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‘As soon as these questions were squarely faced, a wide 
range of new phenomena were discovered, including 
quite simple ones that had passed unnoticed.’ 
—Noam Chomsky, Knowledge of Language, p. 72 
 

 
 
It is a commonplace that statements of pure mathematics are necessarily true if true at all. But 
why should we think this? A cursory investigation of the practice of mathematics itself 
presents something of a puzzle here. Mathematicians do not appear to make use of the 
language of metaphysical necessity and possibility in their own investigations. Of course they 
do use the modal idioms ‘might’ and ‘must’ and their cognates. However, their use of these 
idioms does not provide much evidence that metaphysical modality is in play in any serious 
way. On the one hand, many of their uses seem to be metaphorical. As Wilfrid Hodges points 
out, when a mathematician says, for example, that one system ‘can be embedded’ in another, 
this is little more than a colorful way of saying that there is an embedding of one into the 
other. What the modal ‘can’ adds is  
 

a certain human colouring, by suggesting that part of the mathematics is carried out by a 
human being. This adds nothing to the mathematical content, but somehow it helps the 
readability (Hodges 2013: 6). 

 
On the other hand, many uses of modals in mathematics express epistemic modality. For 
example, when mathematicians say at some point in their investigations, ‘Various answers 
might be correct’, they are not giving voice to a perceived metaphysical contingency in 
mathematical reality, but signaling that which answer is correct is an open question at the 
relevant stage in the process of mathematical discovery. And similarly, when they say, ‘Only 
one answer can be correct’, they are talking about what has been established at the relevant 
stage, not about what is metaphysically necessary: if it turns out that two answers are 
epistemically live at the time of speaking or writing, then the ‘must’ claim will be reckoned 
false. Also similarly, when a mathematician says that ‘Given that A, it must be that B’, it is 
arguable that the ‘must’ again expresses a kind of epistemic modality.3  (One of us has 
explored elsewhere the behavior of epistemic modals embedded in logically complex 
                                                
1 We would like to thank Richard Heck, Richard Price, Margot Strohminger, Timothy Williamson, the students 
in John Hawthorne and Timothy Williamson’s graduate seminar at the University of Oxford in Trinity Term 
2017, and the participants of an Academia.edu session on a draft of this paper in June-July 2017 for helpful 
comments and discussions. 
2 This is also the epigraph to Hodges (2013). We did not, however, choose it as an allusion to that paper, but 
simply because we could think of no better epigraph for our own paper. 
3 We will not defend this take over Hodges’ own gloss on these ‘must’s as ‘formatting to guide the reader 
through the structure of the reasoning’ (Hodges 2007: 12).  
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sentences.4) And it is far from clear that there is any modality left once we set aside the 
metaphorical and epistemic occurrences of modals in mathematical texts.5 Prima facie, then, 
it seems that mathematical practice is silent on the question of the status of mathematical 
truths vis-à-vis metaphysical modality. 

It is tempting to take these observations to support the view that the doctrine that 
mathematics is necessary is something that has been added by philosophers to the body of 
knowledge provided by mathematics itself, which can proceed just fine without taking on any 
metaphysically modal commitments. This view has prominent defenders. For example, in 
‘Modality in Mathematics’ Wilfrid Hodges tells us: 
 

Mathematicians are pleased to know that 
 
(1)  Every finite field is commutative. 
 
or that 
 

(2)  
 
The fact that these statements are necessarily true might attract the attention of a philosopher 
of mathematics, and some mathematicians dream about such things in idle moments. But 
adding ‘Necessarily’ to either (1) or (2) would introduce nothing of any mathematical 
significance (Hodges 2013: 1-2). 

 
Hodges begins another paper, ‘Necessity in Mathematics’, by prominently displaying the 
following ‘fact’: 
 

FACT A: Mathematics contains no modal notions (Hodges 2007: 1). 
 
He continues: 
 
 
 

                                                
4 See Dorr and Hawthorne (2013). 
5 As Timothy Williamson pointed out in conversation, Church’s thesis, which asserts the equivalence of the 
intuitive notion of computability with the formal ones, is an interesting test case here. The key issue is whether 
the modality expressed by the suffix ‘-able’ in ‘computable’, in its intuitive sense, is some kind of an objective 
modality (in the sense of Williamson 2017). (There are various inequivalent glosses on the intuitive notion. 
Turing [1939: 8], for example, says he ‘shall use the expression ‘computable function’ to mean a function 
calculable by a machine’. Another kind of gloss, common in textbooks, speaks of computability by a human or 
some other kind of agent. For example, Boolos, Burgess, and Jeffrey [2007: 23] say that a function is 
computable iff ‘there are definite, explicit rules by following which one could in principle compute its value for 
any given argument’.) Certainly the modality in play is not epistemic, but is it metaphysical or otherwise 
objective? One reason for being cautious here is that mathematicians tend to make free use of Church’s thesis 
without ever worrying about whether it is metaphysically possible to build a certain kind of machine or for a 
human or other agent to perform certain kinds of tasks. (Hence the frequently occurring weasel words ‘in 
principle’. More things may be ‘in principle possible’ than are possible simpliciter. ‘In principle’ does not 
appear to be a factive operator.) This suggests to us that the mathematicians’ intuitive notion of ‘computable’ 
might be similar to their intuitive notion of ‘provable’, in that what makes something computable in the intuitive 
relevant sense is simply that there is a certain kind of procedure for computing it, and this is unrelated to the 
difficult question of whether it is metaphysically possible for any mathematical creature to implement that 
procedure. We will leave further exploration of this issue to others. 
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Of course mathematics is full of necessary truths, for example this theorem of analysis: 
 

 
 
But only philosophers are interested in the fact that this theorem is necessarily true. 
Mathematicians are content if they can show that it is true (ibid.). 

