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1. Introduction

The following is one version of the so-called Sleeping Beauty problem.

Some researchers are going to put Sleeping Beauty to sleep on Sunday evening.

She will sleep through most of the following week except on up to two occasions.

The researchers will wake her up briefly either once—on Monday—or twice—on

Monday andWednesday—depending on the result of a fair coin toss that takes place

after she goes to sleep on Sunday but before she wakes up on Monday: if it is heads

she will be woken briefly on Monday and sleep through the rest of the week; if it is

tails she will be woken up again onWednesday. After each waking Sleeping Beauty

will be put back to sleep with a drug that erases any memory of the waking. When

Sleeping Beauty is woken up during the week, what should her level of confidence
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be that the outcome of the toss was heads? What should her level of confidence be

upon learning that it is Monday?1

LetM, W, H, T be the propositions that it is Monday, that it is Wednesday, that

the coin landed heads, and that the coin landed tails, respectively. There are three

main positions in the literature. Thirders, led by Adam Elga (2000), hold that upon

first waking up Sleeping Beauty’s level of confidence thatM&H ought to be equal

to her level of confidence thatM&T ; and her level of confidence thatM&T ought

to be equal to her level of confidence thatW&T . This means that upon waking up,

Sleeping Beauty ought to be twice as confident that the coin landed tails as that it

landed heads. When she finds out that it is Monday, her level of confidence that the

coin landed heads ought to be updated to being equal to her level of confidence that

the coin landed tails.

Halfers, led by David Lewis (2001), hold that upon waking up, Sleeping Beauty’s

level of confidence that H ought to be equal to her level of confidence that T . And

her level of confidence thatM&T ought to be equal to her level of confidence that

W&T . When she finds out that it is Monday, she ought to update her belief so that

her level of confidence that H is twice her level of confidence that T .

Double Halfers (e.g., Bostrom 2007; Cozic 2011; Meacham 2008; Pust 2012),

hold that Sleeping Beauty’s levels of confidence when she wakes up ought to be as

Halfers say they ought to be. But when she finds out that it is Monday, her updated

levels of confidence ought to be as Thirders say. That is to say, her level of confi-

1It is often left open when the coin toss takes place as the timing of the toss is inessential to the

problem. I stipulate it to be before Sleeping Beauty’s first waking to make exposition easier but

nothing hangs on this stipulation. I stipulate that the second waking occurs on Wednesday rather

than Tuesday for the sake of less confusing abbreviations.
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dence that the coin landed heads ought to be the same as her level of confidence that

it landed tails throughout the week.

The following is a diagrammatic representation of the three positions. On the left

hand side, the size of the blocks relative to each other represent Sleeping Beauty’s

levels of confidence relative to each other upon first waking up; and on the right hand

side they represent her levels of confidence relative to each other upon learning that

it is Monday.

Thirder

Halfer

Double Halfer

3



Which, if any, of the three positions is the correct position? In the following I will

be considering some bets that Sleeping Beauty might be offered. Suppose that upon

waking she is offered a bet: her stake is a dollar and she will make a certain amount

of profit if and only if the coin landed heads. What is the fair amount of profit for

this bet—that is, what are the fair betting odds? I will argue that Double Halfers can

give the most satisfactory answer to this and related questions.

Some readers might be suspicious of approaching epistemological problems

through pecuniary considerations that guide betting odds. I share some misgivings

of this sort and I do not wish to suggest that epistemological questions just are deci-

sion theoretic problems typified by discussions of fair betting odds. However, what

an agent ought to regard as rationally acceptable betting odds is a function of what

risks and opportunities she rationally takes herself to be facing. In the kinds of bets

under consideration in this paper, the risks and opportunities as perceived by Sleep-

ing Beauty are a function of the levels of confidence Sleeping Beauty ought to have

about the outcome of the coin toss. If it can be shown that this or that position about

the Sleeping Beauty problem gives rise to objectionable assessments of risks and op-

portunities, that is a reason—though not necessarily a decisive one—to question the

position. Pointing out that Thirders and Halfers face this sort of problem, whereas

Double Halfers do not, is my main concern in this paper.

2. Fair Odds

A few remarks on notation before proceeding. I will use C(P ) to represent the level

of confidence that P. I will be using British odds for representing betting odds.
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And when I speak of ‘odds’, I mean betting odds. British odds represent the ratio

between potential net profit from the bet and the stake. When a bet has oddsm : n,

m represents the net profit from the bet’s payout in case of winning the bet when

the stake is n. For instance, if the odds are 4 : 3 and you pay 3 dollars for the bet,

you will receive a payout of 7 dollars for a net profit of 4 dollars (7 dollars payout

minus the initial outlay of 3 dollars). Since the profit for each unit of stake is given

by m/n, I generally will give odds in the form k : 1.

