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【Abstract】Here algebraic Routley-Meyer semantics is addressed for two 
fuzzy versions of the logic of relevant implication R. To this end, two 
versions Rt and RT of R and their fuzzy extensions FRt and FRT, respectively, 
are first discussed together with their algebraic semantics. Next algebraic 
Routley-Meyer semantics for these two fuzzy extensions is introduced. Finally, 
it is verified that these logics are sound and complete over the semantics.
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1. Introduction

As is well known, fuzzy logic deals with the vagueness of our 
natural language and relevance logic the relevance in our 
arguments or implications. As a common area of these two logics, 
Yang (2008; 2009; 2015b) introduced fuzzy-relevance logic. 
Especially, he dealt with fuzzy-relevance logic systems related to 
the well-known relevant logic system R and its neighbors in his 
(2015b).

However, the completeness results for the logic systems were 
just provided algebraically, although the completeness results for R 
were established both algebraically and relationally. One interesting 
fact is that binary Kripke-style semantics for fuzzy R have been 
provided by Yang (2012; 2019). This ensures that one can 
provide a relational semantics for fuzzy R. But he did not 
introduced Routley-Meyer semantics for fuzzy R. 

Routley-Meyer semantics was first introduced as a ternary 
relational semantics for relevance logics (see Routley & Routley 
(1972a; 1972b; 1973)). In particular, Dunn (1986) dealt with this 
semantics for R. In the early 2010s, Yang (2013) noted that there 
exist at least three versions of R, i.e., R0 (the R without 
propositional constants), Rt (the R with propositional constants t, 
f), and RT (the R with propositional constants t, f, T, F). 

Note that the Routley-Meyer semantics introduced by Dunn 
(1986) is just for R0. Each Routley-Meyer semantics for Rt and 
RT, respectively, was instead introduced by Yang (2015a). 
Especially, Yang (2012; 2019) extended Rt to FRt, the least fuzzy 
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extension of Rt, and provided Kripke-style semantics for it. Then, 
since Routley-Meyer semantics is just a ternary generalization of 
the so-called Kripke semantics, these series of facts give rise to 
the following question:

● Can we introduce Routley-Meyer semantics for FR, in 
particular for FRt?

As a positive answer to this question, we provide such 
semantics for two fuzzy versions of R, i.e., the fuzzy extensions 
of Rt and RT. To this end, in Section 2, we first introduce the 
systems FRt and FRT as fuzzy versions of Rt and RT, 
respectively, define the corresponding algebraic structures, and 
establish algebraic completeness for them. In Section 3, we first 
introduce Routley-Meyer semantics for these systems and then 
prove that these logics are complete with respect to the 
Routley-Meyer semantics. More precisely, we provide algebraic 
Routley-Meyer semantics for the logics in the sense that 
completeness results are indirectly provided using algebraic 
completeness of the logics.

2. Preliminaries: logics and algebraic semantics

In this section, we introduce FRt and FRT as fuzzy extensions 
of Rt and RT, respectively. First, the language for FRt is a 
countable sentential language with FOR (the set formulas) 
inductively constituted from AS (a set of atomic sentences), 
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constant f, connectives ∨, ∧, →, and the defined connectives as 
follows: t := f → f; Pt := P ∧ t; ～P := P → f; P ↔ Q := (P 
→ Q) ∧ (Q → P); P & Q := ～(P → ～Q). The language for 
FRT is obtained from the language for FRt by adding constant F 
together with the defined connective T as F → F. 

The other notations and terminology for R ∈ {FRt, FRT} are 
as usual. We introduce R as a consequence relation ⊢ in Hilbert 
style.

