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Abstract We extend Barbanera and Berardi's symmetric lambda calcu-
lus [2] to second order classical propositional logic and prove its strong
normalization.

1 Introduction

In late 1980’s, T. Griffin’s observation [5] on relation between the law of
excluded middle and control operators in programming languages stimu-
lates general interest in reduction rules for classical logic. In such studies,
one often encounters non-determinacy, in the sense that the same deduction
has different normal forms. The most well known example arises when we
consider cut-elimination of sequent calculi. Another example occurs in a
Ap-calculus with symmetric structural reduction rules, which Parigot sug-
gests in order to ensure that normal forms of the natural number type are
Church numerals [6].

In spite of these examples, non-deterministic reduction for classical
logic do not seem well studied except some systems for propositional or
first order logic [1], [2], [3]. One of the reasons of this situation is that, to
the author’s knowledge, strong normalization of such calculi for higher or-
der logic is not known. In this paper, we prove strong normalization of an
extension of Barbanera and Berardi’'s symmetric lambda calculus to second
order classical propositional logic.

Our method of proving strong normalization is, as one may expect, Tait-
Girard’s method of reducibility candidates. Parigot has already used such a
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method in his proof of strong normalization for a second opgecalculus
[7]. Girard also gives a proof of strong normalization of classical linear
logic using an adaptation of Tait-Girard's method to Tait calculi [4]. Unfor-
tunately, their methods, which one could consider a negative translation, do
not seem to work on a non-deterministic calculus like a symmetric lambda
calculus. Barbanera and Berardi discover a suitable definition of reducibil-
ity for such a calculus. But since their notion of reducibility of a formdla
mutually depends on the notion of reducibility of its negatibh, charac-
terization of reducibility candidates is not obvious. We will overcome this
difficulty by extending Barbanera and Berardi’s construction of reducibility
candidates to infinitary logical connectives and defining reducibility candi-
dates as the smallest set closed under such construction.

The organization of this paper is the following. In Section 2, we in-
troduceAgym, an extension of Barbanera and Berardi’s symmetric lambda
calculus. Section 3 is devoted to prove its strong normalization.

- 9
2 Description of)\sym
In this section, we present,,,, a symmetric lambda calculus for second
order classical propositional logic.

Definition 1 (Proper types) Type variablesare symbolsX;, Xo,---. We
useX,Y, - - as metasymbols of thefroper typegdenotedA, B, A;, - - )
are defined inductively as follows.

1. If X is type variable, X and X are proper types.

2. If A1 and A, are proper typesA; A A, and A, V Ao are proper types.

3. If A is a proper type andX is a type variableV.X A and 3X A are
proper types. These constructs bidn A.

NegationA+ for each proper typed is defined by De Morgan’s law and
double negation elimination. TheubstitutionA[B/X] is defined as the
usual manner.

Definition 2 (Types) Types(denotedC, D, C;, - - -) are proper types and
the symboll..

Definition 3 (Terms) Variables of a proper typd are symbols:{', z4', - - -.
We user, y, - - - as metasymbolderms of typeC (denoted:, u, t;, u; - - -)
is defined inductively as follow.

1. If z is a variable of a proper typel, x is a term of typeA.
2. If t; is a term of a proper typel; for i = 1 and2, (t1,t2) is a term of
type A A A
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3. If t is a term of a proper typel; for i = 1 or 2, ;(t) is a term of type
A1V As.

4.1f t is a term of a proper typel and does not contain a free variable
whose type haX as a free type variabld/ X .t is a term of type/ X A.
This construct bind< in ¢.

5. If t is a term of a proper typel[B/ X], (B)t is a term of typel X A.

6. If ¢, is a term of a proper typel andt, is of AL, ¢; xt, is a term of type
1.

7. Iftis a term of typel andx is a variable of a proper typdl, Az.t is a
term of typeAL. This construct binds in t.

Thesubstitutiont[B, /X1, ---,u1/x1, - - | are defined as a term obtained
fromt by replacing each free occurrence &f andx; by B; andu;.

Definition 4 (Reduction rules) Thebasic reduction rules ofZ,,, are the
following.