 
 Having gotten this far, one might think that, insofar as we are justified in thinking that 
mathematics is necessary at all, such justification will proceed not from the practices of 
mathematicians but from the practices of the armchair philosophers. Stories about how such 
practices confer justification or knowledge are many and varied. Most crudely, one might 
posit cognitive phenomenology that forcefully presents the necessity of a certain 
propositions, including those of pure mathematics.6 On the heels of this picture, one might 
tack on the epistemological principle, popular in some circles, that one is ‘prima facie 
justified’ in believing any proposition for which one has an ‘intuition’ or an ‘intellectual 
seeming’. And one might then hope to run the gauntlet of candidate ‘defeaters’ in order to 
emerge with justification simpliciter. Alternatively, one might take a conventionalist 
approach. Perhaps, one might think, there is no ‘joint in reality’ that is picked out by the 
idioms of metaphysical modality, and the truths of mathematics get to be necessary simply on 
account of our having decided in a quasi-stipulative way that they belong to a special ‘list’.7 
Or alternatively, and perhaps most intriguingly, one might claim that mathematics is 
necessary on the basis of its purported reducibility to logic in combination with the necessity 
of logic itself. This is the so-called (neo-)logicist program adapted to the role of proving the 
necessity of mathematics.8,9 (The other main approaches to the foundations of mathematics—
intuitionism and formalism—are less obviously well equipped to provide any compelling 
story about the necessity of mathematics.) The picture-thinking is clear enough: since it is not 
that mysterious that logic is necessary, by reducing mathematics to logic we also render the 
necessity of the mathematics unmysterious. 

For what it’s worth, we find the neologicist approach to our question more promising 
than the other two mentioned in the previous paragraph. (And we are not alone. When we 
asked a variety of philosophers why they thought we should think that mathematics is 
necessary, some variant of ‘Logicism’ was by far the most common answer.) Here is how 
that approach would work. Neologicists maintain that some decent-sized axiomatizable 
mathematical theory—typically, the chunk of arithmetic characterized by the Peano 
axioms—is reducible to logic on account of its axioms being derivable from an abstraction 
principle in some axiomatic system of second-order logic. By supplementing their favorite 
system of second-order logic with the ‘necessitation’ rule  
 

   A  
£A, 

                                                
6 See Bealer (2002). 
7 See Sider (2011: ch. 12). 
8 See Hale and Wright (2001). 
9 A particularly radical and technically untaxing form of the view that all truths of mathematics follow by logic 
from analytic truths is the view all truths of mathematics are analytic. Timothy Williamson gestured at this view 
in conversation, and pointed out that at least it bypasses worries concerning truths of mathematics that are not 
provable from standard axioms. (Of course, as an analyticity-skeptic, Williamson himself does not endorse any 
version of the view that mathematics is analytic.) A proponent of any such view cannot think of analytic truths 
as truths that one immediately assents to upon understanding them, but arguably even ordinary neologicists have 
to distance themselves from any such conception of analyticity. 
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which ensures that £A is a theorem whenever A is, and the standard K axiom  
 

£(A ® B) ® (£A ® £B), 
 
they will obtain a system S that can be shown to be sound (but not complete) on a natural 
generalization of standard possible worlds semantics for modal logic to the second-order 
case.10 Then, for any theorem T of the mathematical theory whose axioms are provable from 
the abstraction principle a in the original system of non-modal second order logic, £a ® 
£T will be a theorem of S. Thus, given that the abstraction principle is necessary, and given 
that the system is (informally) sound, it follows that each theorem of the reduced 
mathematical theory is also necessary.  