Definition 2.1 (i) (Yang (2012)) FRt is axiomatized by the 
axioms and rules below:1)

A1. P → P  (SI, self-implication)
A2. (P → Q) → ((Q → R) → (P → R))  (SF, suffixing)
A3. (P → (P → Q)) → (P → Q)  (CR, contraction)
A4. (P → (Q → R)) ↔ (Q → (P → R))  (PM, permutation)
A5. (P ∧ Q) → P,  (P ∧ Q) → Q  (∧-E, ∧-elimination)
A6. ((P→Q)∧(P→R)) → (P→(Q∧R))  (∧-I, ∧-introduction)
A7. P → (P ∨ Q),  Q → (P ∨ Q)  (∨-I, ∨-introduction)
A8. ((P→R)∧ (Q→R)) → ((P∨Q)→R) (∨-E, ∨-elimination)
A9. (P∧(Q∨R))→((P∧Q)∨(P∧R))  (D, distributivity)
A10. P ↔ (t → P)  (PP, push and pop)
A11. ～～P → P  (DNE, double negation elimination)
A12. (P → Q)t ∨ (Q → P)t (PLt, t-prelinearity)
P → Q, P ⊢ Q (mp, modus ponens)

1) A6, indeed, is redundant in FRt. However, we introduce it so as to verify 
that Rt is the FRt omitting A12. Notice that the system deleting A6 and 
A12 is not Rt (cf see Anderson & Belnap (1975), Anderson, Belnap, & 
Dunn (1992), Dunn (1976)).  
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P, Q ⊢ P ∧ Q (adj, adjunction).
(ii) FRT is an axiomatic expansion of FRt with the constant F 

and its corresponding axiom:
A13. F → P.

The axiom A12 is needed for linearity. Notice that in 
mathematical fuzzy logic a logic is in general called fuzzy in case 
it is complete on linearly ordered models (see e.g. Cintula 
(2006)). Notice further that the two versions Rt and RT of R are 
the FRt deleting A12 and the FRT omitting A12, respectively. 

Proposition 2.2 (Yang (2012; 2015a)) FRt proves: 
(1) (P & (Q & R)) ↔ ((P & Q) & R)  (&-ASS, 
&-associativity)
(2) (P ∧ Q) → (P & Q)
(3) (P & (Q ∧ R)) ↔ ((P & Q) ∧ (P & R))
(4) (P → (Q ∨ R)) ↔ ((P → Q) ∨ (P → R))
(5) ((P → (Q ∨ R)) ∧ (Q → R)) → (P → R)
(6) (P & Q) → (Q & P)  (&-C, &-commutativity)
(7) (P → (Q → R)) ↔ ((P & Q) → R)  (RE, residuation)
(8) P → (P & P)  (&-CTR. &-contraction)
(9) ～～P ↔ P  (DN, double negation)
(10) (P → Q) → (～Q → ～P)  (CP, contraposition)

Note that Proposition 2.2 (5) is not a theorem in Rt (see 
Dunn (1986)).

A theory over R ∈ {FRt, FRT} is a set T of formulas. We 
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define a proof in a theory T over R as a sequence of formulas, 
every member of which is either a member of T, an axiom of 
R, or derived by its preceding members using the rules in 
Definition 2.1. T ⊢ P, more exactly T ⊢  P, means that P can 

be proved in T with respect to R, i.e., there is an R-proof of P 
in T. The following is the relevant deduction theorem (RDTt):

Proposition 2.3 (Meyer, Dunn, & Leblanc (1976)) Let T be a 
theory, and P, Q formulas.

(RDTt) T ∪ {P} ⊢ Q if and only if T ⊢ Pt → Q.

We henceforth use the notations “～”, “→”, “∨”, and “∧” 
both as unary and binary connectives and as unary and binary 
operators.

Let x1 := x ∧ 1. We define the algebraic counterpart of R 
as follows.

Definition 2.4 (i) A commutative distributive pointed residuated 
lattice is a structure A = (A, 1, 0, *, ∨, ∧, →) such that:
(1) (A, *, 1) is a commutative monoid.
(2) (A, ∨, ∧) is a distributive lattice.
(3) a ≤ (b → c) if and only if (a * b) ≤ c, for each a, b, c 
∈ A  (residuation).

(4) 0 is an element in A.
(ii) A bounded commutative distributive pointed residuated lattice 

is a commutative distributive pointed residuated lattice 
satisfying:
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(1′) (A, ⊥, ⊤, ∨, ∧) is a bounded distributive lattice, where 
⊥ and ⊤ are bottom and top elements, respectively.