(8) (Ax.t) x u = t{u/z] tx (Azr.u) = ult/x]
(m) (t1,t2) *x oy(u) = t; x u oi(t) * (u1,ug) = t*u;
(IT) X t* (Au=t[A/X]xu (A)t*IIXu=t*xu[d/X]
(n) Art*x =t Aoz xt =1
(T'riv) Et] =t

where inp-rules, z is not a free variable of and inTriv -rules, the types
oft, E[—] are L and E[—| does not bind any free variables of
Theone-step reduction relatiqdenoted=-) is defined as the compati-
ble closure of the basic reduction rules. Tieeluction relatiorfdenoted=-)
is defined as the reflexive and transitive closure of the one-step reduction
relation.

L a
3 Strong normalization of A7, .,
Definition 5 (Reduction sequence, strong normalizabilityfor a termt,

areduction sequence ofs defined as a sequence of tering,, - - - where
t; = tandt; = t;4q forall i = 1,2,---. If all reduction sequences of
are finite,t¢ is strongly normalizable

Theorem 1All terms of)\2, = are strongly normalizable.

sym

The rest of the paper is devoted to prove Theorem 1. In Subsection 3.1,
we define operators on sets of terms which correspond logical connectives.
The set of reducibility candidates is defined as the smallest set closed under
these operators in Subsection 3.2. Finally, we prove Theorem 1 in Subsec-
tion 3.3.
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3.1 Interpretations of logical connectives

Va,Ta, Ns are defined as the sets of variables, terms, strongly normal-
izable terms of typed respectivelyZ, N/ are the unions of alls, V4. I
denotes non-empty sets of indices. If a térimstrongly normalizabley(t)

is the maximal length of reduction sequences. of

Definition 6 1. For3 C Ty, B+ isthe set{t € T,.|Vu € B, t xu € N'}.

2. For 8 C Ty, L(B) is the sef{ \x.t|z € V4,Vu € B, t[u/x] € N'}.

3. Neg 4(B) for B C T4 denotes the sét, U 8+ U L(p)

4. Pair(f1, §2) denotes the s€i(t1,t2)[t1 € F1,t2 € B2}

5. Let(B;)ics be a family of proper types and@;);c; be a family ofs; C
Ta(B;/x)- We define as follows.

116 :={IIX.t € TyxalVi € I,t[B;i/X] € B;}
iel

Definition 7 Let 8; C 74, for i = 1,2 and Negg, 14,(5) be Va;na, U
Pair(81, 82) U L(B) for 8 C Ty, 14,2 51 A B2 and By V (3, are defined
as follows.

B1 A Bz := the least fixed point of Negg »g, 0Neg 4 1\, 4,1
B2V P = Neg g,y 4, (817 A B2T)

Remark.Since Negg, 14, and Neg, 1, 4,1 are decreasing operators
on countable sets\egg 5, oNeg, 1, 4,1 IS the increasing operator on
countable sets. Let

X, :=Negg rs, oNegAlLvAQL( U X,)
nu<v

for an ordinaly. ThenX,,, is the least fixed point of the operator, wherge
is the first uncountable ordinal.

Definition 8 Let(B;);c; be a family of proper types and; );c; be a family
of B; C Tap,/x)- Neg/\ﬁi(ﬂ) is defined asyx 4 U [I;c; 5 U L(B) for
B C T5x 41. Then\,;c; B; andV/,c; B; are defined as follows.

/\ B := the least fixed point of Neg/\ 5, © Neggy 41
el

\ Bi = Negsx a(Aies Bi)

el
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Remark.Similarly to the above remarkX,,, is the least fixed point of
Neg/\ 5, © Neggy 41 if we define

Xy = Neg p 5 0 Negay a1 U X
p<v

for an ordinalv.
Lemma 1 The following hold.

1. Letd # 5; C Ny, fori = 1,2. Supposes;, 32 are closed under the
reduction relation. Then if € 3, for somei € I, o5(t) € (81 A B2)*.

2. Let(B;);cs be a family of types an@3;);c; be a family of) # 3; C
Nai,/x)- Supposes; is closed under the reduction relation for each

i € I. Thenift € B;- for somei € I, (B;)t € (Aies Bi)*

Proof We only prove 2. We provéB;)t € X, by induction onw;. (X,

is defined as in Remark of Definition 8.) It suffices to prove that for each
u € X, (B;)t xu € N. Let us examine the different possibilities for
Note thatu € N from the fact3; c V.

First, we consider the case wherec Vyx 4. The thesis holds because
teN.