When the odds for a bet are fair, a rational agent ought to be just as willing to buy

the bet as to sell the bet. For instance, given fair odds k : 1 for a bet thatP is the case,

she ought to be just as willing to pay a dollar now for the right to receive a profit of

k dollars in case that P , as to receive a dollar now in return for the obligation to pay

out a sum resulting in a net loss of k dollars in case that P .2

Here is an intuitively plausible way of thinking about rationally acceptable odds.

Suppose you are considering whether or not to engage in a course of action. The

course of action will result in some loss ifP is false. Should you engage in the course

of action? That depends on what happens if P is true. If that is not associated with

any gains and refraining from the course of action does not have its own downsides,

then you should not engage in it. On the other hand, if the course of action results

in some gains in case P is true, then two things matter: what is the ratio between

the potential gain to potential loss; and what is your level of confidence that P is

true? The less confident you are that P is true, the more you need in potential gains

relative to your potential losses. Concretely, the minimum ratio between potential

2Since you gain 1 dollar in case ¬P and lose k dollars if P , this is, as far as the bottom line is

concerned, the same as buying a bet that you win in case ¬P at odds 1 : k, or 1/k : 1.
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gains and losses is given by:

net gain in case P : net loss in case ¬P = C(¬P ) : C(P )

For instance, if you are as confident that P is true as that it is false, your potential

gains must equal your potential losses. If you are half as confident that P is true

as that it is false, your potential gains must be twice your potential losses. This, of

course, is standard fare. Let us call this the Basic Principle.

In simple cases, the net loss in case ¬P given a bet on P just is the price you pay

the bookie—i.e., the stake—and the net gain in case P is the total payout of the bet

minus the stake. In such a case, the fair odds are given by C(¬P ) : C(P ). But there

can be situations in which the net loss in case ¬P is different from the stake for the

bet. For instance, the government—as distinct from the bookie—might encourage

placing bets by handing out money to punters who lose (but not to winners). Since

this is a government handout, it does not affect the bookie’s expenses. The handout

will reduce the net loss in case ¬P and the Basic Principle tells us that the punter

can go for odds that are lower than C(¬P ) : C(P ). Concretely, if the government

were to cover half a punter’s losses, a bet on a fair coin toss landing heads that costs

a dollar will result in a net loss of half a dollar if the coin lands tails. That means

that the net gain in case heads need only be half a dollar. The punter should still be

willing to pay the bookie a dollar for the bet so that the odds are 1/2 : 1 even though

he is as confident the coin will land heads as that it will land tails: the punter can pay

the bookie one dollar because he knows that if he loses the government will take out

some of the sting by giving him half a dollar. And, of course, he would be happy to

sell the bet at these odds. So with the government handouts to losers, odds 1/2 : 1

are fair for a bet on the result of a fair coin toss! Of course, similar manipulations
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can take place on the payout side.3 So we must be careful not to identify the ratio

specified by the Basic Principle with the fair odds for a bet on P . This is a point that

will be of some importance later.

3. Betting Odds Considerations for Sleeping Beauty

Let us now move to the Sleeping Beauty problem. In this section, I will consider

two bets that a bookie might offer Sleeping Beauty and the fair odds for those bets.

I will then argue in the following sections that Thirders and Halfers have difficulties

giving good accounts of what the fair odds for those bets are, whereas the Double

Halfers do not.

3.1. The Early Bet

Suppose Sleeping Beauty is offered a bet every time she wakes up. Thus, it is offered

onMondaymorning and if the coin landed tails the bet is also offered onWednesday.

The terms are: she pays a dollar now for a bet that results in profit of k dollars if and

only if the coin toss before her waking landed heads. Call this the Early Bet (there

is going to be a Late Bet, too). Further suppose that Sleeping Beauty knows that the

bet is offered every time she wakes up. What must k be for the odds to be fair?

For simplicity’s sake, let us assume that Sleeping Beauty will reject the bet if

and only if the odds are unfair. And let us also assume that the bookie will keep on

offering alternative odds until she accepts the bet. So if there are any fair odds for

3Notice that bookies have powerful reasons to lobby for such subsidies for punters: not only will

the subsidies tend to encourage betting, they encourage placing bets at odds that are lucrative for

bookies. There indeed are tax and other regulations that have this effect—typically more subtle

than simple handouts—but that is beyond the scope of this paper.
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the Early Bet, she will accept the bet at some odds on both Monday andWednesday.