(iii) (Dunn-algebras, Anderson-Belnap (1975), Anderson, Belnap, & 
Dunn (1992)) A Dunn-algebra is a commutative distributive 
pointed residuated lattice satisfying:

(4) a ≤ (a * a) for all a ∈ A  (contraction).
(5) ((a → 0) → 0) ≤ a for all a ∈ A (double negation 

elimination).
(iv) (FR1-algebras) An FR1-algebra is a Dunn-algebra satisfying:
(6) 1 ≤ (a → b)1 ∨ (b → a)1 (plt).
(v) (FR⊤-algebras) An FR⊤-algebra is an FR1-algebra satisfying 

(1′). 

All the FR1- and FR⊤-algebras are henceforth called 
R-algebras. We further define negation and equivalence operations 
as follows: ～a := a → 0 and a ↔ b := (a → b) ∧ (b → a). 
Using ～ and →, one might define * as follows: a * b := ～(a 
→ ～b) and similarly, using ～ and *, → as follows: a → b := 
～(a * ～b). The class of all R-algebras is a variety denoted by 
R.

We say that an R-algebra is linearly ordered in case the 
ordering of its algebra is connected, i.e., a ≤ b or b ≤ a for 
each a, b ∈ A. For an R-algebra A, an A-evaluation (shortly 
evaluation) is a map v : FOR → A such that v(f) = 0, v(P →
Q) = v(P) → v(Q), v(P ∨ Q) = v(P) ∨ v(Q), v(P ∧ Q) = 
v(P) ∧ v(Q), (and hence v(~P) = ~v(P), v(P & Q) = v(P) * 
v(Q), and v(t) = 1).
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Let A be an R-algebra, T a theory, P a formula, and K a 
class of R-algebras. P is said to be an 1-tautology in A, shortly 
an A-tautology (or A-valid), in case v(P) ≥ 1 for each evaluation 
v; an evaluation v is said to be an A-model of T if 1 ≤ v(P) 
for each P ∈ T. By Mod(T, A), we denote the class of A-models 
of T; P is a semantic consequence of T with respect to K, 
denoted by T ⊨K P, if Mod(T, A) = Mod(T ∪ {P}, A) for each 
A ∈ K; A is said to be an R-algebra if and only if P is 
R-provable in T (i.e. T ⊢  P) implies P is also a semantic 

consequence of T with respect to the class {A} (i.e. T⊨ P), 
A an R-algebra. By MOD(R) (MODl(R) respectively), we denote 
the class of R-algebras (linearly ordered R-algebras respectively). 
Finally, we write T ⊨ 

   P in place of T ⊨    P.

First, it is verified that classes of provably equivalent formulas 
are an R-algebra. For a fixed theory T on R ∈ {FRt, FRT} and 
a formula P, define [P]T as the set of all formulas Q such that T 
⊢  P ↔ Q. By AT, we denote the set of the classes [P]T. 

Moreover, define: 1 = [t]T, 0 = [f]T, (⊤ = [T]T, ⊥ = [F]T,) [P]T 
→ [Q]T = [P → Q]T, [P]T ∨ [Q]T = [P ∨ Q]T, [P]T ∧ [Q]T = 
[P ∧ Q]T, and [P]T * [Q]T = [P & Q]T. We denote the algebra 
formed from these definitions by AT.

Proposition 2.5 (Yang (2012; 2015a)) Let T be a theory on R 
∈ {FRt, FRT}. Then AT is an R-algebra.

Proof: We just consider the t-prelinearity condition (6). Let T 
⊢  (P → Q)t ∨ (Q → P)t. Then, since [t]T ≤ (([P]T → [Q]T) 
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∧ [t]T) ∨ (([Q]T → [P]T) ∧ [t]T), one can ensure that (6) 
holds. For other ones, see Proposition 2.8 in Yang (2012) and 
Proposition 2.8 in Yang (2015a). □

Theorem 2.6 (Completeness) Let T be a theory over R ∈
{FRt, FRT} and P be a formula. T ⊢  P if and only if T ⊨  

P if and only if T ⊨ 
  P.

Proof: T ⊢  P if and only if T ⊨  P: (⇒) This direction 

is obvious. (⇐) Proposition 2.5 ensures that AT ∈ MOD(R) and 
that v ∈ Mod(T, AT) for AT-evaluation v defined as v(Q) = 
[Q]T. Then, T ⊢  t → P because 1 ≤ v(P) = [P]T follows 

from T ⊨  P. Hence, by (mp), one obtains that T ⊢  P since 

T ⊢  t.

