

2

Confirmation Transmission Sufficiency Necessity Extras Bibliography 0 00●0 00 000 0000000	Confirmation Transmission Sufficiency Necessity Extras Bibliograph ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○			
Fact . Suppose <i>E</i> confirms _{<i>i</i>} H_1 and $H_1 \models H_2$. Then, the following is a sufficient condition for the <i>failure</i> of confirmation _{<i>i</i>} -transmission (<i>i.e.</i> , for <i>E</i> to <i>not</i> confirm _{<i>i</i>} H_2).	 Here is a counterexample to confirmation_i-transmission that has a different structure than Dretske's Zebra case. 			
 Heavyweight. Pr(E H₁) = Pr(E ¬H₂). Heavyweight is a natural way to explicate the claim that evidence <i>E</i> does not favor H₁ over ¬H₂ and <i>vice versa</i> [2]. 	Ace. You are going to draw a single card at random from a standard deck. Let $E \cong$ the card is black, $H_1 \cong$ the card is the ace of spades, and $H_2 \cong$ the card is an ace.			
 This way of understanding what Dretske means by "¬<i>H</i>₂ is a heavyweight proposition" [6] is somewhat crude. 	• In Ace, E confirms _i H_1 , since $Pr(H_1 E) = 1/26 > 1/52 = Pr(H_1)$. Moreover, $H_1 \models H_2$. However, E is <i>irrelevant to</i> H_2 , since $Pr(H_2 E) = 2/26 = 4/52 = Pr(H_2)$. [Note: $H_1 \models E$ in Ace.]			
 For one thing, if <i>E</i> confirms_i H₁, then Heavyweight entails that <i>E</i> disconfirms_i H₂ − whether or not H₁ ⊨ H₂. This makes Heavyweight not super interesting (for us). 	 Much more <i>extreme</i> failures of confirmation_i transmission are possible. To wit, there are cases such that (see Extras 14) 			
More interesting: conditions which (a) trade on $H_1 \models H_2$, and (b) are compatible with <i>E</i> being <i>irrelevant to</i> H_2 .	(1) <i>E</i> strongly confirms _i H_1 [$d(H_1, E) \gg 0$]. ¹ (2) $H_1 \models H_2$ [more precisely, $Pr(H_2 \mid H_1) = 1$].			
• We will examine some more interesting conditions (in these and other senses) shortly. First, we will discuss some other ways in which confirmation _i -transmission can fail. (ablo & FiteIson When Confirmation Transmits 4	(3) <i>E</i> strongly disconfirms _i H_2 [$d(H_2, E) \ll 0$]. ¹ There are <i>limits</i> on <i>how badly</i> (SCC) can fail (in this sense). Specifically, if we understand $x \gg y$ as $x - y \ge t$, then we must have $t < 1/2$ in (1) & (3). Yablo & FiteIson When Confirmation Transmits			
onfirmation Transmission Sufficiency Necessity Extras Bibliography 0000 €0 000 00000000	ConfirmationTransmissionSufficiencyNecessityExtrasBibliograpoooooo●ooooooooooo			
• We will say that a probabilistic condition <i>X</i> is <i>sufficient</i> for confirmation _{<i>i</i>} -transmission, just in case the following holds.	• We discovered the following sufficient condition, which is independent of Kotzen's Dragging condition — even in the presence of (S_1) and (S_2) above (see Extras 15–16).			
Sufficiency. There are no probability functions $Pr(\cdot)$ s.t. (S_1) $Pr(H_1 \& \neg H_2) = 0$, and these are <i>the only zeros</i> of $Pr(\cdot)$. (S_2) $Pr(H_1 E) > Pr(H_1)$. [<i>E</i> confirms _i H_1 , wrt $Pr(\cdot)$]	Non-confirmation of Exhaustive Alternatives (NEA). <i>E does not confirm</i> _i $H_2 \supset H_1$ [<i>viz.</i> , $d(H_2 \supset H_1, E) \le 0$].			
(S ₃) $Pr(\cdot)$ satisfies \mathcal{X} . (S ₄) $Pr(H_2 E) \leq Pr(H_2)$. [E does not confirm _i H_2 , wrt $Pr(\cdot)$]	 We call this Non-confirmation of Exhaustive Alternatives because it involves the non-confirmation of a claim which asserts that ¬H₂ and H₁ are <i>exhaustive alternatives</i>. 			
 Kotzen [14] has an illuminating discussion of confirmation_i transmission in which he identifies the following sufficient condition for confirmation_i transmission. 	 For instance, in Zebra, H₂ ⊃ H₁ asserts that the animal before you is <i>either</i> a cleverly-disguised mule <i>or</i> a zebra. 			