Yet an appeal to neologicism as a general answer to our question still does not seem 
very promising. For one thing, that strategy has certain inherent limitations. It can, at best, 
establish only the necessity of those mathematical truths that are provable in whatever 
axiomatic system it uses. By Gödel’s first incompleteness theorem, we know that these 
cannot even include all truths of first-order arithmetic. (That result was, after all, the downfall 
of the original logicist program of Frege and Russell. Hence the prefix ‘neo’. Neologicists are 
content to reduce some but not all of mathematics to logic.) We also have two more general 
philosophical qualms about the approach. First, neologicists cannot even establish the 
necessity of the axiomatizable fragments of mathematics they target unless they can establish 
the necessity of the abstraction principles they assume. But, insofar as there is any neologicist 
story about why the abstraction principles are necessary, it tends to proceed via the claim that 
they are ‘analytic’ or that they are ‘conceptual truths’—ideology that we find problematic for 
broadly Williamsonian reasons.11  Second, many neologicists seem to be motivated by a 
commitment to the view that logic is in some sense metaphysically neutral or innocent (since 
they often write as if a reduction to logic would purge mathematics of metaphysical 
tendentiousness).12 But logic isn’t metaphysically neutral.13 What makes logic logic is not its 
neutrality but its generality. If one wants to play it safe from an ontological point of view, 
sticking to logic as the foundation of both (some) mathematics and the source of its necessity 
is not a good game plan. (Of course we don’t expect these brief remarks to convince die-hard 
neologicists, but we put them forward in the hope that they will clue the reader into our own 
orientation in the philosophy of logic and mathematics. The original contribution of this 
paper is the alternative picture it develops and not its critique of extant accounts of the 
necessity of mathematics.) 
 In our view, the supposition that mathematics is silent on questions of metaphysical 
modality is completely wrong-headed. Hodges’ claim that mathematics does not directly 
deploy idioms of metaphysical necessity and possibility is certainly plausible. However, we 
shall argue, mathematics makes use of the counterfactual conditional, which in both ordinary 
and mathematical English is paradigmatically expressed by the subjunctive conditional 
construction 
 

If … (then) - - - would _ _ _.14 

                                                
10 For example, Williamson’s (2013a: §5.5) semantics for his system MLP. 
11 See Williamson (2007: Chs. 3-4). 
12 Hale and Wright are our paradigms. See the Introduction to Hale and Wright (2001), and see Raatikainen 
(forthcoming) for further discussion. 
13 See Williamson (2013b). 
14 Arguably the distinctive hallmark in English is the occurrence in the antecedent of the conditional of ‘fake 
past tense’, a layer of tense that has nothing to do with temporal past. See, e.g., Iatridou (2000). 
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The use of counterfactual conditionals is by no means a marginal feature of mathematical 
discourse. (We will later explain why it is not dispensable.) In fact, the pattern of their 
deployment encodes a commitment to the necessity of all mathematics. These facts put the 
thesis of the necessity of mathematics on a firmer footing, since they show that challenging 
that thesis requires challenging the practice of mathematics itself.  

Admittedly, some foundational questions remain open. Grounding-lovers will still 
wish to inquire after what grounds the necessity of mathematics. We will not undertake to 
defend the claim that the necessity of mathematics is grounded in counterfactual facts. And 
epistemologists may wish to inquire after how mathematicians are justified in thinking and 
saying the things that commit them to the necessity of mathematics. We are not going to 
address these further questions in this paper. Our ambitions more modest.  
 In §1 we introduce our assumptions about the language of mathematics. In §2 we 
show that mathematical practice is committed to the necessity of all provable mathematical 
truths in virtue of its commitment to the acceptability of a certain inference pattern involving 
counterfactuals. In §3 we turn to mathematical truths that are not provable. Here we establish 
an even stronger result: characteristic patterns of inference involving counterfactuals in 
mathematics manifest a commitment to the thesis that all mathematical truths, whether 
provable or not, are necessary. In §4 we argue that the modal commitments of mathematics 
extend even further than we found in §3: mathematics, it turns out, is committed to all 
theorems and rules of inference of the modal system S5 that are expressible in mathematical 
language—S5 being the system that is widely thought to capture the logic of metaphysical 
modality. 
 
1. The language of mathematics  
 
By the ‘language of mathematics’ we mean the language of pure (i.e., not applied) 
mathematics that one finds in textbooks and professional journals. In what follows we are 
going to make some fairly modest assumptions about the logical constants that are present in 
that language. First, we will assume that the language has at least the standard truth-
functional connectives, including ^. (^ is the 0-place connective—i.e., sentence constant—
that is a truth-functional contradiction.) Second, we assume that the language has the 
counterfactual conditional connective £®.  

Admittedly, our assumption about the presence of the standard truth-functional 
connectives in the language of mathematics is a little idealized. For example, the use of a 
primitive contradiction symbol is far from a pervasive feature of mathematical texts. Yet the 
idealization is harmless enough. For example, one could define ^ as an abbreviation for some 
paradigmatic truth-functional contradiction.  

Similarly, while the language of mathematics doesn’t contain a single expression with 
the syntactic type and the meaning of £® , it does contain the resources for expressing 
everything that can be expressed by £® . Mathematics is rife with counterfactual 
conditionals, although these are often not in the standard form ‘If … (then) - - - would _ _ _’. 
For example, in the canonical contemporary text on mathematical logic, we encounter the 
following sentence early on: 
 

Suppose there were a machine computing t. It would have some number k of states (Boolos, 
Burgess, and Jeffrey 2007: 41).15 

                                                
15 Note that the syntactic analysis Kratzer (1986) would give this discourse would make ‘would’ a restricted 
modal operator, where the restriction is supplied by the preceding sentence together with the ‘modal base’ 
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A casual survey of indirect proofs in virtually any classic mathematical text yields many 
more examples. To pick an example virtually at random, here is one from a classic text on 
computability theory: 
 

THEOREM 6.1. The set of all Gödel numbers of Turing machines Z, for which YZ(x) is 
total, is not recursively enumberable. 
 PROOF. Let us designate the set of all such Gödel numbers by R, and let us suppose 
that R is recursively enumerable. Then, since R ≠ Æ, there would be a recursive function f(n) 
whose range is R. 
 The function U(miny T(f(n), x, y) would be total, and hence recursive. Hence U(miny 
T(f(n), x, y) + 1 would be recursive. Hence, by the very definition of f(n), there would be a 
number n0 such that 
 

U(miny T(f(n), x, y) + 1 = U(miny T(f(n0), x, y). 
 