  T ⊨  P if and only if T ⊨ 
  P: The claim follows from 

the fact that every R-algebra is a subdirect product of linearly 
ordered R-algebras, see Lemma 3.7 in Cintula (2006) for the 
subdirect representation. □

3. Algebraic Routley-Meyer semantics for R
Here we consider algebraic Routley-Meyer semantics for R, 

i.e., R ∈ {FRt, FRT}. 

3.1 Semantics
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We first introduce Routley-Meyer (RM) frames for R, 

Definition 3.1 (i) (RM frames, Yang (2020)) An RM frame is 
a structure RF = (RF, 1, R), where 1 is a special element in RF 
and R ⊆ RF3. The elements of RF are called nodes.

 (ii) (Linear RM frames, Yang (2021)) Linear RM (simply, 
RM) frame is an RM frame RF = (RF, 1, R) equipped with a 
relation ≤, where (RF, ≤) forms a linearly ordered set.

(iii) (Operational RM frames, Yang (2020)) An operational 
RM frame is an RM frame RF = (RF, 1, ≤, ＊, R), where (RF, 
1, ＊) is a groupoid with identity and R satisfies the below 
postulates:

ps. R1ab and R1ba imply a = b for each a, b ∈ RF;
pt. R1ab and R1bc imply R1ac for each a, b, c ∈ RF;
p≤. a ≤ b if and only if R1ba for each a, b ∈ RF.
(iv) ((Pointed, residuated) Fine operational RM frames, Yang 

(2021)) A Fine operational RM (simply, F-RM) frame is an 
operational RM frame, where * has the definition (dfF) c ≤ (a 
* b) := Rabc2) and R satisfies the following postulates: for each 
a, b ∈ RF,

 p. R1ab or R1ba.
 An F-RM frame is said to be pointed if it also has an 

arbitrary element 0; a (pointed) F-RM frame is called 
residuated in case it has a residuum → defined as a → b := 
sup{c: (a ＊ c) ≤ b} for each a, b ∈ RF.

2) The reason to call this a Fine operational frame is that (dfF) is the order 
reversely considered definition of Fine’s one, i.e., he defined R as 
follows: c ≥ a * b := Rabc (see Fine (1974).)
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(v) (FR1 frames) Let ~a := a → 0 for all a ∈ RF. A 
pointed, residuated F-RM frame is said to be an FR1 frame if 
it further satisfies the following definitions and postulates:

df1. R2abcd := (∃x)(Rabx ∧ Rxcd) for each a, b, c, d ∈
RF;

df2. R2a(bc)d := (∃x)(Raxd ∧ Rbcx) for each a, b, c, d ∈
RF;

df3. a → b := ~(a * ~b) for each a, b ∈ RF; 
pe. Rabc implies Rbac for each a, b, c ∈ RF;
pa. R2abcd if and only if R2a(bc)d for each a, b, c, d ∈

RF;
pc. Raaa for each a ∈ RF;
pinv. ~~a = a for each a ∈ RF.
(vi) (FR⊤ frames) An FR1 frame is said to be bounded if 

it has the bottom and top elements ⊥, ⊤ with respect to the 
linear order ≤ . A bounded FR1 frame is said to be an FR⊤ 
frame.

We henceforth call both FR1 and FR⊤ frames R frames.
A forcing on an FR1 frame is a relation ⊩ between nodes, 

propositional variables and formulas satisfying: for any 
propositional variable p,

(AHC) if b ≤ a and a ⊩ p, then b ⊩ p;
(max) the set {a ∈ RF : a ⊩ p} has a maximum; and

for the proposition constants f, t,
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(0)  a ⊩ f if and only if a ≤ 0; 
(1)  a ⊩ t if and only if a ≤ 1; and

for arbitrary formulas,

(~)  a ⊩ ~P if and only if ~a ⊮ P;
(∧)  a ⊩ P ∧ Q if and only if a ⊩ P and a ⊩ Q;
(∨)  a ⊩ P ∨ Q if and only if a ⊩ P or a ⊩ Q;
(→)  a ⊩ P → Q if and only if for each b, c ∈ RF, if Rbac 

and b ⊩ P, then c ⊩ Q.

