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【Abstract】This paper addresses a set-theoretic completeness based on a 
relational semantics for fuzzy extensions of two versions Rt and RT of R 
(Relevance logic). To this end, two fuzzy logics FRt and FRT as extensions of 
Rt and RT, respectively, and the relational semantics, so called Routley-Meyer 
semantics, for them are first recalled. Next, on the semantics completeness 
results are provided for them using a set-theoretic way.
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1. Introduction

The logic R is very famous as the logic of relevance. As 
Yang mentioned in Yang (2014), interestingly there exist three 
versions of R: one is the R without propositional constants, 
denoted by R0, another is the R with propositional constants t, f, 
denoted by Rt, and the other is the R with propositional constants 
f, t, F, T, denoted by RT. The ternary relational semantics, called 
Routley-Meyer (RM for short) semantics, for R introduced in 
Dunn (1986) is for R0.1) Similar semantics for the other two 
versions Rt, RT were introduced by Yang (2015).

The systems FRt and FRT were introduced as the least fuzzy 
extensions of Rt and RT, respectively, by Yang (2012; 2019). 
Especially, he recently provided RM semantics for the systems 
FRt and FRT in Yang (2022). This semantics is interesting in the 
sense that it is a different style relational semantics from the 
above semantics for R0, Rt, and RT. The former semantics is 
based on order reversely considered definition of Fine’s one 
(Rxyz := z ≥ (x * y), see Fine (1974)) and has the same 
structures as algebraic semantics for FRt and FRT. 

However, the completeness results of FRt and FRT in it are 
not interesting in that the completeness proof is established 
indirectly, i..e., their completeness is established based on the fact 
that those systems are algebraically complete and the RM 
semantics has the same structures as the algebraic semantics for 

1) The so-called Routley-Meyer semantics for relevance logics was first 
introduced by Routley & Routley (1972a; 1972b; 1973).
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them. Note that the completeness results in Dunn (1986) and 
Yang (2015) were established directly without the help of 
algebraic completeness. Namely, those completeness proofs were 
provided set-theoretically. Then, the following natural question 
arises.

● Can we establish set-theoretic completeness results for FRt and 
FRT using the same RM semantics in Yang (2022)?

By providing set-theoretic completeness results for FRt and 
FRT, we give its answer. The organization of the paper is as 
follows: As preliminaries, Section 2 discusses the systems FRt and 
FRT and their RM semantics introduced in Yang (2022). Section 
3 proves the completeness of the systems set-theoretically and so 
verifies that FRt and FRT are set-theoretically complete with 
respect to (w.r.t.) the RM semantics.

2. Logics and RM semantics

2.1 Logics
Here we first recall the fuzzy systems FRt and FRT. The 

languages for them are provided as usual. More exactly, the 
language for FRt consists of a countable propositional language 
equipped with the set of formulas Fm built inductively from a set 
of propositional variables p, q, r …, propositional constant f, and 
binary connectives ∧, ∨, →, together with the defined constant 
and unary and binary connectives: t := f → f, ~X := X → f, X 
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& Y := ~(X → ~Y), and X ↔ Y := (X → Y) ∧ (Y → X). 
For the language for FRT, we add the constant F and the defined 
connective T := F → F to the language for FRt. 

For FR ∈ {FRt, FRT}, a consequence relation ⊢ is 
introduced as a logic in Hilbert style.

Definition 2.1 (i) (Yang (2012)) FRt consists of the below 
axioms and rules:

A1. X → X  (SI, self-implication)
A2. (X → Y) → ((Y → Z) → (X → Z))  (SF, suffixing)
A3. (X → (X → Y)) → (X → Y)  (CR, contraction)
A4. (X → (Y → Z)) ↔ (Y → (X → Z))  (PM, permutation)
A5. (X ∧ Y) → X,  (X ∧ Y) → Y  (∧-E, ∧-elimination)
A6. ((X→Y)∧(X→Z)) → (X→(Y∧Z))  (∧-I, ∧-introduction)
A7. ((X→Z)∧(Y→Z)) → ((X∨Y)→Z)  (∨-E, ∨-elimination)
A8. X → (X ∨ Y),  Y → (X ∨ Y)  (∨-I, ∨-introduction)
A9. (X∧(Y∨Z))→((X∧Y)∨(X∧Z))  (D, distributivity)
A10. X ↔ (t → X)  (PP, push and pop)
A11. ~~X → X  (DNE, double negation elimination)
A12. ((X → Y) ∧ t) ∨ ((Y → X) ∧ t) (PLt, t-prelinearity)
X → Y, X ⊢ Y (modus ponens, mp)
X, Y ⊢ X ∧ Y (adjunction, adj).
(ii) (Yang (2022)) FRT is FRt plus constant F and the axiom:
A13. F → X.