• In **Zebra**, whether *E* supports the exhaustivity of H_1 and $\neg H_2$ (as alternative hypotheses) seems probative (perhaps this relates to whether $\neg H_2$ is a "relevant alternative"?).

• Anyhow, in **Zebra**, *E* may not confirm_i $H_2 \supset H_1$. And, *if* it doesn't, *then* it turns out that *E* must (also) confirm_i H_2 .

then imply $Pr(H_2 | E) > Pr(H_2)$, which contradicts (*S*₄). \Box

Proof. (S_1) implies $Pr(H_2 | E) \ge Pr(H_1 | E)$. (S_2) and **Dragging**

• It is easy to see why **Dragging** is sufficient for transmission.

Dragging. $Pr(H_2) < Pr(H_1 | E)$.

6

Confirmation Transmission Sufficiency 0 0000 00	Necessity Extras Bibliography ●○○ ○○○○○○○○○	ConfirmationTransmissionSufficiencyNecessityExtrasBibliographyoo
 A probabilistic condition X (e.g. necessary for confirmation_i transing transition is transition. Necessity. There are no probeomore (S₁) Pr(H₁ & ¬H₂) = 0, and theseomore (S₂) Pr(H₁ E) > Pr(H₁). [E consider of (E consistent is the example of (E consist	asmission just in case ability functions $Pr(\cdot)$ s.t. se are <i>the only zeros</i> of $Pr(\cdot)$. firms _i H_1 , wrt $Pr(\cdot)$] firms _i H_2 , wrt $Pr(\cdot)$] cism about the existence of <i>fficient</i> condition for think we've found one. xhaustive Alternatives (RDEA). <i>than</i> E confirms _i $H_2 \supset H_1$, $d(H_1, E) > d(H_2 \supset H_1, E)$]. $E H_1$ transmits to H_2 <i>iff</i> as measured by d) than it	 The fact that (RDEA) is necessary and sufficient for transmission of confirmation_i is a corollary of the following general, quantitative result (see Extras 12 for a proof of it). Theorem. If Pr(H₂ H₁) = 1, then d(H₂, E) = d(H₁, E) - d(H₂ ⊃ H₁, E). Theorem implies both (i) (RDEA) ⇔ transmission and (ii) (NEA) ⇒ transmission, and it (iii) gives the <i>d</i>-degree to which H₂ is confirmed_i by E, whenever H₁ ⊨ H₂. This result — and its qualitative corollary — depends on how we choose to measure degree of confirmation_i. Specifically, here are 4 other measures of degree of confirmation_i [11, 4]. r(H, E) ≝ Pr(E H) = Pr(E H) + Pr(E ¬H) / Pr(E ¬H) = Z(H, E) ≝
Yablo & Fitelson When Confirm	ation Transmits 8	Yablo & FiteIsonWhen Confirmation Transmits9
Yablo & FiteIson When Confirm Confirmation Transmission Sufficiency oo	Necessity Extras Bibliography ○○● ○○○○○○○○○○○ ○○○○○○○○○○	Yablo & Fitelson When Confirmation Transmits 9 Confirmation Transmission Sufficiency Necessity Extras Bibliography 0 0000 000 000 000 000 Display
ConfirmationTransmission 0000 Sufficiency 000 •Here's a summary of which mean to which E confirms $_i$ H imply su $(RDEA_c)$ $c(H_1, E) > c(H_2 \supset H_1, E)$	Necessity $\circ \circ \bullet$ Extras $\circ \circ $	Confirmation Transmission Sufficiency Necessity Extras Bibliography