For a forcing on an FR⊤ frame, the following two more 
conditions are needed:

(min)  ⊥ ⊩ p for any propositional variable p; 
(⊥)  a ⊩ F if and only if a = ⊥ for the propositional constant 

F.

Note that the condition below is redundant since the 
connective & is definable.

(&)  a ⊩ P & Q if and only if there are b, c ∈ RF such that 
Rcba, b ⊩ P, and c ⊩ Q.

Definition 3.2 (R model) An R model is a pair (RF, ⊩), 
where RF is an R frame and ⊩ is a forcing on RF.
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Definition 3.3 Given an R model (RF, ⊩), a node a of RF 
and a formula P, a is said to force P if a ⊩ P. P is said to be 
true in (RF, ⊩) if 1 ⊩ P; valid in the frame RF (denoted by 
RF ⊨ P) if P is true in (RF, ⊩) for any forcing ⊩ on RF.

Definition 3.4 An R frame RF is an R frame if all axioms 
of R are valid in RF. An R model (RF, ⊩) is an R model if 
RF is an R frame.

3.2 Soundness and completeness

We first introduce some lemmas

Lemma 3.5 (Yang (2020; 2012)) (Hereditary Lemma, HL) Let 
RF be an R frame. 

(i) For any formula P and for each node a, b ∈ RF, if b ≤
a and a ⊩ P, then b ⊩ P.

(ii) Given a forcing ⊩ on an R frame and a formula P, the 
set {a ∈ RF : a ⊩ P} has a maximum.

Lemma 3.6 1 ⊩ P → Q if and only if for each a ∈ RF, if 
a ⊩ P, then a ⊩ Q.

Proof: (⇒) Since the operation * has the identity 1, using the 
condition (→) and (dfF), one has a ⊩ Q. (⇐) Using the 
condition (→), we prove this direction. Let Ra1b and a⊩ P. We 
need to verify that b ⊩ Q. Using (dfF) and Ra1b, one has that 
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b ≤ 1 * a = a and so b ⊩ Q by Lemma 3.5. (i). □

Proposition 3.7 (Soundness) If ⊢  P, then P is valid in any 

R frame.

Proof: We prove the validity of (DNE) and A13 as examples.
(DNE) To verify that 1 ⊩ ~~P → P, by Lemma 3.6, we 

assume that a ⊩ ~~P and prove that a ⊩ P. The condition (~) 
ensures that a ⊩ ~~P if and only if ~a ⊮ ~P if and only if 
~~a ⊩ P. Then by pinv, one has a ⊩ P.

(A13) To verify that 1 ⊩ F → P, as above, we assume that 
a ⊩ F and prove that a ⊩ P. The condition (⊥) ensures that a 
= ⊥. Then, since R⊥1⊥ and ⊥ ⊩ P, one has a ⊩ P. □

The following proposition ensures that the postulates for R 
frames are reducible to algebraic (in)equations for the structural 
theorems of R.

Proposition 3.8 Consider all the postulates for R frames 
introduced in Definition 3.1. 

(i) The postulates ps, pt, p≤, and p together with (identity) a 
* 1 = a = 1 * a for each a ∈ RF assure that (RF, ≤) forms a 
linear order.

(ii) The postulates pe, pa, pc, and pinv can be reduced to the 
(in)equations (commutitivity) a * b = b * a for each a, b ∈ RF, 
(associativity) a * (b * c) = (a * b) * c for each a, b, c ∈ RF, 
(contraction) a ≤ a * a for each a ∈ RF, and (involution) a = 
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~~a for each a ∈ RF, respectively, which correspond to the 
structural theorems of R, (&-commutativity), (&-associativity), 
(&-contraction), and (DN), respectively, introduced in Proposition 
2.2.

Proof: The definition (dfF) assures (i) and (ii). 
For (i), we note that ps, pt, p≤, and (identity) ensure that (RF, 

≤) is a partial order. Since (dfF) and p ensure that a ≤ b or 
b ≤ a for each a, b ∈ RF and so ≤ is connected, (RF, ≤) is 
a linear order. 