Here we recall the two facts: First, the axiom A12 is for 
linearity as fuzzy logics are required. Second, dropping the axiom 
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A12 from FRt and FRT induces the two versions Rt and RT, 
respectively, of R. 

Proposition 2.2 (Yang (2012; 2015; 2022)) FRt proves: 
(1) (X & (Y & Z)) ↔ ((X & Y) & Z)  (&-ASS, &-associativity)
(2) (X ∧ Y) → (X & Y)
(3) (X & (Y ∧ Z)) ↔ ((X & Y) ∧ (X & Z))
(4) (X → (Y ∨ Z)) ↔ ((X → Y) ∨ (X → Z))
(5) ((X → (Y ∨ Z)) ∧ (Y → Z)) → (X → Z)
(6) (X & Y) → (Y & X)  (&-C, &-commutativity)
(7) (X → (Y → Z)) ↔ ((X & Y) → Z)  (RE, residuation)
(8) X → (X & X)  (CTR. contraction)
(9) ~~X ↔ X  (DN, double negation)
(10) (X → Y) → (~Y → ~X)  (CP, contraposition)

One can define a theory Γ on FL ∈ {FRt, FRT} as a set of 
formulas. A proof in Γ on FL is a sequence of propositions 
where each member of the sequence is either a member of Γ, an 
axiom of FL, or derives from its preceding members by the rules 
in Definition 2.1. Using the notation Γ ⊢ X, more precisely Γ 

⊢FL X, we mean that in Γ X is provable on FL, i.e., there 
exists an FL-proof of X in Γ. The relevant deduction theorem 
(RDTt) for FL is that:

Proposition 2.3 (Dunn, Meyer, & Leblanc (1976)) Let Γ be a 
theory, and X, Y formulas.

(RDTt) Γ ∪ {X} ⊢ Y if and only if (iff) Γ ⊢ (X ∧ t) → Y.
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2.2 Semantics
Here we discuss operational RM semantics for FR ∈ {FRt, 

FRT}. We first deal with the definitions of operational RM frames 
for FR.

Definition 2.4 (i) (Yang (2020), RM frames) A relational 
structure RMF = (RMF, R, 1) is called an RM frame if R ⊆
RMF3 and 1 is a special element in RMF. By states of 
information, we say the elements of RMF.

(ii) (Yang (2020), Operational RM frames) An RM frame 
RMF = (RMF, R, 1, ＊, ≤) is called operational if (RMF, 1, 
＊) forms a unital groupoid and R has the definition and 
postulates below:

df0. x ≤ y := R1yx for all x, y ∈ RMF;
ps. R1xy and R1yx imply x = y for all x, y ∈ RMF;
pt. R1xy and R1yz imply R1xz for all x, y, z ∈ RMF.2)

(iii) (Linear operational RM frames) An operational RM frame 
is called linear if R further satisfies the postulate below:

p. R1xy or R1yx for all x, y ∈ RMF.
By oRM frames, we denote such frames for simplicity.3)

(iv) (Yang (2021), (Pointed, residuated) Fine oRM frames) An 
oRM frame is called a Fine oRM (F-oRM for simplicity) frame 
if R is defined as follows: (dfF) Rxyz := z ≤ (x * y).4) An 

2) The definition and postulates df0, ps, pt assure that (RMF, ≤) forms a 
partially ordered set.