ConfirmationTransmission 0000 Sufficiency 000 •Here's a summary of which mean to which <i>E</i> confirms <i>i H</i> imply su	Necessity $\circ \circ \bullet$ Extras $\circ \circ $	ConfirmationTransmissionSufficiencyNecessityExtrasBibliography• To prove our results, we'll use the following algebraic representation, and the approach described in [12].Bibliography• State (\mathfrak{s}_i) H_1 H_2 E $\Pr(\mathfrak{s}_i)$ • \mathfrak{s}_1 T T $\Pr(\mathfrak{s}_1) = \mathfrak{a}_1$
ConfirmationTransmission 0000 Sufficiency 000 •Here's a summary of which mean to which E confirms $_i$ H imply su 	Necessity $\circ \circ \bullet$ Extras $\circ \circ $	ConfirmationTransmission 0000Sufficiency 00Necessity 000Extras 00000000Bibliography• To prove our results, we'll use the following algebraic representation, and the approach described in [12].BibliographyState (\mathfrak{s}_i) H_1 H_2 E $\Pr(\mathfrak{s}_i)$ \mathfrak{s}_1 T T $\Pr(\mathfrak{s}_1) = \mathfrak{a}_1$ \mathfrak{s}_2 T T F $\Pr(\mathfrak{s}_2) = \mathfrak{a}_2$
ConfirmationTransmission 0000 Sufficiency 00 • Here's a summary of which meat to which E confirms $_i$ H imply su $(RDEA_c) c(H_1, E) > c(H_2 \supset H_1, E)$ for confirmation $_i$ -transmission.	Necessity Extras 00000000 Bibliography 000000000 Bibliography asures $c(H, E)$ of the degree afficiency/necessity of	ConfirmationTransmission 0000Sufficiency 00Necessity 000Extras 00000000Bibliography• To prove our results, we'll use the following algebraic representation, and the approach described in [12].BibliographyState (\mathfrak{s}_i) H_1 H_2 E $\Pr(\mathfrak{s}_i)$ \mathfrak{S}_1 TTT $\Pr(\mathfrak{s}_1) = \mathfrak{a}_1$ \mathfrak{s}_2 TTF $\Pr(\mathfrak{s}_2) = \mathfrak{a}_2$ \mathfrak{s}_3 TFT $\Pr(\mathfrak{s}_3) = \mathfrak{a}_3$
ConfirmationTransmission 0000 Sufficiency 00 • Here's a summary of which meat to which E confirms i H imply su $(RDEA_c) c(H_1, E) > c(H_2 \supset H_1, E)$ for confirmation i -transmission.cIs (RDEA_c) Sufficient?	Necessity $oo \bullet$ Extras $ooooooooBibliographyIssures c(H, E) of the degreeufficiency/necessity ofIs (RDEA_c) Necessary?$	ConfirmationTransmission $\infty \infty $ Sufficiency $\infty $ Necessity $\infty \infty $ Extras $\infty \infty $ Bibliography• To prove our results, we'll use the following algebraic representation, and the approach described in [12].Image: Confirmation of the approach described in [12].State (\mathfrak{s}_i) H_1 H_2 E $\Pr(\mathfrak{s}_i)$ $\overline{\mathfrak{s}_1}$ $\overline{\mathfrak{T}}$ $\overline{\mathfrak{T}}$ $\overline{\mathfrak{T}}$ $\Pr(\mathfrak{s}_1) = \mathfrak{a}_1$ $\overline{\mathfrak{s}_2}$ $\overline{\mathfrak{T}}$ $\overline{\mathfrak{T}}$ $\Pr(\mathfrak{s}_2) = \mathfrak{a}_2$ $\overline{\mathfrak{s}_3}$ $\overline{\mathfrak{T}}$ $\overline{\mathfrak{F}}$ $\Pr(\mathfrak{s}_3) = \mathfrak{a}_3$ $\overline{\mathfrak{s}_4}$ $\overline{\mathfrak{T}}$ $\overline{\mathfrak{F}}$ $\Pr(\mathfrak{s}_4) = \mathfrak{a}_4$