Setting x = n0 yields a contradiction (Davis 1958: Ch. 5, p 78). 

 
Since the reader can easily carry out the exercise of collecting a long list of similar 
examples,16 we will not devote any more space to them. 

We assume that the common construction ‘Suppose … . (Then) - - - would _ _ _’ is 
simply a reader-friendly way of expressing a counterfactual conditional. Mathematical 
writing often splits conditionals, both subjunctive and indicative, into two or more sentences, 
which makes it easier to parse conditionals with logically complex consequents and 
antecedents. (Note that ‘Suppose A. Then B’ is an entirely standard way of stating a theorem. 
The theorem so stated is just this: if A then B.) One also often encounters in mathematical 
texts sentences whose main verb is ‘would’ with no relevant ‘suppose’ preceding it. In such 
cases, at least typically, there is either a preceding sentence that is meant to be understood as 
the antecedent of a counterfactual or some preceding sentences whose conjunction is meant 
to be so understood. 
 We take it that our assumptions about the character of the language of mathematics 
are not especially tendentious. What has been overlooked in discussions of the modal status 
of mathematics is that these assumptions entail that that language has the resources for 
asserting the necessity of every mathematical proposition expressible in it. After all, the 
following definition of the metaphysical necessity operator £ falls out of both of the two 
standard semantics for counterfactuals (Stalnaker 1968 and Lewis 1973).17 
 
Definition 1.  £A  =df  (¬A £® ^) 
 

While the semantics of Lewis and Stalnaker provide a powerful motivation for 
Definition 1, a perhaps even more powerful motivation for it is supplied by a proof-theoretic 
observation due to Timothy Williamson. Williamson (2007: 155-58) observes that the 

                                                                                                                                                  
supplied by the context of speech. We find her treatment of the underlying logical forms of natural language 
counterfactuals plausible, but we are not going to rely on it here. 
16 Here is one way to do so: find a canonical mathematics text in Google Books, and search for occurrences of 
‘would’ within it.  
17  Note that those who treat counterfactuals as strict conditionals (like Kratzer 1986) are also committed to the 
equivalence. Of course, strict conditional-lovers will inevitably think that counterfactuals and associated modals 
are context-sensitive in that different contexts supply different domains of worlds or ‘modal bases’ for the 
counterfactuals and modals to generalize over. We address the interaction of our discussion of this kind of 
context-dependence below. 
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material equivalence of the two sides of Definition 1 is derivable from the following two 
principles in an extremely weak modal logic. 
 
NECESSITY:  £(A ® B) ® (A £®  B) 

 
POSSIBILITY:  (A £®  B) ® (¯A ® ¯B) 

 
These principles are pretty hard to disagree with. NECESSITY says that strict 

implication implies counterfactual implication—or, in other words, that, whenever it is 
necessary that if A then B, it is also the case that, if it had been the case that A, then it would 
have been the case that B. Or, equivalently, using the suppositional idiom: 

 
Suppose that it is necessary that if A then B. Then, if it had been the case that A, it 
would have been the case that B. 
 

POSSIBILITY says that anything counterfactually implied by a possible proposition is also 
possible—or, equivalently, in suppositional language: 
 

Suppose that if it were the case that A then it would be the case that B. Then it is 
possible that B only if it is possible that A. 

 
The derivation of £A « (¬A £® ^) from NECESSITY and POSSIBILITY requires nothing 
more than the weakest normal modal logic K. Given the validity of both NECESSITY and 
POSSIBILITY and the soundness of K, it follows that £A and (¬A £® ^) are logically 
equivalent, wherefore we may treat the former as an abbreviation for the latter, just as we do 
in Definition 1. 
 The language of mathematics can thus assert the necessity of any mathematical 
proposition it can express. But it remains to be shown that mathematical practice is 
committed to the necessity of all mathematical truths. That is the task of the next two 
sections. 

 
2. Provable mathematical truths 
 
In this section we will argue that mathematics is committed to the necessity of every provable 
mathematical truth. The notion of provability that we are working with is what philosophers 
of mathematics often call ‘informal provability’, as opposed to the system-relative notion of 
‘formal provability’, i.e. provability in a given formal system. The basic idea is that a 
statement is informally provable just in case there is a proof of it in the sense of ‘proof’ 
operative in actual mathematical practice, as opposed to philosophers’ formalizations of 
mathematical theories. We will use the symbol ‘⊢’ to express the relation of informal 
provability. Thus ‘A1, …, An ⊢ B’ says that B is informally provable from A1, …, An, and ‘⊢ A’ 
says that A is informally provable simpliciter. 