3) The postulate p assures that (RMF, ≤) forms a linearly ordered set.
4) Note that Fine order-reversely considered this definition. That is, he defined 

R as follows: Rxyz := z ≥ x * y (see Fine (1974).
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F-oRM frame is called pointed if it further has 0, an arbitrary 
element, ∈ RMF; residuated if it has a residuated implication →, 
which is defined as follows: x → y := sup{z: x ＊ z ≤ y} for 
all x, y ∈ RMF.

(v) (Yang (2022), FR1 frames) Define the negation operation ~ 
as follows: ~x := x → 0 for all x ∈ RMF. An FR1 frame is a 
pointed, residuated F-oRM frame satisfying:

df1. R2xyzw := (∃a)(Rxya∧Razw) for all x, y, z, w ∈ RMF;
df2. R2x(yz)w := (∃a)(Rxaw∧Ryza) for all x, y, z, w ∈ RMF;
df3. x → y := ~(x * ~y) for all x, y ∈ RMF; 
pe. Rxyz only if Ryxz for all x, y, z ∈ RMF;
pa. R2xyzw iff R2x(yz)w for all x, y, z, w ∈ RMF;
pc. Rxxx for all x ∈ RMF;
pinv. ~~x = x for all x ∈ RMF.

(vi) (Yang (2022), FR⊤ frames) A bounded FR1 frame, denoted 
by FR⊤ frame, is an FR1 frame with least and greatest elements 
⊥, ⊤. 

By FR frames, henceforth, both FR1 and FR⊤ frames are 
denoted ambiguously if one does not have to distinguish them. 

Over an FR1 frame, a forcing relation ⊩ is defined as a 
relation between states of information and propositional variables, 
propositional constants, and formulas subject to: for all 
propositional variables p,

(max) the set {x ∈ RMF : x ⊩ p} has a maximum; 
(AHC) if y ≤ x and x ⊩ p, then y ⊩ p;
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for the proposition constants t, f,

(1)  x ⊩ t iff x ≤ 1; 
(0)  x ⊩ f iff x ≤ 0; 

for formulas X, Y,

(~)  x ⊩ ~X iff ~x ⊮ X;
(∨) x ⊩ X ∨ Y iff x ⊩ X or x ⊩ Y;
(∧) x ⊩ X ∧ Y iff x ⊩ X and x ⊩ Y;

  (→) x ⊩ X → Y iff for all y, z ∈ RMF, if Ryxz and y ⊩
X, then z ⊩ Y.

Over an FR⊤ frame, a forcing relation ⊩ has to further 
satisfy:

(min) ⊥ ⊩ p for all propositional variables p; 
(⊥) x ⊩ F iff x = ⊥ for the propositional constant F.

A pair (RMF, ⊩) is an FR model if RMF is an FR frame 
and ⊩ is a forcing relation over RMF. Let (RMF, ⊩) be an FR 
model, x a state of information of RMF and X a formula. We 
say that x forces X whenever x ⊩ X; X is true in (RMF, ⊩) 
whenever 1 ⊩ X; and X is valid in the frame RMF (expressed 
by RMF ⊨ X) whenver X is true in (RMF, ⊩) for every 
forcing ⊩ on RMF. An FR frame RMF is called an FR frame 
whenever every axiom of FR is valid in RMF. Moreover, if RMF 
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is an FR frame, we say an FR model (RMF, ⊩) as an FR 
model.

3.  Soundness and completeness

We first recall the soundness of FR in Yang (2022).

Proposition 3.1 (Yang (2022)) (Soundness) If ⊢FR X, then X 
is valid in all FR frames.

We next establish set-theoretic completeness results for FR. 
We say that a theory Γ is linear in case Γ ⊢ X → Y or Γ ⊢

Y → X for each pair X, Y of formulas. By an FR-theory, A 
theory Γ closed under rules of FR and containing all of its 
theorems is henceforth meant.