Everyone should hold that the fair odds for the Early Bet are 2 : 1; i.e., k =

2. There are compelling arguments in favor of these odds that are independent of

Sleeping Beauty’s levels of confidence upon waking up on Monday that the coin

landed heads.

The first argument is frequentist. Let us consider which odds Sleeping Beauty

ought to accept if the experiment were repeated a large number of times. There

are indefinitely many possible long term financial results. However, since Sleeping

Beauty knows the coin is fair, if N is the number of weeks, she is certain that as N

gets larger the long term result is more and more likely to be close to 1
2
×N×k− 1

2
×

N × 2—during half of the weeks she gains k dollars, during the other half she loses

two dollars by placing two losing bets: once on Monday and again on Wednesday.

This entails that if k is anything other than 2, Sleeping Beauty either will be nearly

certain that she will make a profit in the long term, or she will be nearly certain that

she will make a loss in the long term, where the expected profits or losses increase

with the number of times the experiment gets repeated. Such arrangements cannot

be fair: it is either unacceptable to the bookie or unacceptable to Sleeping Beauty.

For the bet to be fair, the expected long term results must be to break even, and that

requires k = 2. Thus, the fair odds for the Early Bet are 2 : 1.

Perhaps you are too much of a Bayesian to be moved by such apostate frequentist

considerations. Here is another argument in favor of 2 : 1. It is a diachronic Dutch

Book argument originally due to Hitchcock (2004).

Suppose the stakes for the Early Bet placed on Monday and on Wednesday (if

there is a bet) are 1 dollar each time and that the odds are k : 1. If the coin landed tails,

Sleeping Beauty loses a total of 2 dollars over the week. If the coin landed heads, she
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gains k dollars. Suppose the bookie offers her an additional bet on Sunday, before

she goes to sleep. She wins the bet if the coin lands tails, and loses if it lands heads.

Since she knows the coin is fair, she ought to accept odds 1 : 1 for the bet on Sunday.

Let the stakes for this bet be s dollars. If the coin lands heads, Sleeping Beauty loses

s dollars from the bet on Sunday and gains k dollars from the Early bet for a net

result of k − s dollars. This is negative just in case s > k. On the other hand, if

the coin lands tails, she gains s dollars from the bet on Sunday and loses 2 dollars

from the two Early Bets placed on Monday and on Wednesday for a net result of

s − 2 dollars. This is negative just in case s < 2. Thus, the bookie can guarantee

a loss for Sleeping Beauty by choosing the stake s for the bet on Sunday such that

k < s < 2. This is possible if and only if k < 2. If k > 2, the bookie can guarantee

a loss for Sleeping Beauty by reversing the direction of each bet and choosing a

stake for the Sunday bet such that 2 < s < k. Notice that all the bookie needs to

know to guarantee Sleeping Beauty’s loss is what odds she will regard as fair for the

Early Bet. He and Sleeping Beauty can both know that. So there is no exploitation of

information asymmetry here. In order to avoid susceptibility to a diachronic Dutch

Book, k must be equal to 2. Thus, the fair odds for the Early Bet are 2 : 1.4

Neither the frequentist nor the diachronic Dutch Book argument makes any as-

sumptions about what Sleeping Beauty’s levels of confidence ought to be upon wak-

ing up. The frequentist argument merely requires that the coin be in fact fair. The

diachronic Dutch Book argument only requires that the fair odds for the bet on Sun-

day be 1 : 1. So whatever your position on the original Sleeping Beauty problem,

you ought to accept 2 : 1 as fair for the Early Bet. Let me call the two arguments

given in this section the independent arguments in favor of odds 2 : 1 as fair for the

4Briggs (2010) argues for the same point though in a somewhat different manner.
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Early Bet.

3.2. The Late Bet

Consider now a different bet. Suppose there is no Early Bet but that upon learning it

is Monday Sleeping Beauty is offered a bet that the coin landed heads. Call this the

Late Bet. What are the fair odds for this bet? Again, let us assume for simplicity’s

sake that Sleeping Beauty will reject the bet if and only if the odds are unfair, and

that the bookie will keep on offering alternative odds until she accepts the bet.

Everyone should accept that the fair odds for the Late Bet are 1 : 1. Let me again

give two arguments.

The first argument is frequentist. Suppose the experiment is repeated multiple

times. Each week on Monday, after an initial period of ignorance, Sleeping Beauty

is told that it is Monday and then offered a bet that the coin landed heads. Since she

is always woken up on Mondays, the number of bets she will place is the same as

the number of coin tosses. Since the coin is fair, she can expect to lose half of the

bets, and to win half of the bets. In order to be confident of breaking even in the

long term, the odds need to be 1 : 1 each time she places the Late Bet. Thus, the fair

odds are 1 : 1 for the Late Bet.