The case where € [[,c; 5;. Then we haver = I1X.u; andVi € 1,
u1[B;/X] € B;. We examine the different possibilities for one-step reduc-
tion of (B;)t * u.

1. The case wher@B;)t x u =1 (B;)t' « ' fort = ¢’ andu = «’. Since

t' € B+ andu’ € [,/ Bi, we have the thesis by induction hypothesis

onw(t) + w(u).

2. The case wheréB;)t «x u =1 t * u1[B;/X]. Sinceu,[B;/X] € f;,
tﬂ<u1u%/)(]E.Aﬁ

3. (Bj)t xu =1 s ands is a subterm of or u. Sincet andu are strongly
normalizable, their subtermis also strongly normalizable.

The case where € L(Negsx 1 (U,<, X)) Letu = Az.uy. We
examine the different possibilities for one-step reductio(ft * w.

1. The case wheréB;)t « \z.u; =1 (B;)t'  Az.u). Sincet’ € 3+
and Ar.uy € L(Negax a1 (U,<, X)) hold, the thesis follows from
induction hypothesis on(t) + w(uq).

2. The case wher@B;)t « u =1 u;[(B;)t/x] by (3) or (n). By induction
hypothesis,

(B2>t S m Xul C NegaXAJ_( U Xﬂ)
p<v p<v

From the hypothesis af, we have the thesis.
3. (By)t *u =1 s ands is a subterm of or u. Sincet andu are strongly
normalizable, their subtermis also strongly normalizable.
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3.2 Reducibility candidates

Definition 9 For a proper typeA, we definexy C 74 andaz C 741 as
follows.

a4 := the least fixed point of Neg 4 o Neg 4.1
aa = Neg 41 (va)

Remark.We have the factvy = Neg,(@a) andaa = Negy.(aa)
from the definition above.

Definition 10 For each proper typel, the setR 4 of reducibility candidates
is defined by mutual induction as follow®.denotes the union of aR 4.

l.ay € Rqanday € Ral.

2.1t 3, € Ra, fori =1,2, 51 A B2 € Rapa, andBi V B2 € Ra,va,-

3. Let(B;);cs be afamily of proper types. H; € R 4,/ x) for eachi € I,
Nier Bi € Ruxa andV,¢; B; € Raxa.

Proposition 11f 3 € R4, thenV4 C 8 C Na.

Proof /5 can be writtenNeg, (Negy()) where fori = 1,2, Neg, is one

of Negpg, Negg rs,» Negg, v, Neg/\ﬁi, Negvﬁi. the factV, C § and
Neg,(y) # 0 follow. From induction hypothesis on the construction of
/3 and the fact thaNeg,(v) is non-empty,V4, Negy (7)™, £(Negy(v)),
Pair(f1, f2) in the case off = (31 A B2 andIlj; inthe case off = A, ; G;
are subsets of/. We haveNeg, (Neg, (7)) CN. O

Proposition 2 For 5 € R 4, the following hold.

1. G is closed under the reduction relation.
2.6+ € Ry andptt = .

The proof of Proposition 2 is induction on the construction3ofOn
each induction step, first we establish the clause 1 of Proposition 2 and
next prove the clause 2 of the proposition. Our proof is divided to Lemmata
2,3,4.

Lemma 2 a4 and@z satisfy the clauses 1, 2 of Proposition 2.
Proof We have the equation
o = Neg,(@z) = VaUaa+ U L(an).

V4, @a+ are closed under the reduction relation. Moreover,df £(az)
andt =, t, thent € @xs' in the case where a-rule is applied to the
outermost\ of ¢, ort € L(az). The first clause of Proposition 2 fary
follows.
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Next, we provexvs - € R 4. . Eventually, we prove that 4 is equal to
aa. Sinceas = Neg 41 (aq), aat C @z immediately follows. We prove
the converse.

Lett € aq,u € ay. We prove that xu € N. We consider the different
possibilities fort.

The case wheree V.. Sinceu € N/, we havet x u € N.

The case wheree a4+. This implies the thesis sinaec o 4.

The case wheree L(ay). Lett = Az.t;. We consider the possibilities
for one-step reduction dfx w.

1. t xu =1 t' x /. By the similar discussion of the proof of the clause 1,
t' € L(ay) ort’ € ast andu’ € ay. From induction hypothesis on
w(t) + w(u), the thesis follows.

