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Implicational Partial Gaggle Logics and Matrix
Semantics∗

Eunsuk Yang

[Abstract] Implicational tonoid logics and their extensions with ab-
stract Galois properties have been introduced by Yang and Dunn. They
introduced matrix semantics for the implicational tonoid logics but did
not do for the extensions. Here we provide such semantics for implica-
tional partial gaggle logics as one sort of such extensions. To this end,
first we discuss implicational partial gaggle logics in Hilbert-style. We
next introduce one kind of matrix semantics based on Lindenbaum–
Tarski matrices for the logics and show that those logics are complete
with respect to the matrix semantics. Finally, we further introduce a
slightly different kind of matrix semantics based on reduced models
for the logics and show that those logics are complete with respect to
this matrix semantics.
[Key Words] matrix semantics, implicational partial gaggle logic, im-
plicational tonoid logic, gaggles.
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1 Introduction

The class of implicational tonoid logics was first introduced by Yang–
Dunn (2021a) as a subclass of both tonoid logics1 (Dunn (1993),
Dunn–Hardigree (2001), Bimbó–Dunn (2018)) and weakly implica-
tive logics2 (Cintula (2006), Cintula–Noguera (2011)). For the log-
ics, they provided both matrix and relational semantics. Moreover,
Yang–Dunn (2021b) extended those logics to implicational partial
Galois logics and provided relational semantics for them. However,
they did not establish matrix semantics for the logics. Then the fol-
lowing question arises naturally.

Is one capable of providing matrix semantics for implicational
partial Galois logics?

In this paper, we answer positively the question by introducing
matrix semantics for the logics. To this end, we discuss implicational
partial gaggle logics as one kind of implicational partial Galois log-
ics in Section 2. We then introduce matrix semantics for the logics
and prove that the logics are complete with respect to (w.r.t.) matrix
semantics in Sections 3 and 4. More exactly, we first introduce one
kind of matrix semantics based on Lindenbaum–Tarski matrices for
the logics and prove that those logics are complete w.r.t. the matrix

1 Gaggles, the acronym of generalized Galois logics, were first introduced by Dunn
(1991) as an algebraic structural class so as to provide a unified approach to the se-
mantics for non-classical logics. Since then, Dunn (1993) introduced partial gag-
gles with an underlying partial order as a generalization of gaggles, which have
a distributive lattice as an underlying structure, and introduced also tonoids as a
generalization of partial gaggles. Bimbó–Dunn (2018) further developed gaggles,
in particular tonoids.

2 Cintula (2006) first introduced weakly implicative logics as a generalization of
implicative logics for non-classical logics introduced by Rasiowa (1974). Contula–
Noguera (2011) further developed those logics.
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semantics in Section 3. We next introduce a slightly different kind of
matrix semantics based on reduced models for the logics and prove
that those logics are complete w.r.t. this matrix semantics in Section
4.

We finally note that most logical systems have the rule modus po-
nens and their corresponding deduction theorem. One important fea-
ture between the rule and the theorem is that they satisfy the so-called
residuated connection property. If such systems have negations, they
also satisfy the so-called Galois connection property. The work of
this paper verifies that one can provide algebraic semantics (as well
as relational semantics) for logics satisfying such properties.

2 Implicational partial gaggle logics

Here we recall some basic concepts related to implicational partial
gaggle logics introduced in Yang–Dunn (2021a; 2021b). For the class
of implicational partial gaggle logics, we first introduce a language
for the logics. A propositional language L , where the set of formulas
is denoted by FMR, is constituted inductively by a set of countable
propositional variables VRL, a set of propositional connectives CON,
and an arity function art assigning each element of CON a natural
number. By (#,n), we denote a part of L such that # ∈ CON and
art(#) = n; by L -substitution, a function sb : FMRL → FMRL sat-
isfying sb(#(A1, . . . , An)) = #(sb(A1), . . ., sb(An)); and by A,B,C, . . .,
and T,S, . . ., formulas and their sets, respectively.