The second argument is a diachronic Dutch Book argument due to Draper and

Pust (2008). Let the odds for the Late Bet be k : 1. Since the bet is offered only on

Monday, she loses one dollar over the week in case the coin landed tails, and gains

k dollars in case it landed heads. Suppose the bookie offers her an additional bet

on Sunday, before she goes to sleep. She wins if the coin lands tails, and loses if it

lands heads. Since she knows the coin is fair, she ought to accept odds 1 : 1 for the

bet on Sunday. Let the stakes for this bet be s dollars. Her net financial results from
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the two bets will be k − s dollars in case the coin landed heads, and s − 1 in case

the coin landed tails. If Sleeping Beauty accepts k < 1 for the Late Bet, the Bookie

can guarantee a loss by choosing s such that k < s < 1. If she accepts k > 1, the

bookie can reverse the direction of the two bets and make sure that 1 < s < k to

guarantee a loss for Sleeping Beauty. The only odds that avoid this are 1 : 1. Thus,

the fair odds for the Late Bet are 1 : 1.

Notice that, just as the independent arguments about the Early Bet’s fair odds,

neither the frequentist nor the diachronic Dutch Book argument about the Late Bet

makes assumptions about what Sleeping Beauty’s levels of confidence ought to be

upon learning that it is Monday. So whatever your position on the Sleeping Beauty

Problem, you ought to accept 1 : 1 as fair for the Late Bet. Let me call the two

arguments given in this section the independent arguments in favor of odds 1 : 1 as

fair for the Late Bet.

4. Problems for Thirders

There is a problem for Thirders. They have difficulties maintaining that 2 : 1 are fair

for the Early Bet. To see this, consider the following. If the coin toss landed tails,

Sleeping Beauty will be offered the Early Bet twice, onMonday and onWednesday.

That is to say, if she loses the bet once, she will lose twice. The odds she accepts on

Wednesdaymake no difference to the total amount she loses over the week. Suppose

that on Monday she accepts a bet that the coin landed heads at odds 2 : 1. She pays a

dollar for the bet. If the coin did land heads, she earns 2 dollars over the course of the

week. If the coin landed tails, she will lose 1 dollar on Monday, and 1 dollar again

on Wednesday for a total loss of 2 dollars. This is something Sleeping Beauty can

figure out for herself. Now, a Thirder holds that upon waking up Sleeping Beauty
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ought to be twice as confident that the coin landed tails as that it landed heads. But

that means that if she accepts odds 2 : 1 she ought to be twice as confident that she

will lose 2 dollars over the course of the week as that she will gain 2 dollars over the

course of the week. That does not look like an acceptable deal. The Basic Principle

tell us that she ought to demand that the gains from winning the bet on Monday

be twice her potential net losses; i.e., the net gains must be 4 dollars. So Thirders

should hold that the fair betting odds for the Early Bet are 4 : 1.

More generally, we can look at what will happen over the course of the week as

follows. Given odds k : 1 for the Early Bet, if the stakes are 1 dollar each time the

bet is placed, the gains over the course of the week in case the coin landed heads

are k dollars, whereas the losses over the week in case the coin landed tails are 2

dollars. The Basic Principle tells us:

k : 2 = C(T ) : C(H)

Thus,

k =
2× C(T )

C(H)

As already noted, this yields k = 4 for Thirders. This approach to determining

fair odds looks at the entire week and the value of the set of bets—a book—placed

over the week. Of course, how many bets are in the set depends on the result of the

coin toss but the crucial point here is that it is not looking at one bet in isolation. Let

us call this the Bookie Approach.

The problem for Thirders is that the result of the Bookie Approach is in blatant

conflict with the results of the independent arguments for odds 2 : 1 as fair. What

gives?
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There is a principled way of rejecting the Bookie Approach. That is to adopt what

is known as causal decision theory. Hitchcock (2004) and Draper and Pust (2008)

are examples of Thirders taking this approach to the Early Bet. According to causal

decision theory, one ought to assess outcomes in terms of the causal consequences

of the agent’s decision. The crucial point is that there can be consequences that one

can foresee that are not causal consequences of the agent’s decision. In the case of

the Early Bet, for instance, Sleeping Beauty has evidence that if she loses the bet

on Monday, she will lose the bet on Wednesday, but that does not mean that her

placing the bet on Monday causes her placing another bet on Wednesday. Equipped

with this thought, we can reason as follows.