Let Γ be a linear FRt-theory. The canonical FRt frame 
determined by Γ is defined as a structure RMF = (RMFcan, 1can, 
0can, ≤can, *can, ~can, Rcan) so that RMFcan is the set of linear 
FRt-theories extending Γ, 1can = Γ∪{X : Γ ⊢  t → X}, 0can = 

Γ∪{X : Γ ⊢  f → X}, ≤can is ⊇ over RMFcan, *can is 

defined as x *can y := {X & Y : for some X ∈ x, Y ∈ y} 
satisfying monoid properties corresponding to FRt frames on 
(RMFcan, 1can, ≤can), ~can is defined as ~canx := {X : ~X ∉ x}, 
and Rcan is defined as:

(△) Rcanxyz iff for all formulas X, Y, X ∈ x and Y ∈ y 
imply Y & X ∈ z.
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The canonical FRT frame determined by Γ is the FRt frame 
with ⊤can and ⊥can, such that ⊤can = Γ∪{X : Γ ⊢  T →

X} and ⊥can = Γ∪{X : Γ ⊢  F → X}.

Notice that we take the base Γ as the linear FR-theory 
excluding nontheorems of FR 

Proposition 3.2 A canonical FR frame is linearly ordered.

Proof: First, it is clear that a FR frame canonically defined is 
partially ordered since ≤can is ⊇, an order reversed subset 
relation, over RMFcan. Next, we prove that ≤can is connected and 
so linearly ordered, To this end, let x ≰can y and y ≰can x for 
contradiction. There should be X, Y such that X ∈ y, X ∉ x, 
Y ∈ x, and Y ∉ y. Note that X → Y ∈ Γ or Y → X ∈ Γ 

because Γ is a linear theory. Assume first X → Y ∈ Γ and so 
X → Y ∈ y. One has Y ∈ y, a contradiction, by (mp). 
Assume next Y → X ∈ Γ and so Y → X ∈ x. Analogously, 
one has X ∈ x, a contradiction. □

A canonical forcing relation ⊩can is defined:

(▽) x ⊩can X iff X ∈ x.

Lemma 3.3 1can ⊩can X → Y iff for every x ∈ RMFcan, x 
⊩can X implies x ⊩can Y.

Proof: By (▽), one can instead verify that X → Y ∈ 1can iff 
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for every x ∈ RMFcan, X ∈ x implies Y ∈ x. (⇒) Let X →
Y ∈ 1can and X ∈ x. Using the definition of *can, one obtains 
that X & (X → Y) ∈ x *can 1can = x. Moreover, by (mp), one 
further has Y ∈ x because (X & (X → Y)) → Y ∈ Γ and 
thus (X & (X → Y)) → Y ∈ x. (⇐) Suppose towards a 
contradiction that X → Y ∉ 1can and thus X → Y ∉ Γ. We 
set x0 as the set {χ : there is φ ∈ Γ such that Γ ⊢ φ → (X 
→ χ)}. Then, it is immediate that x0 ⊇ Γ, X ∈ x0, and Y ∉
x0 because otherwise Γ ⊢ φ → (X → Y) and so Γ ⊢ X → Y, 
a contradiction, by (mp). 

Finally note that the Linear Extension Property (Cintula, 
Horčík, & Noguera (2015), Theorem 12.9) assures that one can 
have a linear theory x0 ⊆ x, where Y ∉ x. Hence, X ∈ x and 
Y ∉ x. □

Lemma 3.4 The postulates for FR frames hold for the 
canonically defined relation Rcan.

Proof: As examples, the postulates pc and pinv are considered 
here.

pc: Let Rcanxxx and X ∈ x. We verify X & X ∈ x. Using 
(CTR), one has X → (X & X) ∈ Γ and so X → (X & X) ∈
x. By (mp), one further has X & X ∈ x, as desired.

pinv: We have to verify that X ∈ x iff X ∈ ~~x. Since ~~X 
↔ X, using the condition (~), one can easily prove it. (⇒) Let 
X ∈ x. Since ~~X ↔ X ∈ Γ and so ~~X ↔ X ∈ x, it holds 
that ~~X ∈ x. The condition (~) assures that ~~X ∈ x iff ~X 
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∉ ~x iff X ∈ ~~x, hence X ∈ ~~x. (⇐) The proof is similar. 
□

Lemma 3.5 (Canonical forcing relation Lemma) ⊩can is an 
forcing relation.

Proof:  For (AHC), (min), (⊥), (∧), and (∨), see Lemma 
3.1 in Yang (2019). The condition (max) holds by Schmidt's 
theorem since FR is a finitary logic. Thus, here we consider the 
conditions (0), (1), (~), and (→).