ConfirmationTransmissionSufficiency $\circ \circ$ •Here's a summary of which mean to which E confirms $_i H$ imply su $(RDEA_c) c(H_1, E) > c(H_2 \supset H_1, E)$ for confirmation $_i$ -transmission.cIs (RDEA_c) Sufficient?dYES	NecessityExtrasBibliography $\circ \circ $	ConfirmationTransmission 0000Sufficiency oNecessity 000Extras 00000000Bibliography• To prove our results, we'll use the following algebraic representation, and the approach described in [12].Image: State (\$\$_i\$)H1H2EPr(\$\$_i\$) $\frac{51}{51}$ TTTPr(\$\$_i\$)Image: State (\$\$_i\$)Image: State (\$\$_i\$)Image: State (\$\$_i\$)Image: State (\$\$_i\$)Image: State (\$\$_i\$) $\frac{52}{52}$ TTTPr(\$\$_i\$)Image: State (\$\$_i\$)Image: State (\$\$_i\$)Image: State (\$\$_i\$) $\frac{52}{53}$ TFTPr(\$\$_i\$)Image: State (\$\$_i\$)Image: State (\$\$_i\$)Image: State (\$\$_i\$) $\frac{53}{53}$ TFTPr(\$\$_i\$)Image: State (\$\$_i\$)Image: State (\$\$_i\$)Image: State (\$\$_i\$) $\frac{53}{53}$ FTTPr(\$\$_i\$)Image: State (\$\$_i\$)Image: State (\$\$_i\$)Image: State (\$\$_i\$) $\frac{55}{5}$ FTTPr(\$\$_i\$)Image: State (\$\$_i\$)Image: State (\$\$_i\$) $\frac{55}{53}$ FTTPr(\$\$_i\$)Image: State (\$\$_i\$)
ConfirmationTransmission $\circ \circ \circ \circ$ Sufficiency $\circ \circ$ •Here's a summary of which mean to which E confirms $_i H$ imply su (RDEA_c) $c(H_1, E) > c(H_2 \supset H_1, E)$ for confirmation $_i$ -transmission. c Is (RDEA_c) Sufficient? d YES r NO	Necessity ooo Extras $oooooooooBibliographyIsures c(H, E) of the degreeafficiency/necessity ofIsIs (RDEA_c) Necessary?YESYES$	ConfirmationTransmission $\infty \infty $ Sufficiency $\infty $ Necessity $\infty \infty $ Extras $\infty \infty $ Bibliography• To prove our results, we'll use the following algebraic representation, and the approach described in [12].Image: Confirmation of the approach described in [12].State (\mathfrak{s}_i) H_1 H_2 E $\Pr(\mathfrak{s}_i)$ $\overline{\mathfrak{s}_1}$ $\overline{\mathfrak{T}}$ $\overline{\mathfrak{T}}$ $\overline{\mathfrak{T}}$ $\Pr(\mathfrak{s}_1) = \mathfrak{a}_1$ $\overline{\mathfrak{s}_2}$ $\overline{\mathfrak{T}}$ $\overline{\mathfrak{T}}$ $\Pr(\mathfrak{s}_2) = \mathfrak{a}_2$ $\overline{\mathfrak{s}_3}$ $\overline{\mathfrak{T}}$ $\overline{\mathfrak{F}}$ $\Pr(\mathfrak{s}_3) = \mathfrak{a}_3$ $\overline{\mathfrak{s}_4}$ $\overline{\mathfrak{T}}$ $\overline{\mathfrak{F}}$ $\Pr(\mathfrak{s}_4) = \mathfrak{a}_4$