A consecution in L means a relation T ⊢R A such that T ∪{R}⊆
FMRL and a pair ⟨T,A⟩ ∈ R. A logic in L is a nonempty subset L
of the set of all the consecutions satisfying the following three con-
ditions:
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(i) If A ∈ T , then T ⊢L A.

(ii) If T ⊢L B for all B ∈ S and S ⊢L A, then T ⊢L A.

(iii) If T ⊢L A, then sb(T ) ⊢L sb(A) for all L -substitution sb.

A set of formulas T is said to be a theory of a logic L if A ∈ T
whenever T ⊢L A. T h(L) denotes the set of all theories of L.

Let a tonicity map tm be a function, which maps a connective #
of arity n > 0 to its tonic type tm(#) = (σ1, · · · ,σn) such that each
σi is isotone or antitone, where the isotonicity and antitonicity are
denoted by + and −, respectively. We define a tonic language as L

with tm. Let a tonic language have a binary connective ⇒ satisfying
(⇒,2) ∈ L and tm(⇒) = (−,+). We call a tonic language with ⇒
implicational. Assume that A⃗,B ∈V RL and # is an n-ary connective.
#n(A⃗,Bi) indicates n arguments the application of # such that B is the
i-th argument of # and A⃗ is the sequence of arguments of # excepting
its i-th argument.

Henceforth, L and L denote an implicational tonic language and
a logic in L , respectively.

Definition 2.1. (Implicational tonoid logic, Yang–Dunn (2021a)) L
is said to be an implicational tonoid logic in case L satisfies:

(i) ⊢L A ⇒ A (Re f ).

(ii) A ⇒ B, A ⊢L B (ModPon).

(iii) A ⇒ B, B ⇒C ⊢L A ⇒C (Tran).

(iv) For each (#,n) ∈ L and for each i ≤ n,

- If tm(#)(i) = +, then A ⇒ B ⊢L #n(C⃗,Ai)⇒ #n(C⃗,Bi), and

- If tm(#)(i) =−, then A ⇒ B ⊢L #n(C⃗,Bi)⇒ #n(C⃗,Ai) (Toni
#).

Definition 2.2. (Implicational partial gaggle logic, Yang–Dunn (202-
1b)) L is said to be an implicational partial gaggle logic if it is an
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implicational tonoid logic and each ( f ,n), (g,n) ∈ L satisfies one of
the following: for each i ≤ n,

(GC, Galois connection) A ⇒ f n(C⃗,Bi) ⊣⊢L B ⇒ gn(C⃗,Ai);3

(dGC, dual GC) f n(C⃗,Bi)⇒ A ⊣⊢L gn(C⃗,Ai)⇒ B;
(RC, residuated connection) f n(C⃗,Ai)⇒ B ⊣⊢L A ⇒ gn(C⃗,Bi);
(dRC, dual RC) B ⇒ f n(C⃗,Ai) ⊣⊢L gn(C⃗,Bi)⇒ A,

where:
(1) in each (GC) and (dGC), f and g have the same tonic types,

in particular, they have the antitonicity as the tonic type of their i-th
arguments;

(2) in each (RC) and (dRC), f and g have the different tonic types
of f and g from each other w.r.t. an argument distinct from i, in par-
ticular, they have the isotonicity as the tonic type of their i-th argu-
ments.

Note that the definition for implicational partial gaggle logics
drops the notations related to labels introduced in Yang-Dunn (2021b)
because we need not introduce a labeled language for the logics w.r.t.
matrix semantics. Note also that ‘⇒’ is not a concrete implication
connective. It is an abstract connective, which may denote any con-
nectives satisfying (Re f ), (Tran), (ModPon), and (Toni

#). The fol-
lowing are examples, which have two implications →,⇝, two nega-
tions ∼, ¬, and one fusion ◦ for the connectives f and g, introduced
in Yang-Dunn (2021b).