. t*u =1 t1[u/x]. From hypothesis on

3. u = \z.up andt x u =1 uy[t/x]. Sinceu € @aat oru € L(agz), we

haveu,[t/z] € N.

4. txu =1 s ands is a subterm ot or u. Sincet andwu are strongly

normalizable, their subtermis also strongly normalizable.

N

Forar, the proof is similar. O

Lemma 3If 3 C 74 is equal to one ofy A B2, 81 V B2, A\ Bi, V Bi and 3;
satisfies clauses 1, 2 of Proposition 2, th#is closed under the reduction
relation.

Proof First, we consider the case whefeis equal tos, vV (2 or \/ 5.
For somey € R, 8 = Neg,(v). SinceV, andy~ are closed under the
reduction relation, we consider only the case where L(v). Lett =
Az.t1. We examine the different possibilities for one-step reductian of

1. dz.t1 = )\.’Etll andt; = tll. Then)\x.t’l € L(’}/)
2. t = Az.u* x andt = u. Sincet € L(v),u € v-. Hencet' € v+ C

Neg(v) = .

Next, we consider the case whefe= A §;. SinceV4 andj3; are closed
under the reduction relation, and from a discussiorCfNeg 4. (/3)) sim-
ilar to the above, it suffices to prove thathf.t « = € £(Neg 4. (3)) and
Ax.t * x =1 t by (), we havet € 3. Note that\z.t x © € L(Neg 4. (3))
impliest € Neg 41 (ﬂ)L. Sincet has a typed whose outermost connective
is universal, we have the following possibilities.

1. t € V4. By Proposition 1t € (.

2. t =11X.t;. We provel; [B;/ X] € ;. Letu € B;. From Lemma 1, we
have(B;)u € (A 3)* C Neg,.(8). By hypothesis on , ¢ x (B;)u €
N. Hencet[B;/X] *u € N. This means;[B;/X] € 3-+. g+t is
equal tog; from hypothesis or;.
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3. t = Az.t;. This impliest € £L(Neg 4. (3)).
The case wherg = (51 A (35 is treated similarly. O
LemmadLlet [, € Ra, for k = 1,2, (B;)icr be a family of proper types

and3; € Ryp,/x) fori € I. Assume thaBy, 3; satisfy the clauses 1,2 of
Proposition 2. Then we have the following equations.

(Bi A B)t =BtV Bt (1)
(BLV B)t =Bt A Bt (2)
(AB) = Vier B @3)
el
(VB = Nier B (@)
el

Proof We will prove (3) and (4). The proofs of (1) and (2) are similar.
The proof of (3). Since/ 8;= = Neggy a1 (ABH) and G-+ = 3,

(ABi)*" C VBt Hence, it suffices to prove thatife \/ 3;* then for all

u € A\Bi, t*u € N. We consider only the case wheree £(A ;). Let

t = Az.t1. Note that if 3 € R satisfies the clauses of Proposition 2, the

same hold fo+.

1. t xu =1 Ax.t] xu/ andt; = t}, v = «/. From Lemma 3, we have
Az.t) € \/ B+ andu € A ;. By induction hypothesis om(t) 4 w(u).

2. t*u =1 t1[u/x]. From hypothesis on

3. u = \y.uy andt x u =1 u [t/z]. From the fact, € £(\/ 6;4).

4. t xu =1 s ands is a subterm ot or u. Sincet andu are strongly
normalizable, their subtermis also strongly normalizable.

The proof of (4). First we prove\ 5;- c (V @«)L. For this purpose,
it suffices to prove that if € A3 andu € \/ §; thent xu € N. We
consider only the case wheies £(A ;). Letu = Az.u;. We prove that
if t*u =1 v,v €N as follows.

1. v = Az +t' anduy = u), t = t'. By Lemma 3, we havel € A 5;*.
From induction hypothesis an(u) + w(t).

2. v = uy[t/z]. From hypothesis of.

3.t = \y.t; andv = t1[u/y]. We haveA 3+ = Neg 5, (V 1), since

ABit = Neg p g,+ 0 Neggx a1 (A Bit) andV B = Negsx 41 (A Bi™).
From the shape af ¢ € L(\/ ;). Hence we have [u/y] € V.
4. The case whereis a subterm of or w. From the fact,u € NV.