 The *s*-measure [3, 9, 8] also satisfies our quantitative Theorem (see Extras 13). See Extras 17–18 for probability models establishing the four "No"s in the above table. [Our proofs of the "YES"s for (RDEA_r)/(RDEA_z) are complex (omitted).]

When Confirmation Transmits

10

• This involves (a) translating the desired result into algebra,

that it does *not*), assuming $a_i \in [0, 1]$ and $\sum_i a_i = 1$.

and (b) showing it corresponds to a theorem of algebra (or

ConfirmationTransmissionSufficiencyNecessityExtrasExtrasBibliography• If
$$\Pr(H_2 \mid H_1) = 1$$
, then $\mathfrak{a}_3 = \mathfrak{a}_4 = 0$. And, we have: $\mathfrak{a}(H_2, E) = \frac{\mathfrak{a}_1 + \mathfrak{a}_5}{\mathfrak{a}_1 + \mathfrak{a}_5 + \mathfrak{a}_7} - (\mathfrak{a}_1 + \mathfrak{a}_2 + \mathfrak{a}_5 + \mathfrak{a}_6)$. $d(H_2, E) = \frac{\mathfrak{a}_1 + \mathfrak{a}_5}{\mathfrak{a}_1 + \mathfrak{a}_5 + \mathfrak{a}_7} - (\mathfrak{a}_1 + \mathfrak{a}_2)$. $d(H_1, E) = \frac{\mathfrak{a}_1}{\mathfrak{a}_1 + \mathfrak{a}_5 + \mathfrak{a}_7} - (\mathfrak{a}_1 + \mathfrak{a}_2)$. $d(H_2 \supset H_1, E) = \frac{\mathfrak{a}_1 + \mathfrak{a}_7}{\mathfrak{a}_1 + \mathfrak{a}_5 + \mathfrak{a}_7} - (1 - (\mathfrak{a}_5 + \mathfrak{a}_6))$ • Then, the following reasoning establishes our Theorem: $d(H_1, E) - d(H_2 \supset H_1, E) = \left[1 - \frac{\mathfrak{a}_7}{\mathfrak{a}_1 + \mathfrak{a}_5 + \mathfrak{a}_7}\right] - (\mathfrak{a}_1 + \mathfrak{a}_2 + \mathfrak{a}_5 + \mathfrak{a}_6)$ $= [1 - \Pr(\neg H_1 \& \neg H_2 \mid E)] - \Pr(H_2)$ $= \Pr(H_1 \lor H_2 \mid E) - \Pr(H_2)$ $= \frac{\mathfrak{a}_1 + \mathfrak{a}_5}{\mathfrak{a}_1 + \mathfrak{a}_5 + \mathfrak{a}_7} - (\mathfrak{a}_1 + \mathfrak{a}_2 + \mathfrak{a}_5 + \mathfrak{a}_6)$ $= (H_2, E) \square$ \square

	Transmission 0000	Suffic 00	riency		Necessity Extras	Bibliograph			
which	• Here is a model (all models were found with PrSAT [12]) on which (S_1) , $d(H_1, E) = 0.49$ and $d(H_2, E) = -0.49$. This is about as extreme a failure of (SCC) as possible (see <i>fn</i> . 1).								
	State (\mathfrak{s}_i)	H_1	H_2	Ε	$\Pr(\mathfrak{s}_i)$	_			
	\$ ₁	Т	Т	Т	$\Pr(\mathfrak{s}_1) = \frac{450}{57600}$	_			
	\$ 2	Т	Т	F	$\Pr(\mathfrak{s}_2) = \frac{126}{57600}$	_			
	\$ 3	Т	F	Т	$\Pr(\mathfrak{s}_3) = 0$	_			
	\$4	Т	F	F	$\Pr(\mathfrak{s}_4) = 0$	_			
	\$ 5	F	Т	Т	$\Pr(\mathfrak{s}_5) = \frac{1}{57600}$	_			
	\$ 6	F	Т	F	$\Pr(\mathfrak{s}_6) = \frac{56511}{57600}$	_			
	\$ 7	F	F	Т	$\Pr(\mathfrak{s}_7) = \frac{449}{57600}$	_			
	\$ ₈	F	F	F	$\Pr(\mathfrak{s}_8) = \frac{63}{57600}$				