When Sleeping Beauty accepts the Early Bet at odds k : 1, there are three possible

causal consequences. Either it is Monday and she wins k dollars; or it is Monday and

she loses 1 dollar; or it isWednesday and she loses 1 dollar. The last two possibilities

are both cases in which she loses her stake of 1 dollar, and her level of confidence

that either one or the other of them is the or case is simply her level of confidence

that the coin landed tails. The Basic Principle tells us that the fair odds for the Early

Bet are given by:

k : 1 = C(T ) : C(H)

and thus,

k =
C(T )

C(H)

Let us call this the Causal Approach to the fair odds for the Early Bet. For Third-

ers, this approach yields 2 : 1 as fair for the Early Bet.
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Are Thirders out of the woods? Maybe all they have to do is to insist that causal

decision theory is the correct approach to decision making? No.

Notice that by embracing causal decision theory, Thirders lose the ability to ap-

peal to the independent arguments for 2 : 1 to support the result of the Causal

Approach. In the frequentist argument one appeals to the aggregate result of mul-

tiple decisions, but a decision during any one week does not cause decisions and

their consequences during the other weeks. In the diachronic Dutch Book argu-

ment one appeals to the collective result of up to three bets—Sunday, Monday, and

Wednesday—and, again, a decision on one of the days does not cause the decisions

and results on the other days; in particular, the decision to place a bet on Monday

does not cause the loss on Wednesday. That is why adopting causal decision theory

yields the formula for the Causal Approach above. So the predictable financial re-

sults that these arguments appeal to cannot play a role in rational decision making

if causal decision theory is taken seriously because they must be seen as irrelevant

to decision making. And insisting that predictable consequences are irrelevant un-

less they are causal consequences of the choice at hand is crucial to causal decision

theorists for one well-known feature of causal decision theory is that it recommends

the financially worse option in Newcomb’s Problem (Horwich 1987). What saves

causal decision theory, according to its defenders, is that the worse financial out-

come in Newcomb’s Problem is not a causal consequence of the decision thus mak-

ing that outcome irrelevant to the decision at hand. If that is the attitude one takes

towards non-causal financial consequences in one case, one must also take the same

attitude in the Sleeping Beauty case. So Thirders who appeal to the Causal Approach

to maintain 2 : 1 are fair for the Early Bet lose the support of the independent argu-

ments in favor of these odds.
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Thus, Thirders who are causal decision theorists can avoid getting Dutch Booked

in the Sleeping Beauty case as Briggs (2010) points out. However, that point cannot

be appealed to by the same Thirders in defense of their position: it is a defense that

is available only to those who are not causal decision theorists. Notice how peculiar

the situation is. I, who do not believe in causal decision theory, am impressed by the

independent arguments in favor of 2 : 1, and I can recommend that Thirders embrace

causal decision theory on the grounds that doing so will lead to good financial results

for the Early Bet. But I must also hold that Thirders who embrace causal decision

theory are making a mistake. A happy mistake, to be sure, since the mistake leads to

the avoidance of being Dutch Booked, but I who am impressed by the independent

arguments must reject causal decision theory as the correct approach to decision

making even if at times it delivers the right results.

This means that Thirders who accept the independent arguments in favor of 2 : 1

and also embrace causal decision theory have an inconsistent position: in accepting

the independent arguments, they embrace a theory they must reject.

Of course, Thirders might embrace causal decision theory not because of the in-

dependent arguments, but because of some other considerations. But that weakens

their dialectical position. Halfers who embrace causal decision theory have to say

that the fair odds for the Early Bet are 1 : 1 as can be seen by plugging in the numbers

in the formula above for the Causal Approach. But causal decision theorists cannot

use that as a complaint against Halfers since they cannot appeal to the independent

arguments. That means that a causal decision theorist cannot appeal to the very real

financial risks that arise from placing bets at certain odds as a consideration for or

against accepting those odds. That is not a happy position to be in.
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5. Problems for Halfers

Let us take a look at Halfers. Halfers hold that upon waking up Sleeping Beauty

ought to be as confident that the coin landed heads as that it landed tails. And when

she learns it is Monday, she ought to be twice as confident that the coin landed heads

as that it landed tails. So for Halfers, the Bookie Approach will yield 2 : 1 as fair for

the Early Bet as can be seen from the formula given above for the Bookie Approach:

k =
2× C(T )

C(H)

This is as it should be: according to Halfers, given odds k : 1 she is as confident

of losing two dollars as of gaining k dollars over the week.