Next, we prove(\/ 6;)" C AB:t. Lett € (V3;)*. We will prove
t € \ B;* by consideration of the different possibilities for the shape of
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1.t € Vyyar. SinceVyy o CABiL t € NGt

2.t = ITX.t;. Assumeu € B;. From Lemma 1,(B))u € (AB+)*.
We havet * (B;)u € N from the fact(A 5;5)t < V 6;. Sincet
(B;)u = t1[B;/ X] * u, we havel1[B;/ X] x u € N. Hence we can see
t1[B;/X] € p;* and therefore;, € I153;.

3. t = \z.t;. This impliest € £(\/ 3;). SinceL(V 3;)) € A Bi~, we have
te /\BZJ' O

Proof (Proof of Proposition 2By induction on the construction ¢f, using
Lemmata 2, 3,4. O
Lemma5Let3 € R4 andt € £(B). Thent € 3+.

Proof Sincef* € R can be writterNeg, (3), whereNeg, is one ofNeg 4,
Negg, ng,» Negp 5, we have the thesis.O

3.3 Proof of Theorem 1

Definition 11 Aninterpretatiore is a map from the set of type variables to
R. We defing[3/X] as an interpretation which satisfi€$s/ X|(X) = 3
and¢[B/X](Y) =¢(Y) forY # X. ¢ is extended to arbitrary types using
the following clauses.

§(L) = N1
(X = ()
(Al A Ag) = (A1) A f(Az)

)
§(A1V Az2) = £(A1) VE(A2)

£V A):/\ﬁenf[ﬁ/x]( )
§(3XA) = Vaer £[8/X](4)

Lemma 6 Let A, B be proper types and be an interpretation. Then, we
have

§[6(B)/X](A) = (A[B/X]).
Especially£(B)* = £(BL).
Proof By induction on the construction of. Only the case wherd = X+

is non-trivial. In this case, we have the thesis using Lemma 4 repeatedly.
0

Proposition 3 Lett be a term of typed, a:’f‘l, ..., 22 be the free variables
oft, X1, -, X, be the free type variables 6and¢ be an interpretation.
Assume that for eac;, B; is a proper type which satisfi€$X;) C 75,

and a termi; € £(4;) is given for each:;"". Then

t[Bl/Xla o 7Bm/met1/xi41a Ty tn/xﬁﬂ] € é-(A)
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Proof Induction on the construction af In the following proof,3, @ de-
note BB /X1, - -], u[B1/X1,---,t, /i, -] for each typeB and term
u.

tisthe variablez:f‘f. The thesis follows from; € £(A;).

A = A} v A, andt = o4(t}). By induction hypothesis, we ha\{g €
£(AY). By Lemma 1g4(t) € (£(A})" A&(A)H) . By Lemma 4, we have
0ilt]) € £(AY) V E(AY).

A = A} A A andt = (8], t5). By induction hypothesis, for eachwe
havetz € £(4;). The thesis follows from the definition gf A}) A £(A%).

A = 3X A} andt = (B)t). We havet| € ¢(A}[B/X]) by induction
hypothesis. By Lemma 6, we havee ¢[¢(B)/X](A4}). By Lemma 1,

(B)ty € (\ €[8/X)(AD)".

BER

From Lemma 4,

(B)ty € \/ €18/X](AY).

BER

A = VXA, andt = I1X.t}. We can safely assume thatis not con-
tained inBy,---, B, andtq,...,t, as a free type variable. By induction
hypothesis and the fact that € ¢[3/X] for eachl < i < n, we have

t[B/X] € €[8/X](A}) for each proper typ& andj3 € R . This implies

nx#e ) €B/X)(A)).

BER

t = A\z.t}. We can safely assume thats not contained iy, - - - , ¢, as
a free variable. By induction hypothest§[u/z] € A for eachu € £(AL).
This impliesiz.t] € L£(£(A)*). By Lemma 5, we have e £(A).

t = th « t,. By induction hypothesis, we havé € ¢£(A;) andt} €
€(Ay ). The thesis follows from the fag(A; ) = £(4,)". O

Proof (Proof of Theorem 1In the previous proposition, 1€(X) be ax
for each type variabl& andt; = mf‘ for each free variableiAi. Then we
havet € ¢(A). From Proposition 1, it follows € N'. O
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