Confirmation o	Transmission 0000	Sufficiency 00	Necessity 000	Extras ○○●○○○○○	Bibliography
s(H s(H s(H	$Pr(H_2 H_1) = 1$ $H_2, E) = \frac{\alpha_1 + \alpha_5}{\alpha_1 + \alpha_5}$ $H_1, E) = \frac{\alpha_1}{\alpha_1 + \alpha_5}$ $H_2 \supset H_1, E) = \frac{\alpha_1}{\alpha_1}$ en, the following	$\frac{a_5}{a_7} - \frac{a_2}{a_2 + a_4}$ $\frac{a_1 + a_7}{a_2 + a_7} - \frac{a_7}{a_2 + a_4}$ $\frac{a_1 + a_7}{a_5 + a_7} - \frac{a_7}{a_7}$	$\frac{-\alpha_6}{6+\alpha_8}$ $\frac{2}{6+\alpha_8}$ $\frac{2}{6+\alpha_8}$ $\frac{\alpha_2+\alpha_8}{\alpha_2+\alpha_8+\alpha_8}$		rem.
$s(H_1, E)$	$-s(H_2 \supset H_1, E) =$	$=\frac{\mathfrak{a}_1}{\mathfrak{a}_1+\mathfrak{a}_5+\mathfrak{a}_7}$	$\frac{\mathfrak{a}_2}{\mathfrak{a}_2+\mathfrak{a}_6+\mathfrak{a}_8}$	$-\frac{\mathfrak{a}_1+\mathfrak{a}_7}{\mathfrak{a}_1+\mathfrak{a}_5+\mathfrak{a}_7}$	$+\frac{\mathfrak{a}_2+\mathfrak{a}_8}{\mathfrak{a}_2+\mathfrak{a}_6+\mathfrak{a}_8}$
	$=\frac{\mathfrak{a}_8}{\mathfrak{a}_2+\mathfrak{a}_6+\mathfrak{a}_8}-\frac{\mathfrak{a}_8}{\mathfrak{a}_8}$	$\frac{\mathfrak{a}_7}{\mathfrak{a}_1+\mathfrak{a}_5+\mathfrak{a}_7}$			
	$= \Pr(\neg H_1 \& \neg H_2 \mid$	$\neg E$) – Pr($\neg H_1$	$\& \neg H_2 \mid E)$		
	$= [1 - \Pr(H_1 \vee H_2)]$	$[2 \neg E] - [1 -$	$\Pr(H_1 \vee H_2 \mid E)$	[)]	
	$=\frac{\mathfrak{a}_1+\mathfrak{a}_5}{\mathfrak{a}_1+\mathfrak{a}_5+\mathfrak{a}_7}-\frac{1}{2}$	$\frac{\mathfrak{a}_2 + \mathfrak{a}_6}{\mathfrak{a}_2 + \mathfrak{a}_6 + \mathfrak{a}_8}$			
	$= s(H_2, E) \Box$				
Yablo & Fitelson		When Conf	firmation Transmits	;	13

Confirmation 0	Transmission 0000	Sufficiency 00	Necessity 000	Extras	Bibliography
• He	ere is a probab	ility model o	n which (S_1)	(S_2) , and (NE	EA)

are true, but **Dragging** is false (this shows NEA \neq **Dragging**).

State (\mathfrak{s}_i)	H_1	H_2	Ε	$\Pr(\mathfrak{s}_i)$
\mathfrak{s}_1	Т	Т	Т	$\Pr(\mathfrak{s}_1) = \frac{256}{512}$
\$ 2	Т	Т	F	$\Pr(\mathfrak{s}_2) = \frac{28}{512}$
\$ 3	Т	F	Т	$\Pr(\mathfrak{s}_3) = 0$
\mathfrak{s}_4	Т	F	F	$\Pr(\mathfrak{s}_4) = 0$
\mathfrak{s}_5	F	Т	Т	$\Pr(\mathfrak{s}_5) = \frac{64}{512}$
\mathfrak{s}_6	F	Т	F	$\Pr(\mathfrak{s}_6) = \frac{5}{512}$
\$ 7	F	F	Т	$\Pr(\mathfrak{s}_7) = \frac{128}{512}$
\$ ₈	F	F	F	$\Pr(\mathfrak{s}_8) = \frac{31}{512}$

When Confirmation Transmits

Yablo & Fitelson

Confirmation O	Transmission 0000	Sufficiency 00	Necessity 000	Extras ○○○○○●○○	Bibliography	Confirmation 0
• H	ere is a probab	ility model o	n which (S_1) ,	, (<i>S</i> ₂), and Dr a	agging	• H
ar	e true, but (NE	A) is false (tł	nis shows Dr	ragging ⊭ NE	A).	(

State (\mathfrak{s}_i)	H_1	H_2	Ε	$\Pr(\mathfrak{s}_i)$
\mathfrak{s}_1	Т	Т	Т	$\Pr(\mathfrak{s}_1) = \frac{128}{256}$
\$ 2	Т	Т	F	$\Pr(\mathfrak{s}_2) = \frac{5}{256}$
\mathfrak{s}_3	Т	F	Т	$\Pr(\mathfrak{s}_3) = 0$
\mathfrak{s}_4	Т	F	F	$\Pr(\mathfrak{s}_4) = 0$
\mathfrak{s}_5	F	Т	Т	$\Pr(\mathfrak{s}_5) = \frac{12}{256}$
\mathfrak{s}_6	F	Т	F	$\Pr(\mathfrak{s}_6) = \frac{10}{256}$
\$ 7	F	F	Т	$\Pr(\mathfrak{s}_7) = \frac{64}{256}$
\$ 8	F	F	F	$\Pr(\mathfrak{s}_8) = \frac{37}{256}$