As noted earlier, the Causal Approach to the Early Bet will yield 1 : 1 for Halfers

but Halfers have a straightforward explanation why the Bookie Approach is to be

favored: In the Early Bet, the situation is such that if Sleeping Beauty loses the Early

Bet once, she will lose it twice, but she will win only once. The Causal Approach,

but not the Bookie Approach, fails to take this into account because the first los-

ing bet does not cause the second losing bet. This results in the Causal Approach

undercounting the net losses in case the coin landed tails.

You will notice that the odds Halfers should accept on the Bookie Approach is

not 1 : 1 even though she is as confident that the coin landed heads as that it landed

tails. Is that not in conflict with the Basic Principle? It is not. A pointed out earlier,

the Basic Principle governs the ratio between the net loss in case ¬P and the net

gain in case P . Betting odds, on the other hand, specify the ratio between the stake

for a particular bet on P and the potential net payout of that same bet. The two

can come apart because in some situations the net losses in case ¬P are different
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from the stake for a bet on P and this can happen without affecting your levels of

confidence in P and ¬P . In the example I gave earlier, the net loss was smaller than

the stake because of a government handout to losers. But one can easily think of

ways of making the net losses larger: e.g., a tax levied on punters who lose (but not

on winners).

In Sleeping Beauty’s case, she knows that the net loss she faces if the coin landed

tails is 2 dollars. Since she is as confident that the coin landed heads as that it landed

tails, the Basic Principle tells us that the net gain if the coin landed heads must be

equal to her net losses, i.e., the net gain must be 2 dollars. Since she can only make

a gain through winning the Early Bet once, the net payout for that winning bet must

be 2 dollars. Its stake is 1 dollar—the net loss of two dollars in case the coin landed

tails arises from placing this bet and another losing bet of the same price. Thus, the

odds she accepts for the bet on offer must be 2 : 1 so that she gains 2 dollars if she

wins the bet, even though she is as confident that the coin landed heads as that it

landed tails.

Bradley and Leitgeb (2006) note this point but their exposition makes it seem

as though some peculiar epistemic situation is needed to bring about a discrepancy

between the betting odds and levels of confidence. That is not so, as the government-

handout-for-losers example above make clear. What matters is that sometimes the

agent can know that the losses she faces in case ¬P are different from the stake for

the bet on P , and in such a case the Basic Principle demands that the betting odds

diverge from the ratio between the levels of confidence that ¬P and that P .

Thus, as far as the Early Bet is concerned Halfers do not have any difficulties. But

matters are different when it comes to the Late Bet. The Late Bet is a bet offered to

Sleeping Beauty upon her learning that it is Monday. She wins k dollars if the coin

17



landed heads, and loses her stake otherwise. According to Halfers, Sleeping Beauty

ought to be twice as confident of winning the Late Bet as of losing it. But this means,

given the Basic Principle, that Halfers need to hold that the fair odds for the Late

Bet are 1/2 : 1. And this is in conflict with the result of the independent arguments

that everyone should accept that the fair odds for the Late Bet are 1 : 1.

Halfers do not seem to have much room to maneuver here. Insisting that 1/2 : 1

are in fact fair would require denying the cogency of the independent arguments.

Halfers could do that by insisting on causal decision theory. But that would require

accepting that 1 : 1 are the fair odds for the Early Bet which does not help the

Halfers’ case.

Do Halfers have grounds for rejecting 1/2 : 1? That looks difficult as pointed out

by Draper and Pust (2008). As noted above, Halfers can explain why the Bookie

Approach is to be favored over the Causal Approach in the case of the Early Bet. But

no such explanation is available in the case of the Late Bet. The bet is placed exactly

once during the week—on Monday—and Halfers hold that Sleeping Beauty ought

to be twice as confident of winning it as of losing it. What goes wrong in concluding

that therefore the fair odds are 1/2 : 1?Without an answer to this, Halfers would only

have an ad hoc rejection of an otherwise perfectly acceptable way of determining

fair odds.

Thirders do not have a problem with the Late Bet. Since, according to them, upon

learning it is Monday Sleeping Beauty ought to be as confident that the coin landed

heads as that it landed tails, she ought to accept 1 : 1 as fair—she is as confident of

winning the Late Bet as of losing it. But, as argued above, Thirders have difficulties

with the Early Bet.

The upshot so far is that Halfers have no difficulties with the Early Bet but have
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difficulties with the Late Bet. Thirders, on the other hand, have difficulties with the

Early Bet but no difficulties with the Late Bet.