Example 2.3. (Yang-Dunn (2021b))
(i) (GC) A ⇒ (B →C) ⊣⊢ B ⇒ (A⇝C).
(ii) (dGC) (C�B)⇒ A ⊣⊢ (C�A)⇒ B,

where C�B =d f ¬B◦C and C�A =d f C◦ ∼ A.

3 We use “A ⊣⊢ B” as shorthand for A ⊢ B and B ⊢ A.
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(iii) (RC) (C ◦A)⇒ B ⊣⊢ A ⇒ (C → B).

(iv) (dRC) B ⇒ (A⊕C) ⊣⊢ (B�C)⇒ A,

where A⊕C =d f ¬A →C.

Define A ⇔ B := {A ⇒ B,B ⇒ A}. We can verify that implica-
tional tonoid logics satisfy the congruence property, and so do impli-
cational partial gaggle logics.

Theorem 2.4. Let L be an implicational tonoid logic. L satisfies the
following congruence property: for every (#,n) and every i ≤ n,

(Cong) A ⇔ B ⊢L #n(C⃗,Ai)⇔ #n(C⃗,Bi).

Proof. Let T be a theory T of L such that A ⇒ B ∈ T and B ⇒ A ∈ T .
First consider the case tm(#)(i) = +. (Toni

#) assures that A ⇒ B ∈ T
and B ⇒ A ∈ T imply #n(C⃗,Ai) ⇒ #n(C⃗,Bi) ∈ T and #n(C⃗,Bi) ⇒
#n(C⃗,Ai) ∈ T , respectively. Hence (Cong) holds. Next consider the
case tm(#)(i) =−. (Toni

#) similarly assures that A ⇒ B ∈ T and B ⇒
A ∈ T imply #n(C⃗,Bi) ⇒ #n(C⃗,Ai) ∈ T and #n(C⃗,Ai) ⇒ #n(C⃗,Bi) ∈
T , respectively. Hence (Cong) holds. Therefore, L satisfies (Cong).

Corollary 2.5. Let L be an implicational partial gaggle logic. L sat-
isfies the congruence property (Cong).

3 Matrix semantics I

This section introduces one well-known kind of matrix semantics
based on Lindenbaum–Tarski matrices for implicational gaggle log-
ics. To this end, we first define several related notions.
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Let L be an implicational partial gaggle logic. A pair P = (E,F)

is said to be an L -matrix if E is an L -algebra as an algebra inter-
preting the formulas and F ⊆E whose elements are called designated
elements of E. A homomorphism v from FMRL to E is said to be
an E-evaluation if v : FMRL → E satisfies:

v(#(A1, . . . ,An)) = #E(v(A1), . . . ,v(An))

for every (#,n) ∈ L and every n-tuple of formulas A1, . . . ,An. We in
particular say P-evaluation for a matrix P = (E,F). A P-evaluation v
is said to be a P-model of T , a theory in L , if v(A) ∈ F for every A ∈
T . The class of P-models of T is denoted by Mod(T,P). A formula
A is said to be a semantic consequence of T for K if Mod(T,P) =
Mod(T ∪ {A},P) for every P ∈ K . The semantic consequence is
denoted by T |=K A. P is said to be an L-matrix if L ⊆ |={P}. The
class of L-matrices is denote by MOD(L), but in lieu of T |=MOD(L) A,
T |=L A is written.

We prove the following proposition.

Proposition 3.1. Let L be an implicational partial gaggle logic and
P = (E,F) be an L-matrix. Define the relation ≤P as follows: x ≤P y
iff x ⇒ y ∈ F.

(i) ≤P forms a preorder.

(ii) x =P y iff x ≤P y and y ≤P x forms a congruence on E.

(iii) F forms an an upset on ≤P, i.e., x ∈ F and x ≤P y imply
y ∈ F.

Proof. (i) (Re f ) assures x ⇒ x ∈ F , and so x ≤P x. (Tran) assures
that x ⇒ y ∈ F and y ⇒ z ∈ F imply x ⇒ z ∈ F , and so x ≤P y and
y ≤P z imply x ≤P z. Hence ≤P is a preorder.
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(ii) Corollary 2.5 assures that x=P y implies #En(⃗z,xi) =P #En(⃗z,yi).
Thus =P forms a congruence on E.

