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ABSTRACT 

This article proposes a term structure model for dual-currency interest rate markets. The 

model assumes that volatility is a deterministic function of time alone. This volatility 

structure can reduce the dimension of the required state variables. An important special case 

is presented, which corresponds essentially to a Vasicek/Hull-White yield curve model in 

each currency. The model is very useful for pricing cross-currency derivatives. 
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An interest rate reflects the cost of borrowing or the reward of saving. Interest rate curve is 

the plot of maturities and associated interest rates that illustrates future interest rates in a 

clear and concise way. Interest rate curve is also called the term structure of interest rates.  

 

Interest rate plays critical roles in finance and economy. It affects everyone and every 

business. One factor model is mathematically tractable, but may be insufficient to capture all 

dynamics of interest rate curve movements. As such, multi factor models of interest rates 

arise to have a better explanation of interest rate evolutions. A multi factor model assumes 

the movement of interest rates is determined by multiple state variables. 

 

The most important contracts for calibrating interest rate term structure models are caplets 

and swaptions. To get a fast and stable model calibration, it is important to have closed from 

or semi-closed form approximation for their values. 

 

A Cross Currency European Swaption is a European Swaption to enter into a swap to 

exchange cash flows in two different currencies. The underlying cross-currency swap can be 

fixed-to-fixed, fixed-to-floating and floating-to-floating types with possible floating spread 

and principal exchanges which may happen at the beginning of the swap or at the end of the 

swap or at both the beginning and the end. 

 

There is a rich literature on interest rate modelling. The first analysis is one factor models, 

such as Vasicek (1977), and Cox, al et. (1985). These models assume that the movement of 

an interest rate curve is determined by a single state variable. This state variable is usually 

called the short rate that follows a stochastic diffusion process. 
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Medova al et. (2006) study interest rate data by using a three-factor interest rate curve model 

and the Kalman filter. The model captures the salient features of the whole term structure in 

forward simulation. 

 

Yu and Ning (2019) propose an interest rate model by means of uncertain differential 

equations with jumps and derive a closed form price for zero-coupon bond. Verschuren 

(2019) develops a coherent framework on how to best incorporate negative interest rates in 

these studies through a single curve stochastic term structure model.  

 

Kikuchi (2024) presents a new quadratic Gaussian short rate model with a stochastic lower 

bound to capture changes in the yield curve including negative interest rates. Akram (2020) 

presents a long-term interest rate model to reflect the central bank’s actions influence the 

long-term interest rate primarily through the short-term interest rate. 

 

Hansen (2023) presents a term structure model for no-arbitrage bond yields and realized 

bond market volatility and shows that conditional yield curve covariation is priced in long-

term yields. 

 

Levrero and Matteo [2019] study the relationship between short- and long-term interest rates 

and outline an asymmetry in the relationship. Bauer and Hamilton (2019) conclude that 

conventional tests of whether variables other than the level, slope and curvature can help 

predict bond returns have significant size distortions. Engel studies the relationship between 

interest rates, foreign exchanges, and risk premium. 
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This article presents a new interest rate model for cross-currency fixed income derivatives.  The 

model has the property that all volatility is a deterministic function of time alone. In general, a 

deterministic volatility structure leads to a model such that if the underlying Brownian motion 

driving all uncertainty in both economies is of one dimension, then in general three-dimensional state 

variables are required to completely characterize the yield curve and exchange rate dynamics. 

 

The analytic tractability of the constant correlation of the separable deterministic volatility (SDV) 

model provide closed form formulas for these values as functions of the yield curves and exchange 

rate. 

 

By a further judicious choice of volatility structure, one can reduce the dimension of the required 

state variable.  An important special case for applications is presented in which only three state 

variables are required.  This case corresponds essentially to a Vasicek/Hull-White yield curve model 

in each currency.  In this particular case, a general framework for European contingent claim 

valuation is also worked out. 

 

The model concentrates on the evolution of the instantaneous forward rate. We will summarise some 

standard results and introduce a number of financial variables and concepts such as changes of 

numeraire. 

 

The equations describing the dynamics involve a stochastic term which includes a multi-dimensional 

correlated Brownian motion. When calculating expected values of this Brownian motion it is 

necessary to specify a probability space and filtration to which the Brownian motion is adapted. 
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The rest of this paper is organized as follows: The model is presented in Section 1; Section 2 

studies the relationship with other well-known models. Section 3 elaborates calibration.  

Numerical results are discussed in Section 4; the conclusions are given in Section 5.  