6. Another Problem for Both: Maximin Approach

I want to raise one more concern for both Halfers and Thirders. Consider again the

Early Bet and how Sleeping Beauty ought to go about choosing the odds. Here is an

approach that I will call theMaximin Approach. Sleeping Beauty knows that if it is

in fact Wednesday, her choice of odds makes no difference to the overall outcome:

she will lose the bet on Wednesday and therefore add to her losses. The only chance

she has of improving her prospects are on Monday. So she ought to choose odds

that are the right ones in case it is in fact Monday. Let her assume that it is Monday

and figure out what odds to accept. Notice that this is not to assume that the bet

is the Late Bet discussed earlier; the case still involves her memory being erased

later and her being offered the same bet on Wednesday in case the coin landed tails.

On the assumption that it is Monday, she knows she will lose two dollars in total if

she loses the bet on Monday (a dollar on Monday and another on Wednesday); and

she knows she will gain a total of k dollars if she wins the bet on Monday. What

are the levels of confidence that Sleeping Beauty should use to decide what odds to

accept on the assumption that it is Monday? The natural response is that she ought

to proceed as if she knows that it is Monday. Let UM(T ) and UM(H) be the updated

rational levels of confidence in T andH respectively given knowledge thatM . The

Basic Principle tells us:

k : 2 = UM(T ) : UM(H)
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and thus,

k =
2× UM(T )

UM(H)

This yields k = 2 for Thirders, and k = 1 for Halfers. So the fair odds for the

Early Bet according to the Maximin Approach are 2 : 1 for Thirders, and 1 : 1 for

Halfers.

Notice that the Maximin and Bookie Approaches deliver different verdicts for

Thirders and Halfers—the Bookie Approach delivers 4 : 1 for Thirders and 2 : 1

for Halfers. In general, the kind of reasoning typified by the Maximin Approach

does not deliver the same result as the kind of reasoning typified by the Bookie Ap-

proach. However, in this particular case, the two should deliver the same result. Let

me explain. On the Bookie Approach, one looks at the expected gains and losses

over the whole week and chooses potential net gains for the bet on Monday so that

Sleeping Beauty does not have to expect to be down over the whole week. This

just is to choose the odds for the bet on Monday so that the potential gains from

winning on Monday can offset the potential losses from losing both on Monday

and on Wednesday. And this is precisely what the Maximin Approach seeks to do

as well. On the face of it, then, the Bookie and Maximin Approaches ought to de-

liver the same result. Thirders and Halfers must therefore explain how it is that the

Bookie and Maximin Approaches come apart in this case. Moreover, since 2 : 1

do seem to be the actual fair odds for the Early Bet, Thirders need to argue that the

Maximin Approach gets it right and not the Bookie Approach; Halfers, on the other

hand, need to argue the opposite. It is not clear to me what either argument would

look like. Most likely, it would have to be an argument to the effect that the notion

of offsetting potential losses is ambiguous so that offsetting potential losses in the
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Bookie Approach is something different from offsetting potential losses in the Max-

imin Approach. But the two senses of offsetting will have to be produced first and

then Thirders must give an argument in favor of one over the other as relevant for

choosing the odds, and Halfers have to argue that Thirders have it backwards. The

prospects for any such argument seem dim. As I pointed out, for this particular case

at hand the Bookie and Maximin Approaches seem to be two ways of describing

the same strategy. One must suspect that Thirders and Halfers do not have coherent

positions.

7. Double Halfers to the Rescue

Let me now turn to the Double Halfer position. Discussing the virtues of the Double

Halfers position will be brief. It is just that they do not face the difficulties the others

face.

Let me restate the formulae for the fair odds of the Early Bet that different ap-

proaches yield.

The Causal Approach:

k =
C(T )

C(H)

The Bookie Approach:

k =
2× C(T )

C(H)

The Maximin Approach:

k =
2× UM(T )

UM(H)
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Double Halfers hold that C(T ) = C(H) and that UM(T ) = UM(H). Thus, for

them the Causal Approach results in 1 : 1 as fair for the Early Bet, the Bookie

Approach results in 2 : 1, and the Maximin Approach in 2 : 1 as well.

Double Halfers can reject the result of the Causal Approach on the same grounds

as Halfers: the Causal Approach fails to take into account that if Sleeping Beauty

loses the Early Bet once, she will lose it twice. The Bookie Approach and Maximin

Approach both result in 2 : 1 so that there is no need to worry about which Approach

is to be preferred, and, crucially, the result is in line with the independent arguments

for 2 : 1 as fair for the Early Bet.

What about the Late Bet? Since Double Halfers hold that, upon learning that it

is Monday, Sleeping Beauty ought to be as confident that the coin landed heads as

that it landed tails, Double Halfers can hold unproblematically that the fair odds for

the Late Bet must be 1 : 1.