Yablo & Fitelson

When Confirmation Transmits

ConfirmationTransmissionSufficiencyNecessityExtrasBibliography0000000000000000

• Here is a probability model on which (S_1) , (S_2) , \neg (RDEA_{*l*}), \neg (RDEA_{*z*}), and \neg (*S*₄) are all true. This shows that *neither* (RDEA_{*l*}) *nor* (RDEA_{*z*}) is necessary for transmission.

State (\mathfrak{s}_i)	H_1	H_2	E	$\Pr(\mathfrak{s}_i)$
\$ 1	т	т	Т	$\Pr(\mathfrak{s}_1) = \frac{14}{32}$
\$ 2	Т	Т	F	$\Pr(\mathfrak{s}_2) = \frac{2}{32}$
\$ 3	Т	F	Т	$\Pr(\mathfrak{s}_3) = 0$
\$ 4	Т	F	F	$\Pr(\mathfrak{s}_4) = 0$
\$ 5	F	Т	Т	$\Pr(\mathfrak{s}_5) = \frac{8}{32}$
\$ 6	F	Т	F	$\Pr(\mathfrak{s}_6) = \frac{3}{32}$
\$7	F	F	Т	$\Pr(\mathfrak{s}_7) = \frac{4}{32}$
\$ 8	F	F	F	$\Pr(\mathfrak{s}_8) = \frac{1}{32}$

Confirmation	Transmission	Sufficiency	Necessity	Extras	Bibliography
				00000000	

Here is a probability model on which (S₁), (S₂), (RDEA_r), (RDEA_l), and (S₄) are all true. This shows that *neither* (RDEA_r) *nor* (RDEA_l) is sufficient for transmission.

State (\mathfrak{s}_i)	H_1	H_2	Ε	$\Pr(\mathfrak{s}_i)$
\mathfrak{s}_1	Т	Т	Т	$\Pr(\mathfrak{s}_1) = \frac{64}{512}$
\$ 2	Т	Т	F	$\Pr(\mathfrak{s}_2) = \frac{5}{512}$
\$ 3	Т	F	Т	$\Pr(\mathfrak{s}_3) = 0$
\mathfrak{s}_4	Т	F	F	$\Pr(\mathfrak{s}_4) = 0$
\$ 5	F	Т	Т	$\Pr(\mathfrak{s}_5) = \frac{256}{512}$
\$ 6	F	Т	F	$\Pr(\mathfrak{s}_6) = \frac{45}{512}$
\$ ₇	F	F	Т	$\Pr(\mathfrak{s}_7) = \frac{128}{512}$
\$8	F	F	F	$\Pr(\mathfrak{s}_8) = \frac{14}{512}$
	W	hen Conf	irmatio	on Transmits

Confirmation Transmission Sufficiency Necessity Extras Bibliography 0 000 00 000 <t

- [2] J. Chandler, "Contrastive confirmation: some competing accounts," 2013.
- [3] D. Christensen, "Measuring Confirmation," 1999.
- [4] V. Crupi and K. Tentori, "Confirmation Theory," 2016.
- [5] V. Crupi, B. Fitelson and K. Tentori, "Probability, Confirmation, and the Conjunction Fallacy," 2008.
- [6] F. Dretske, "Is Knowledge Closed Under Known Entailment?," 2005.
- [7] _____, "Epistemic Operators," 1970.

Yablo & Fitelson

Yablo & Fitelson

16

- [8] E. Eells and B. Fitelson, "Symmetries and Asymmetries in Evidential Support," 2002.
- [9] _____, "Measuring Confirmation and Evidence," 2000.
- [10] B. Fitelson, "Confirmation, Causation, and Simpson's Paradox," 2017.
- [11] _____, "Contrastive Bayesianism," 2012.
- [12] _____, "A Decision Procedure for Probability Calculus with Applications," 2008.
- [13] C. Hempel, "Studies in the Logic of Confirmation," 1945.
- [14] M. Kotzen, "Dragging and confirming," 2012.
- [15] W. Salmon, "Confirmation and relevance," 1983.

17