Two features of informal provability are important for our discussion. First, informal 
provability differs from formal provability in that it always preserves truth. As a special case, 
a statement that is informally provable simpliciter is true. In contrast, there are formal 
systems—ones with false axioms or unsound rules of inference—in which provability does 
not preserve truth or in which falsehoods are provable. (The system of Frege’s Grundgesetze 
der Arithmetik, in which everything turned out to be provable, is a famous example.) Second, 
the informal provability of B from A1, …, An does not imply that B is a logical consequence 
of A1, …, An. As a special case, the informal provability of A does not imply that A is a 
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logical truth. (Of course, a (neo-)logicist may wish to claim that the informal provability of B 
from A1, …, An implies that B is a logical consequence of A1, …, An together with some 
analytic or conceptual truths.) An informal proof of a mathematical truth B typically consists 
in a logically valid argument for B from some assumptions A1, …, An, each of which is 
informally provable. When such a proof is given, we say that ⊢ B, and not merely that A1, …, 
An ⊢ B. Indeed, the mere possibility of giving such a proof, whether or not anyone ever 
actually gives it, implies that ⊢ B, since ‘⊢ B’ expresses informal provability of B, not merely 
that B has been (or is or will be) informally proved.18 In what follows, we will simply use the 
word ‘provability’ and its cognates for informal provability and related notions, since no 
other varieties of provability will be at issue.19 

We will now argue that mathematics is committed to the necessary truth of any 
provable mathematical truth. 

To establish this, we need only make two assumptions about provability. The first is 
the following standard principle. 
 
REDUCTIO.  ⊢ A iff ¬A ⊢ ^. 
 
(In fact, we will only need the left-to-right direction of REDUCTIO in our arguments.)  
 The second assumption is that the principle of ‘deduction within conditionals’—a 
completely standard principle of counterfactual logic20—also holds for ⊢: 
 
DEDUCTION.  If A1, …, An ⊢ B then A1, …, An – 1   ⊢ An £® B. 
 

Of course, the fact that DEDUCTION becomes wholly unremarkable when ‘⊢’ is 
interpreted as expressing provability in a standard system of counterfactual logic does not 
quite suffice for establishing DEDUCTION, which is a claim about provability in an absolute 
and informal sense. To argue for DEDUCTION we must argue that mathematical practice 

                                                
18 However—to return to the theme of note 5—it is not obvious that the converse holds. Perhaps ‘provability’ 
here should be not be understood as implying the metaphysical possibility of some agent or machine 
constructing a proof. It may be sufficient for A1, …, An ⊢ B that there is an informal proof of B from A1, …, An—
i.e., a certain kind of structure of sentences of the language of mathematics. Such a structure may exist even if it 
is, for whatever reason, metaphysically impossible for anyone to inscribe, speak, or think a token of it. In this 
respect informal provability may turn out to resemble formal provability. 
19 We note in passing that mathematics also contains the practice we call very informal proof: that of supporting 
statements of pure mathematics by appeal to contingent facts about what mathematicians have and have not 
achieved. Very informal proofs often contain occurrences of counterfactuals: for example, the claim that a 
theory T is consistent might be supported by statements like: ‘If T were inconsistent, then someone would have 
derived a contradiction from T by now’. In the context in which such an argument is given it is typically known 
that no one has derived a contradiction from T by the time of speech of writing. In such a context the indicative 
‘If T is inconsistent, then someone derived a contradiction from T’ would be a just as strange as a speech by a 
doctor, made in the manifest presence of spots: ‘If he doesn’t have disease X, then he has no spots’. Thus it is no 
linguistic accident that we resort to the counterfactual construction in very informal proofs. We shall not, 
however, be giving very informal proofs a starring (or indeed any) role in our discussion, as it will be widely 
(and plausibly) held that such ‘proofs’ are easily dispensable from pure mathematics proper. 
20 This is Lewis’s (1973: 132) label for a more general principle (the label has stuck); see also Stalnaker (1968: 
105-16). Certain indexicals make trouble for DEDUCTION as a principle of counterfactual logic. For example, 
DEDUCTION would be a disastrous principle for a language that contains the standard indexical actuality 
operator @, because (by A ⊢ @A) it would imply ⊢ A £®  @A, and A £®  @A is false whenever A is false but 
possible (see Davies and Humberstone 1980 and Kaplan 1989: 539, n. 65). But this is no objection to 
DEDUCTION on its intended interpretation, which concerns informal provability in the language of pure 
mathematics, which, we assume, contains no indexicals. (Of course, mathematical texts do contain indexicals—
‘We shall now prove…’, and so on—but they do not occur in statements of pure mathematics.) 
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displays a commitment to it. But this is not at all difficult. In mathematics it is commonplace, 
having supposed An, in addition to any assumptions A1, …, An – 1 one has previously made, to 
conclude that B would be true (if An were true), on the basis of a recognition that B is 
provable from A1, …, An. In such cases, antecedent of the counterfactual is often left implicit. 
Consider this example from the passage we already quoted in Davis’s Computability and 
Unsolvability: 
 

Let us designate the set of all such Gödel numbers by R, and let us suppose that R is recursively 
enumerable. Then, since R ≠ Æ, there would exist a recursive function f(n) whose range is R. (Davis 
1958: Ch. 5, p. 78). 