For (ii), consider pe. By (dfF), one has that c ≤ (a * b) 
implies c ≤ (b * a) for each a, b, c ∈ RF. This fact implies 
that a * b ≤ b * a and so a * b = b * a. Similarly, one can 
prove that pa is reducible to (associativity). (dfF) assures that 
pc is reducible to (contraction) a ≤ (a * a) for each a ∈ RF. 
pinv is the same as (involution). □

An R-chain means a linearly ordered R-algebra. Now, we 
explain a relationship between R-chains and R framse. 

Proposition 3.9 (i) The {1, 0, (⊤, ⊥,) ＊, ≤} reduct of an R 
chain A is an R frame.

(ii) For an R frame RF = (RF, 1, 0, (⊤, ⊥,) ＊, ≤). the 
structure A = (RF, 1, 0, (⊤, ⊥,) ＊, min, max, →) forms an 
R-algebra.

(iii) For the {1, 0, (⊤, ⊥,) ＊, ≤} reduct RF of an R chain A 
and an A-evaluation v, let a ⊩ p if and only if a ≤ v(p) for 
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any propositional variable p and for any a ∈ A. (RF, ⊩) 
forms an R model, and one has: a ⊩ P if and only if a ≤
v(P) for any formula P and for any a ∈ A, 

(iv) For an R model (RF, ⊩) and the R-algebra A defined as in 
(ii), define v(p) = max{a ∈ RF : a ⊩ p} for any 
propositional variable p. One has that v(P) = max{a ∈ RF : a 
⊩ P} for any formula P.

Proof: Here we consider (iii) since one can easily prove (i) 
and (ii) and using (iii) and Lemma 3.5 (ii) one can obtain (iv). 

For (iii), one has to deal with the induction steps of P = ~Q, 
P = Q ∧ R, P = Q ∨ R, and P = Q → R. 

P = ~Q: The condition (~) assures that a ⊩ ~Q if and only 
if ~a ⊮ Q. Then, by the induction hypothesis (IH), a ⊩ ~Q if 
and only if ~a ≰ v(Q), i.e., ~a > v(Q), and so only if ~~a ≤
~v(Q); thus a ≤ ~v(Q). For the reverse direction, let a ⊮ ~Q. 
We prove that ~a ≤ v(Q). By The condition (~), one has ~a ⊩
Q, and so ~a ≤ v(Q) by IH.

P = Q ∧ R: The condition (∧) assures that a ⊩ Q ∧ R if 
and only if a ⊩ Q and a ⊩ R, and so by IH, if and only if a 
≤ v(Q) and a ≤ v(R); hence, if and only if a ≤ v(Q) ∧ v(R). 

P = Q ∨ R: The proof is analogous to the case P = Q ∧
R.

P = Q → R: The condition (→) assures that a ⊩ P → Q if 
and only if for any b, c ∈ RF, Rbac and b ⊩ Q imply c ⊩
R, hence by (dfF) and IH, if and only if c ≤ b * a and b ≤
v(Q) imply c ≤ v(R), and so if and only if a ≤ v(Q → R) = 
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v(Q) → v(R) since v(Q) * a ≤ v(R). □

Theorem 3.10 (Completeness) Let T be a theory over R ∈
{FRt, FRT}, P be a formula and R a class of R frames. 

T ⊢  P if and only if T ⊨  P.

Proof: We obtain the claim using Proposition 3.9 and Theorem 
2.6. □

4. Concluding Remarks

We investigated algebraic Routley-Meyer semantics for two 
fuzzy R systems. Namely, we indirectly provided completeness 
results for them using algebraic completeness. But we did not 
provide any direct completeness for them. To provide such 
completeness remains an open problem. 
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퍼지 R 체계들과 대수적 루트리-마이어 의미론
양 은 석

이 논문에서 우리는 연관 논리 R의 두 퍼지 버전 FRt, FRT를 위

한 대수적 루트리-마이어 의미론을 다룬다. 이를 위하여 먼저 R의 

두 버전 Rt, RT와 그것들의 퍼지 확장 FRt, FRT가 그것들의 대수적 

의미론과 함께 논의된다. 다음으로 이 두 퍼지 확장을 위한 대수적 

루트리-마이어 의미론이 소개된다. 마지막으로 이러한 체계들이 주

어진 의미론에서 건전하고 완전하다는 것을 보인다.

주요어: 루트리 마이어 의미론, 연관 논리, 퍼지 논리, FR, FRt, 
FRT