(iii) (ModPon) assures that x ∈ F and x ⇒ y ∈ F imply y ∈ F , and
so x ∈ F and x ≤P y imply y ∈ F . Hence F is the upset.

Let L be an implicational partial gaggle logic. One is capable of
providing Lindenbaum–Tarski matrices for L by Proposition 3.1 (ii).
More precisely, the Lindenbaum–Tarski matrices can be defined as
follows. Let T be a theory of L. Define [A]T and LT as {B : T ⊢L A ⇔
B} and {[A]T : A∈ FMRL }, respectively. The L -matrix is said to be
the Lindenbaum–Tarski matrix LTT w.r.t. L and T if the designated
set of L -matrix is {[A]T : A ∈ T}, L -algebra has the domain LT and
operations #LTT ([A1]T , . . . , [An]T ) = [#(A1, . . . ,An)]T .

Theorem 3.2. (Strong completeness) Let L be an implicational par-
tial gaggle logic, T be a theory of L and A be a formula. T ⊢L A iff
T |=L A.

Proof. The left-to-right direction is clear. For the right-to-left direc-
tion, define LTT -evaluation v as follows: v(B) = [B]T . We notice
that Lemma 8 in Cintula (2006) assures that LTT ∈ MOD(L) and
v ∈ Mod(T ;LTT ) for LTT -evaluation v. Then T |=L A entails that
[A]T = v(A) ∈ FLTT . Hence T ⊢L A, as required.

4 Matrix semantics II

This section introduces a slightly different kind of matrix semantics
based on reduced models for implicational gaggle logics. To this end,
we first note that one is capable of providing completeness for re-
duced models. Similarly we introduce some related additional no-
tions.
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The Leibniz congruence ΩP(F) of E is defined as follows:

(α) ⟨x,y⟩ ∈ ΩP(F) iff x ⇒ y ∈ F and y ⇒ x ∈ F .

A congruence C of E compatible with F such that for all x,y ∈ E,
x ∈ F and ⟨x,y⟩ ∈ C imply y ∈ F is said to be a logical congruence
in a matrix P = (E,F). The Leibniz congruence ΩP(F) is well known
as the largest logical congruence of P. An L-matrix P = (E,F) is
said to be reduced if ΩP(F) is the identity relation =P. The notation
MOD∗(L) denotes the class of all reduced models of L. For an L-
matrix P = (E,F), we define [x]F as {y ∈ E : ⟨x,y⟩ ∈ ΩP(F)}; [F ] as
{[x]F : x ∈ F}; and P∗ as (P/ΩP(F), [F ]).

Proposition 4.1. Let L be an implicational partial gaggle logic and
P = (E,F) ∈ MOD(L).

(i) P∗ ∈ MOD(L).
(ii) For all x,y ∈ E, [x]F ≤P∗ [y]F iff x ⇒P y ∈ F.
(iii) P∗ ∈ MOD∗(L).

Proof. (i) It is clear that [·]F is a surjective homomorphism from P
to P/ΩP(F). Then it suffices to verify that [x]F ∈ [F ] entails x ∈ F ,
by Lemma 2.1.19 in Cintula–Noguera (2011). Let [x]F ∈ [F ]. Then
[x]F = [y]F for some y ∈ F , and so ⟨x,y⟩ ∈ ΩP(F) by (α). Then x ∈ F
since ΩP(F) is a logical congruence.

(ii) For one direction, let [x]F ≤P∗ [y]F for all x,y ∈ E. Then
[x]F ⇒P/ΩP(F) [y]F ∈ [F ], and so x ⇒P y ∈ F . The proof for the other
direction is analogous.

(iii) Let [x]F ≤P∗ [y]F and [y]F ≤P∗ [x]F . This implies ⟨x,y⟩ ∈
ΩP(F). Hence [x]F =P∗ [y]F .