 
Here Davis supposes that a certain set R is recursively enumerable, recognizes that the 
existence of a recursive function whose range is R is provable from that supposition and his 
earlier assumptions, and concludes that there would be such a function. The implicit 
antecedent is that R is recursively enumerable. 
 To complete the argument, note that REDUCTIO and DEDUCTION imply:  
 

If ⊢ A then ⊢ (¬A £® ^), 
 
which, by Definition 1, is none other than: 
 
(£) If ⊢ A then ⊢ £A. 
 
(£) implies that all provable mathematical truths are necessary, but it says something even 
stronger than that: that all provable mathematical truths are provably necessary. (Because 
provability implies truth, provable necessity implies necessity.) 
 It is significant that our result is not merely that ⊢ A implies that A is necessary, but 
that ⊢ A implies ⊢ £A. What this means is that mathematics is committed to the necessity of 
its provable truths in the precise sense that the necessity of any given provable mathematical 
truth is itself provable in mathematics. There is no metaphysical division of labor here. 
Philosophers may still wish to debate the modal status of provable mathematical truths, but 
our result shows that in doing so they are calling into question a commitment of mathematics 
itself. 
 
3. Unprovable mathematical truths 
 
So far we have only argued that mathematics is committed to the necessity of all provable 
mathematical truths. But of course this does not straightforwardly establish the claim that 
mathematics is committed to the necessity of all mathematical truths, since it says nothing 
about the unprovable ones. And no doubt some deviants will flirt with the view that, while all 
provable mathematical truths are necessary, some or all of the unprovable ones are 
contingent. 
 The above paragraph presupposes that there are some unprovable mathematical truths. 
It is worth recalling again that the topic of our discussion is provability in the informal sense. 
The presupposition that there are informally unprovable mathematical truths is by no means 
beyond question. Consider Gödel’s famous incompleteness result. It establishes that, for any 
consistent formal first-order system whose theorems include the Peano axioms, there are true 
sentences of first-order arithmetic that are not among its theorems. Nothing about what is 
informally provable follows from this result about formal provability. As Timothy 
Williamson has observed, insofar as a given truth of mathematics A is knowable, there is no 
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obstacle to A being treated as an axiom by mathematicians in the activity of informal proof, 
and, if A were so treated, A would, qua axiom, be a limiting case of informal provability.21 
Given that what is informally provable is a non-contingent matter, it follows that A is actually 
informally provable. Since one cannot straightforwardly derive any constraint on 
mathematical knowledge from Gödel’s result, one also cannot straightforwardly derive any 
constraint on informal provability from it. For this kind of reason, philosophers of 
mathematics tend to think that it is a difficult open question whether every mathematical truth 
is informally provable. 
 However, we will not assume that all mathematical truths are informally provable. As 
we are arguing that a commitment to the necessity of all mathematical truths is implicit in 
mathematical practice, it would be inappropriate to rely on that assumption. There is no 
reason to think that mathematical practice is committed to the informal provability of all 
mathematical truths. 
 Instead, we would like to call attention to certain facets of the interaction of 
counterfactuals with informal proof in mathematics that manifest a commitment not merely 
to the necessity of informally provable mathematical truths but to the necessity of all 
mathematical truths. To begin, here is a fact about informal provability: 
  
(1) A ⊢ B £® (A Ù B) 
 

As in the case of DEDUCTION, it is difficult to find instances of reasoning having 
exactly the form (1) in mathematical texts, because such instances are too obvious to state 
explicitly. For example, the following is such an instance, but it is so glaringly obvious that it 
could hardly play a useful role in a proof: 
 

x is in S. Therefore, if y were in S, both x and y would be in S. 
 
But it is not at all difficult to find proofs that manifest a commitment to (1) in mathematical 
texts. And this is just what one should expect: mathematics does not exhibit its commitment 
to obvious structural facts about provability by stating those facts, but rather by reasoning in 
accordance with them. (This is not, of course, a special feature of mathematical practice. 
Extremely obvious principles of inference are rarely stated explicitly in informal reasoning in 
any field.) Here are two examples from a single proof in Martin Davis’s classic 
Computability and Unsolvability: 
 

THEOREM 3.2. Let f(x(n)), g(x(n+2)) be total functions. Then, there exists a total function 
h(x(n+1)) that satisfies (1). 

PROOF. We consider sets of (n + 2)-tuples (y, x(n), u) of numbers. Such a set S of (n + 
2)-tuples will be called satisfactory if 

 
(a) For each choice of x(n), (0, x(n), f(x(n))) Î S; and 
(b) For each choice of x(n), if (z, x(n), f(x(n))) Î S, then 

 
(z + 1, x(n), g(z, y, x(n))) Î S 

 
Let W be the class of all satisfactory sets S. Then W is nonempty, since the set of all (n + 1)-
tuples of numbers is satisfactory. Let S0 be the intersection of all sets that are members of W. 
Then it is easy to see that S0 is not satisfactory and that S0 is contained in every satisfactory set. 

