has a semi-annually payment 

frequency. The call schedule is semi-annual. =1 and drift approximation is CEDT. Each curve 

represents the convergence behavior for a given grid space (phi) as nodes (N) are added. 
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EXHIBIT 6: The Convergence Results for the Callable Range Accrual Swap 

The callable range accrual swap has 10 years maturity. The floating leg has a quarterly payment 

frequency. The structural leg has a semi-annually payment frequency. There are 7 call 

opportunities.  =1 and drift approximation is CEDT. Each curve represents the convergence 

behavior for a given grid space (phi) as nodes are added. 

 

 

EXHIBIT 7: The Benchmark Results for the Callable Capped Floater Swap 
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This exhibit presents the results for model comparison. We benchmark the lattice model under 

different drift approximation methods with several standard market approaches, e.g., the 

regression-based Monte Carlo in the full LMM and the HJM trinomial tree, for both accuracy and 

speed. The trade is the same as the one in Exhibit 5. The grid space is  =1/8 and the number 

of nodes is S=200. PC denotes Predictor-Corrector. The column ‘Dif from MC’ = 1 – (current row 

price) / (price of MC in LMM). All computational times are denoted in seconds on a computer 

with a 2.33 GHz Duo Core CPU.  

Model   Drift Steps n Calls Nodes/Paths Price Err from MC Run time 

MC in LMM - PC 40 20 1 million 4,546,863.3 0 290.32 

HJM tri-tree - - 1979 20 2n+1 4,602,136.3 1.22% 15.01 

Our Model 
 

1 FD 40 20 200 4,822,728.4 6.07% 0.32 

1 AAFR 40 20 200 4,637,263.2 1.99% 0.32 

1 AADT 40 20 200 4,637,718.1 2.00% 0.32 

1 GAFR 40 20 200 4,698,215.6 3.33% 0.32 

1 GADT 40 20 200 4,698,441.3 3.33% 0.32 

1 CEFR 40 20 200 4,665,210.3 2.60% 0.38 

1 CEDT 40 20 200 4,665,552.4 2.61% 0.39 

0.99 FD 40 20 200 4,708,768.9 3.56% 0.32 

0.99 AAFR 40 20 200 4,504,989.2 -0.92% 0.32 

0.99 AADT 40 20 200 4,505,426.3 -0.91% 0.32 

0.99 GAFR 40 20 200 4,609,779.5 1.38% 0.32 

0.99 GADT 40 20 200 4,609,996.6 1.39% 0.32 

0.99 CEFR 40 20 200 4,563,689.2 0.37% 0.38 

0.99 CEDT 40 20 200 4,563,730.9 0.37% 0.39 

 

 

EXHIBIT 8: The Benchmark Results for the Callable Range Accrual Swap 

This exhibit presents the results for model comparison. We benchmark the lattice model under 

different drift approximation methods with several standard market approaches, e.g., the 

regression-based Monte Carlo in the full LMM and the HJM trinomial tree, for both accuracy and 

speed. The trade is the same as the one in Exhibit 6. The grid space is  =1/8 and the number 

of nodes is S=200. The column ‘Dif from MC’ = 1 – (current row price) / (price of MC in LMM). 

All computational times are denoted in seconds on a computer with a 2.33 GHz Duo Core CPU.  

Model   Drift Steps n Calls Nodes/Paths Price Dif from MC Run time 

MC in LMM - Euler 1801 7 1 million 585793.2 0.00% 2372.21 

HJM tri-tree - - 1801 7 2n+1 582167.8 -0.62% 15.62 
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Our Model 

1 FD 1801 7 200 648365.4 10.68% 0.21 

1 AAFR 1801 7 200 602482.2 2.85% 0.21 

1 AADT 1801 7 200 602742.1 2.89% 0.21 

1 GAFR 1801 7 200 616318.6 5.21% 0.21 

1 GADT 1801 7 200 616425.3 5.23% 0.21 

1 CEFR 1801 7 200 598253.3 2.13% 2.21 

1 CEDT 1801 7 200 598372.4 2.15% 2.35 

0.99 FD 1801 7 200 609373.9 4.03% 0.21 

0.99 AAFR 1801 7 200 579337.2 -1.10% 0.21 

0.99 AADT 1801 7 200 579386.3 -1.09% 0.21 

0.99 GAFR 1801 7 200 591981.5 1.06% 0.21 

0.99 GADT 1801 7 200 591917.6 1.05% 0.21 

0.99 CEFR 1801 7 200 588918.9 0.53% 2.21 

0.99 CEDT 1801 7 200 588935.7 0.54% 2.35 

 

 
 