Double Halfers get it right for the Early Bet on both the Bookie, and Maximin

Approaches. Double Halfers also get it right for the Late Bet. This means they do not

face the explanatory burdens and worries about coherence that Thirders and Halfers

face. Surely, that is a reason to favor Double Halfers over Thirders and Halfers.

Before concluding, let me remark a little on the nature of the arguments against

Halfers and Thirders. My arguments are not Dutch Book arguments because they

do not show that either position must recommend odds that are susceptible to Dutch

Books. Both of them could appeal to the independent arguments to arrive at the

correct odds for both the Early and Late Bets. After all, those arguments are inde-

pendent of the particular position one takes on Sleeping Beauty’s rational levels of

confidence during the week of the experiment. The trouble for the two positions

arises when one considers alternative, seemingly fine, ways of arriving at the fair
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odds. In particular, trouble arises when one thinks in terms of expected utility. Third-

ers need to take a particular approach known as causal decision theory in order to

arrive at the correct odds for the Early Bet. In doing so, they must reject the indepen-

dent arguments as fallacious and thereby lose an important ground for holding the

correct odds really are correct, or else live with a contradiction in their overall view

of the Sleeping Beauty problem. Halfers can arrive at the correct odds for the Early

Bet by rejecting causal decision theory, but that does not enable them to arrive at the

correct odds for the Late Bet via considerations of expected utilities. So Halfers will

be stuck with arguments that deliver conflicting verdicts as to the fair odds for the

Late Bet. They could, of course, embrace causal decision theory and insist that the

independent arguments get it wrong, but that is hardly a convincing position. The

points regarding the Maximin Approach compound the difficulties with overall co-

herence for both Thirders and Halfers. The fundamental problem that my arguments

show is that of ensuring that various seemingly fine approaches to the fair betting

odds deliver the same answers, and to explain satisfactorily which approaches must

be rejected in cases they do not all arrive at the same fair odds. As pointed out, Dou-

ble Halfers have the easiest time as far as handling the betting odds in the Sleeping

Beauty case is concerned.

8. Conclusion

I have argued that neither Thirders nor Halfers can give satisfactory accounts of what

the fair betting odds are for the Early Bet and the Late Bet. Only Double Halfers

avoid the problems that Thirders and Halfers face. And that is a reason to favor

Double Halfers over Thirders and Halfers. Of course, this need not be decisive.

There are objections to Double Halfers that I have not addressed at all. In particular,
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Double Halfers must recommend a deviation from conditionalization when it comes

to Sleeping Beauty’s updating her levels of confidence upon learning it is Monday

and this requires further defense. Perhaps, the Double Halfer position is not the

best position everything considered. But the betting odds considerations presented

here in favor of Double Halfers, and against Thirders and Halfers, must be part of

everything to be considered.

References

Bostrom, Nick. 2007. Sleeping Beauty and Self-location: AHybridModel. Synthese

157 (1): 59–78.

Bradley, D., and H. Leitgeb. 2006. When betting odds and credences come apart:

more worries for Dutch book arguments. Analysis 66 (2): 119.

Briggs, Rachael. 2010. Putting a Value on Beauty. Oxford Studies in Epistemology

3:3–34.

Cozic, Mikaël. 2011. Imaging and Sleeping Beauty: A Case for Double-Halfers.

International Journal of Approximate Reasoning 2 (52): 137–143.

Draper, Kai, and Joel Pust. 2008. Diachronic Dutch Books and Sleeping Beauty.

Synthese 164 (2): 281–287.

Elga, Adam. 2000. Self-Locating Belief and the Sleeping Beauty Problem. Analysis

60 (2): 143–47.

Hitchcock, Christopher. 2004. Beauty and the Bets. Synthese 139 (3): 405–420.

24



Horwich, Paul. 1987. Asymmetries in Time: Problems in the Philosophy of Science.

Cambridge, Mass: MIT Press.

Lewis, David. 2001. Sleeping Beauty: Reply to Elga. Analysis 61 (3): 171–176.

Meacham, Christopher J. G. 2008. Sleeping Beauty and the Dynamics of De Se

Beliefs. Philosophical Studies 138 (2): 245–269.

Pust, Joel. 2012. Conditionalization and Essentially Indexical Credence. The Jour-

nal of Philosophy 109 (4): 295–315.

25


	Introduction
	Fair Odds
	Betting Odds Considerations for Sleeping Beauty
	The Early Bet
	The Late Bet

	Problems for Thirders
	Problems for Halfers
	Another Problem for Both: Maximin Approach
	Double Halfers to the Rescue
	Conclusion