Now we introduce related Lindenbaum–Tarski matrices for an
implicational partial gaggle logic L. Let T ∈ T h(L). Define [A]T and
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LT as {B : A ⇔ B ⊆ T} and {[A]T : A ∈ FMRL }, respectively. The
Lindenbaum–Tarski matrix LTT w.r.t. L and T is defined as in Sec-
tion 3.

Theorem 4.2. (Strong completeness for reduced models) Let L be
an implicational partial gaggle logic, T be a theory of L and A be a
formula. T ⊢L A iff T |=MOD∗(L) A.

Proof. The left-to-right direction is clear. For the right-to-left di-
rection, as above, define LTT -evaluation v as follows: v(B) = [B]T .
Proposition 4.1 assures that LTT ∈MOD∗(L). As above, define LTT -
evaluation v as follows: v(B) = [B]T . Then T |=L A entails that [A]T =

v(A) ∈ [T ]. Hence T ⊢L A, as desired.

Remark 4.3. We in particular provided matrix semantics based on
the Leibniz congruence in this section. Note that the Leibniz congru-
ence assures that (Cong) is needed for a logic L since the Leibniz
congruence also satisfies (Cong) .

Remark 4.4. We established two matrix completeness results for im-
plicational partial gaggle logics, using Lindenbaum–Tarski matrices.
We notice that (Cong) is needed for a logic L to have these kinds of
semantic completeness. As the proof for Corollary 2.5 shows, in im-
plicational gaggle logics one is capable of proving the (Cong) using
the tonicity rule (Toni

#). This shows that (Toni
#) plays a significant

role in matrix semantics for implicational gaggle logics.

5 Conclusion

We introduced two matrix semantics for implicational partial gaggle
logics and prove that the logics are complete w.r.t. those semantics.
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More exactly, we first introduced one kind of matrix semantics based
on Lindenbaum–Tarski matrices for the logics and proved that those
logics are complete w.r.t. the matrix semantics in the sense that true
sentences in implicational partial gaggle logics are provable in their
corresponding logics. We next introduced a different kind of matrix
semantics based on reduced models for the logics and proved that
those logics are complete w.r.t. this matrix semantics.

Among implicational partial Galois logics, here we just deal with
implicational partial gaggle logics. Note that implicational residuated
partial gaggle logics and implicational dual residuated partial gag-
gle logics were also introduced as implicational partial Galois log-
ics in Yang-Dunn (2021b). Thus the two sorts of matrix semantics
have to be addressed for the other implicational partial Galois log-
ics. Moreover, we may consider Lindenbaum matrices in place of
Lindenbaum–Tarski matrices as matrix semantics. These are prob-
lems left in this paper.
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함의적 부분 개글 논리와 행렬 의미론

양은석

함의적 토노이드 논리와 추상화된 갈로아 성질을 갖는 그것의 

확장이 소개되어왔다. 이와 관련하여 함의적 토노이드 논리를 위한 

행렬 의미론은 소개되었지만 그것의 확장을 위해서는 소개되지 않

았다. 이 논문에서 우리는 그러한 확장 중 함의적 부분 개글 논리

를 위한 행렬 의미론을 다룬다. 이를 위하여 먼저 함의적 부분 개

글 논리를 소개한다. 다음으로 함의적 부분 개글 논리를 위한 린덴

바움-타르스키 행렬에 기반한 행렬 의미론을 소개하고 함의적 부분 

개글 논리가 이 의미론에 대해 완전하다는 것을 보인다. 마지막으

로 함의적 부분 개글 논리를 위한 린덴바움-타르스키 행렬에 기반

한 행렬 의미론을 소개하고 함의적 부분 개글 논리가 이 의미론에 

대해 완전하다는 것을 보인다. 마지막으로 축소 모델에 기반한 행

렬 의미론을 소개하고 함의적 부분 개글 논리가 이 의미론에 대해 

완전하다는 것을 보인다.

주요어: 행렬 의미론, 함의적 부분 개글 논리, 함의적 토노이드 

논리, 개글