 

1. Model 

 

This section presents a general framework for multi-currency models of interest rate 

dynamics.  Let: 
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Fix a time horizon H , and choose as numeraire d

H

d

Ht

d

t PPN ,0,= ; we assume the existence of 

a probability measure dQ  (the domestic H -forward measure) with respect to which all cum-

dividend tN -relative security prices are martingales.  It is also assumed that the information 

filtration tF  is generated by a D -dimensional Brownian motion d

tZ . 

 

Suppressing the superscript denoting the currency for simplicity, we suppose as given the 

following stochastic differential equation (SDE) for the instantaneous forward rate ),( wuf  

of maturity w  at time u : 
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The short rate may be shown to satisfy 
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The domestic bond price is given by 
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The foreign bond price is given by 
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Finally, the spot exchange rate is 
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The separable deterministic volatility (SDV) model, like all multi-currency interest rate 

models, is characterized by its volatility structure.  The SDV model has a volatility structure 

of the following form: 
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In this setting, the functions ( )Htth ,;,0  , ( )Httq ,;,0  . and ( )HtthS ;,0
 are deterministic, 

and one obtains the zero-coupon bond price and exchange rate processes: 

 

The dynamics in this model are thus represented by the following three-dimensional 

stochastic processes: 
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These processes are jointly normally distributed with mean 0 and a covariance matrix that 

may be readily computed.  This is done in detail in a special case of the model in the next 

section. 
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In this section, we present what is in some sense the minimal SDV dual-currency model.  We 

will see that this model captures domestic curve risk, foreign curve risk, and FX risk while 

employing three factors, the minimal number required in order to do so.  This particular 

parametrization of the SDV model is particularly convenient for applications. 

 

Put 3=D .  Let 
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be a positive definite correlation matrix with constant entries.  Let ( )ij=  be any 33 

matrix such that R=tr .  The subscripts in   are from the ordered set  Sfd ,, .  Put 

d

tt ZW = ; W  is a correlated dQ -Brownian motion with quadratic variation tWW ijtji =, . 

 

The volatility structure is defined as follows:  Let x , y , and S  be positive deterministic 

real-valued functions.  In the notation of the previous section, put 
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These processes are jointly normally distributed with mean zero and covariance matrix 

),( 0 ttC  which will be explicitly determined below.  For the moment, the introduction of 

these processes allows one to write more compactly as follows: 
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In the next section, this is rendered completely explicit, by building a formalism which 

allows for an efficient expression of ( )Htth ,;,0  , ( )Httq ,;,0   and ( )HtthS ;,0
, as well as 

the covariance matrix of the state vector ( )S

t

f

t

d

tt AAAA ,,= . This will completely characterize 

the market dynamics in terms of the state variable A . The formalism introduced will also be 

of value in other contexts, e.g. parameter estimation for the model, and in the valuation of 

options on foreign exchange. 
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Valuation of the fixed coupon notes is obvious.  To value the four floating notes, one 

requires the following: 
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The analytic tractability of the constant correlation SDV model provides closed-form 

formulas for these values as functions of the yield curves and exchange rate at time t .   

 

To value a contingent claim on a portfolio of notes of the type defined in section 6.1, observe 

that, via the formulas above for the # , the value of such a portfolio at time Ht =  is an 

explicit deterministic function of the two zero coupon curves and exchange rate at time .H   

In turn, this means that the portfolio value is an explicit deterministic function   of the 

normally distributed state variable HA .  The option value is then of the form ( ) H

Qd

H AEP
d
H ,0

; this expectation may be evaluated numerically. 
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. 

2. Connection to Short Rate Model 

 

In this section, we show that the short rate model in each currency in the SDV constant 

correlation model is Vasicek/Hull-White.  We suppress the currency superscript for ease of 

notation. 

 

In this setting, the volatility   of the instantaneous forward rate is given by 

 

)()(),( tyuxtu =    (13) 

 

Recall that the short rate dynamics are given by the SDE 
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in which ( )HuYuxHuuHu ,)(),,(, −== .  We can rewrite this in the present context as 

follows:  Put 
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uuu dWuyuxdudr )()(+=     (16) 

 

We therefore can simplify the expression for  : 
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Then the SDE for the short rate may be rewritten as 

 

uuu dWuyuxdur
uy

uy
Hutdr )()(

)(

)(
),,( 0 +







 
+=  .  (18) 

 

Thus one sees that this is Vasicek/Hull-White with mean reversion 
)(
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rate absolute volatility )()()( uyuxu = . 

 

3. Calibration 

 

In this particular model, parameter estimation consists in estimating the following quantities: 

1) the interest rate volatility structure functions )(sx  and )(uy  for fd ,= ; 2) the foreign 

exchange volatility function )(uS ; 3) the correlation coefficients 
df , dS , and 

fS . 
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The interest rate volatility functions may be estimated as in a single currency calibration 

problem.  Typically, this is done by some sort of least squares error minimisation between 

model and market prices for liquid caps or swaptions, depending on the application to the 

derivative to be priced. 