                                                
21 See Williamson (2016). 
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 Next, suppose that (0, x(n), u) Î S0. Then we have u = f(x(n)). For otherwise the set 
obtained on deleting (0, x(n), u) from S0 would be satisfactory and would not contain S0 (ibid: 
47). 

 
Later in the same proof we have the following. 
 

Since S0 is satisfactory, 
 

(z + 1, x(n), g(z, y, x(n))) Î S0. 
 
Suppose that 
 

(z + 1, x(n), v) Î S  v ≠ g(z, u, x(n)) 
 
Then the set obtained by deleting (z + 1, x(n), v) from S0 would clearly be satisfactory and 
would not contain S0 (ibid: 48). 

 
Here, having laid down criteria for satisfactoriness, Davis takes for granted that, under the 
counterfactual suppositions of the proof, those criteria of satisfactoriness would still be in 
effect. So, for example, he assumes that, supposing that (0, x(n), u) Î S0, a set would be 
satisfactory only if (a) and (b) held. And, even more obviously, he assumes that, if (0, x(n), u) 
Î S0 had held, then (0, x(n), u) Î S0 would have held. Implicit here is the thought that, given 
(a) and (b), if it were the case that (0, x(n), u) Î S0, then it would be the case that both (0, x(n), 
u) Î S0 and (a) and (b). And that is an instance of our principle. Of course this does not show 
that the general principle (1) is at work, but given the myriad instances of similar reasoning, 
it is extremely natural to think that a commitment to (1) is implicit in mathematical practice. 
(The situation is similar with the general principle of conjunction elimination.) 

Note that (1) is not a principle of logic. For example, it does not logically follow from 
the fact that Williamson is teaching a seminar in the Ryle Room now that if Williamson were 
taking a bath now, then he would be both taking a bath and teaching a seminar in the Ryle 
Room now. Yet reasoning in accordance with (1) will never lead one from truth to falsehood 
if both A and B are non-contingent (in fact, it suffices that A is non-contingent). 
 In spite of its being no principle of logic, mathematicians are perfectly happy to 
reason in accordance with (1). That is to say, they are committed to (1) holding for any 
statements A and B of pure mathematics. (They are also committed to (1) holding when doing 
applied mathematics from pure mathematical premises, i.e., when A is pure and B isn’t. This 
will be important later.) To emphasize, A and B here need not be provable mathematical 
truths; after all, one can reason about what follows from unprovable statements. This fact 
alone, together with our previous observation that reasoning in accordance with (1) never 
leads from truth to falsehood when the reasoning concerns non-contingent subject matter, 
might be thought to manifest a kind of mathematical commitment to the non-contingency of 
mathematics. But that will not be our argument. 
 Rather, our argument will be this: the necessity of all mathematical truths, provable or 
not, follows from (1), and indeed is provable from (1) in mathematics, so the necessity of all 
mathematical truths, provable or not, is provable in mathematics.  
 To establish this, we will have to make one further assumption about provability, 
which we take to be so obvious as to require no supporting argument: 
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CLASSICALITY. (i) A1, …, An ⊢ B whenever B follows from A1, …, An by classical truth-
functional logic. 

 
(ii) ⊢ obeys the principle of proof by cases. 

 
 (iii) If A1, …, An ⊢ B, then A1*, …, An* ⊢ B*, where A1*, …, An* ⊢ B* 

results from replacing any number of occurrences of sentences in A1, …, An 
⊢ B by occurrences of classically truth-functionally equivalent sentences. 

 
We are aware, of course, that some mathematicians, operating within an intuitonistic 
framework, are explicitly committed to denying each of the three clauses of CLASSICALITY.  
But it is classical mathematics that concerns us here, and we will not be discussing which of 
our results carry over to an intuitionistic setting. 

Now, for the proof, note first that the following instance of (1) 
 

A ⊢ ¬A £® (A Ù ¬A) 
 
is equivalent by CLASSICALITY(iii) to A ⊢ ¬A £® ^, which, by Definition 1, is none other 
than: 
 
(*) A ⊢ £A 
 
By CLASSICALITY(i) and (ii) it follows that: 
 
(£*) ⊢ £A Ú £¬A 
 
That is to say, every mathematical statement is provably non-contingent—i.e., is provably 
either necessarily true or necessarily false. In committing itself to (1), mathematics commits 
itself to the necessity of all mathematical truths in the precise sense that the claim that each 
mathematical truth is necessary—or, equivalently, that each mathematical statement is non-
contingent—is itself provable in mathematics.  