For (0), we verify that:

x ⊩can f iff x ≤can 0can.

By (▽), we verify that f ∈ x and 0can ⊆ x. The claim 
follows from the definition of 0can since 0can is the least theory 
extending Γ with f.

For (1), we verify that:

x ⊩can t iff x ≤can 1can.

The proof is analogous to that of (0).
For (~), we verify that:

x ⊩can ~X iff ~canx ⊮can X.

By (▽), we verify that ~X ∈ x iff X ∉ ~canx. By the 



Relational Semantics for Fuzzy Extensions of R: Set-theoretic Approach 89

definition of ~can, the claim holds.
For (→), we verify

x ⊩can X → Y iff for any y, z ∈ RMF, Rcanyxz and y ⊩can 
X imply z ⊩can Y.

By (▽), we verify that X → Y ∈ x iff for all y, z ∈ Xcan, 
Rcanxyz and X ∈ y imply Y ∈ z. (⇒) Let X → Y ∈ x and 
X ∈ y. Using (▽), one has that X & (X → Y) ∈ z. since (X 
& (X → Y)) → Y ∈ Γ and so (X & (X → Y)) → Y ∈ z. 
This ensures that Y ∈ z by Lemma 3.3. (⇐) Suppose towards a 
contradiction that X → Y ∉ x. We verify that there are linear 
theories y and z such that X ∈ y and Y ∉ z. Let y' be the 
least FR-theory extending Γ with {X}. Let z be y' *can x as the 
set {χ : there are α ∈ x, ψ ∈ y' such that Γ ⊢ (ψ & α) →
χ} and so {χ : there is α ∈ x such that Γ ⊢ (X & α) → χ}. 
It is clear that Γ ⊆ y' ∈ Ucan and so Γ ⊆ z ∈ Ucan. 
Moreover, let z' be {Y}. One can ensure that (z, z') is an 
exclusive pair. (If not, there is α ∈ x such that Γ ⊢ (X & α) 
→ Y and so Γ ⊢ α → (X → Y) and 1can ⊢ α → (X → Y). 
Then, since x ⊢ α, one has x ⊢ X → Y, a contradiction, by 
Lemma 3.3). As above, the Linear extension Property assures that 
one is capable of having a linear theory y such that y ⊇ y' and 
y *can x (= {χ : there are α ∈ x, ψ ∈ y, and Γ ⊢ (ψ & α) 
→ χ}). Hence, the definitions of y and z assure that Rcanxyz, X 
∈ y, but Y ∉ z because Y ∈ z'. □
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Let a model M for FR be an FR model. Then, using Lemma 
3.5 and the Linear Extension Property, one can prove the strong 
completeness of FR.

Theorem 3.6 (Strong completeness) FR is strongly complete 
w.r.t. the class of all FR-frames.

4. Concluding Remarks

The RM semantics for FR was first introduced in Yang 
(2022). However, in it the completeness of FR was provided 
indirectly based on the algebraic completeness of FR. Based on a 
set-theoretical method, this paper instead established direct 
completeness results for FR. 

The RM semantics for FR has the same structures as its 
algebraic semantics. We note that the RM semantics for R in 
Dunn (1986) does not have the same structure as its algebraic 
semantics. To provide such semantics for FR is an open problem 
left in this paper.
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R의 퍼지 확장을 위한 관계 의미론: 집합-이론적 접근
양 은 석

이 글은 연관 논리 R의 두 버전 Rt, RT의 퍼지 확장 체계 FRt, 
FRT를 위한 관계 의미론에 기초해 집합-이론적인 완전성을 다룬다. 
먼저 Rt, RT 각각의 확장으로서 퍼지 논리 체계 FRt, FRT와 그것들

의 관계 의미론 즉 루트리-마이어 의미론을 논한다. 다음으로 이러

한 체계들이 주어진 의미론에서 완전하다는 것을 집합-이론적인 방

식으로 증명한다.

주요어: 관계 의미론, 루트리 마이어 의미론, R, 퍼지 논리, 연관 

논리