 

Estimating FX volatility and correlation is a bit more problematic.  First, the FX volatility is 

not the Black-Scholes implied volatility.  Indeed, the SDV model can be used to compute 

prices of FX options, and these model prices take into account interest rate risk (i.e., depend 

also upon )(sx  and )(uy ), unlike Black-Scholes and its variants. 

 

More problematic are the correlation coefficients.  A priori, these are the correlations 

between the Brownian motions driving the evolution of the zero-coupon curves and 

exchange rate.  Some method of relating these to observed quantities is required.  Another 

problem is the assumption of constant correlation.  However, correlation is estimated, it will 

almost surely be at least term-dependent, and so some sensible method of arriving at a single 

number must be devised. 

 

In this section, we present an approach that proceeds using historical data to estimate 

correlation.  Essentially, historical data is used to estimate the correlation coefficients, and 

then the FX volatility is adjusted to match FX option prices. 

 

Fix a time horizon t  and a maturity m , and put for convenience ttt += 0 .  Let ( )MsR ,
 

denote the continuously compounded zero coupon rate of maturity M  observed at time s  

(i.e., maturity is at “calendar time” Ms + ).   
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We have explicitly included the dependence on maturity; this will be removed later.  

On the other hand, 
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In practise, t  should be chosen to be small, e.g. 1 day.  Since 
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it is convenient then to take the approximation )(~)( mm dfdf  = . 
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Put 
00

logloglog ttt SSS −= +
.  Let )(~ mS  be the sample correlation coefficient between 

the change in zero coupon rates R  and Slog .  From the model, 
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Using (22) or (23), one obtains 
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where fd =ˆ  and df =ˆ .  One can show that 
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It is therefore convenient to take the approximation )(~)( mm SS  =  . 

 

4. Numerical Results 
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The model volatility parameters are calibrated from returns of the zero rates. They obtain the 

variance of absolute returns on zero rates and try to match them by finding the best matching 

parameter values in the sense of least square. We use the parameters calibrated by the model 

to simulate the interest rate curves at given time buckets.  The initial interest rate curve used 

for calibration is given below. 

 

Table 1: Initial Interest Rate Curve 

 

 

We first check the expected value of bond prices at each time bucket. Since drift parameters 

are piecewise constant and other parameters are constant, we can obtain analytic (closed) 

form of expected bond values at each time and at each maturity.  

 

We want to maintain positive mean reversion speeds a and b while calibrating the parameters 

in order to keep the mean reversion feature in the model. We may tolerate one of mean 

reversion speeds to become negative. If this happens, we need to make sure that it remains 

small (-0.3 as a bound).  
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However, we need to be cautious if the mean reversion values are large. Any value bigger 

than four may not be desirable. We also want the correlation to be negative, but not at 

negative one. If the “naive" calibration results yield the correlation of negative one, we may 

manually set a parameter to another value so that we can insist on the flexibility of the two-

factor model. 

 

One characteristic of interest rate implied volatility surface is that the implied vol usually 

peaks at time to maturity about 18 months. The model will not be able to accommodate this 

feature since it’s convex. However, the value reconciliation will scale it up. The following 

graphs are based on observed market implied volatility. 

 

Figure 1: Market Implied Volatility 
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The plots to follow, beyond displaying the resulting simulated shape produced by the model, 

stress the flexibility that the model possesses due to the various calibrations proposed.  

 

Figure 2: Simulation Results 
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5. Conclusion 

 

This article presents an interest rate model for cross currency markets. All equations use the 

cash account as the numeraire. There are situations when another choice of numeraire can 

simplify calculations or add stability to numerical methods. We document some common 

alternatives and will note the choice of numeraire and induced measure explicitly. 

 

All the results have been for a general forward rate volatility function. We also choose a 

specific form of the volatility that leads to a Markov, affine interest rate model. The model 

establishes a general result for the drift of the forward rate required to ensure an interest rate 

model is arbitrage free. 

 

Furthermore, we formulate the multi-factor gaussian interest rate model as a multi 

dimensional partial differential equation. We also examine valuation of European style (see 

https://finpricing.com/lib/EqWarrant.html) contingent claims.  The claims which shall be the 

focus of our attention have the property that they are options to exchange a portfolio of 

domestic notes for a portfolio of foreign notes or vice-versa, in which each note payment is 

either fixed or related to a par floating rate, and such that payments occur at known times. 

 

Intuitively, multi-factor instantaneous forward rate term structure is unlikely to guarantee 

positive forward rate on the curve, since the two points on the curve are driven by factors not 

necessarily meeting that condition.  
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