While (1) is suffices for our argument, we suspect that there is nothing special about 
it. While our textual investigations have focused on (1) and delivered a positive verdict, we 
suspect that mathematicians would also be happy with a variety of other inference patterns 
that manifest a commitment to (£*). Here are five examples of such inference patterns, and 
there are many more: 
 
(2)  If A ⊢ C and B ⊢ D, then A ⊢ B £®  (C Ù D) 
 
(3) If A ⊢ B and C ⊢ ¬B, then A ⊢ C £® ^ 
 
(4) A Ú B ⊢ ¬A £® B 
 
(5)  If A ⊢ B then A ⊢ C £®  (B Ù C) 
 
(6) A £® B ⊢ ¬B £® ¬A22 
                                                
22 Here are, respectively, the instances of (2)-(6) from which (£*) can be proved: 
(2¢) If A ⊢ A and ¬A ⊢ ¬A, then A ⊢ ¬A  £®  (A Ù ¬A) 
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4. Metaphysical modal logic within mathematics 
 
How deep do the modal commitments of mathematics run? So far we have argued against 
views that posit an epistemic division of labor in which mathematics supplies the truths and 
philosophy supplies their necessity. We have argued that the non-contingency of all 
mathematical truths is provable within mathematics itself. This still leaves room for a kind of 
epistemic division of labor: one might think that, while mathematics supplies both the truths 
and their necessity, it stops short of telling us anything further about necessity. In the new 
division of epistemic labor, it is up to philosophers to supply any further truths about the 
modal status of mathematical statements, such as that any mathematical statement that is 
necessarily true is necessarily necessarily true. According to this picture, to put it in a slogan, 
mathematicians supply both the truths and their necessity, and philosophers supply the logic 
of their necessity. 
 In fact, it already follows from what has been said that this picture cannot be correct. 
Mathematical practice turns out to be highly opinionated about the application of principles 
of modal logic to mathematics. By replacing ‘A’ in (£) with ‘£A’ we get  
 
4: ⊢ £A ® ££A. 
 
Of course, we can also replace ‘A’ in (£) with ‘¯A’, so we also have: 
 
5: ⊢ ¯A ® £¯A. 
 
It is clear that ¬A £® ^ ⊢ A, which implies that ⊢ (¬A £® ^) ® A, so, by Definition 1: 
 
T: ⊢ £A ® A 
 
It should come as no surprise that the K axiom £(A ® B) ® (£A ® £B) is also provable in 
mathematics. 23  Finally, the key observation of §2 was, in effect, that provability in 
mathematics obeys the principle of Necessitation: if A is provable, then so is £A. Given 
CLASSICALITY, it follows that the necessity of any truth-functional tautology is provable in 
mathematics, as well as that, whenever £A is provable in mathematics and A ® B is a truth-
functional tautology, £B is provable in mathematics. 
 The previous paragraph’s observations amount to no more and no less than this:  
 

                                                                                                                                                  
(3¢) If A ⊢ A and ¬A ⊢ ¬A, then A ⊢ ¬A £® ^ 
(4¢) A Ú ^ ⊢ ¬A £® ^ 
(5¢) A ⊢ A then A ⊢ ¬A £®  (¬A Ù A) 
(6¢) ¬^ £® A ⊢ ¬A £®  ¬¬^ 
((£*) follows from (6¢) by A ⊢ ⊤ £® A, which is entailed by CLASSICALITY and DEDUCTION.) 
23 But the proof is a little more involved than those of the other axioms. Since ¬A Ú B is tautologically 
equivalent to A ® B, to show that the K axiom is provable in mathematics, it will suffice to show that: 
(K*) ¬(¬A Ú B) £® ^, ¬A £® ^ ⊢ ¬B £® ^ 
(K*) seems completely unexceptionable. Consider this speech: ‘Suppose that, (i) if A were true and B were false 
(which is tautologically equivalent to ¬(¬A Ú B)), then a contradiction would be true. And suppose that (ii) a 
contradiction would be true if A were false. Then (it is immediate from (ii)) that A is true. It is immediate from 
this and (i) that both A is true and, if A were true and B were false, then a contradiction would be true. So, a 
contradiction would be true if B were false.’ If the foregoing speech counts as an informal proof, and we 
maintain that it does, and our mathematician informants agree, then (K*) is true. 
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Every theorem of the modal system S5 that is expressible in the language of 
mathematics is provable in mathematics.24  

 
In effect, mathematics contains within itself the system S5. Since the logic of metaphysical 
modality is at least as strong as S5,25 and no one (as far as we know) thinks it is stronger than 
S5, this means that mathematics is as opinionated as it could be without going against 
philosophical consensus on the application of principles of modal logic to mathematics. 
Indeed, mathematics has locked on to the characteristic feature of metaphysical modality, 
which is the collapse of all iterated modalities: in S5, both £A and ¯A are equivalent to 
£/¯A, where £/¯ is any finite string of boxes and diamonds. From (£5) and the above 
observations it follows that: 
 
(£5*)  ⊢ £/¯A Ú £/¯¬A. 
 
That is to say, each mathematical statement is such that it is provable in mathematics that 
either it or its negation is necessarily necessarily true, necessarily possibly true, necessarily 
necessarily necessarily true, and so on for all finite sequences of ‘necessarily’s and 
‘possibly’s. There is no epistemic division of labor even of the modest kind envisaged at the 
beginning of this section. 
 
5. Objections and replies 
 
We shall now consider three objections to the foregoing. 
 The first objection concerns Definition 1, which entails that all counterfactuals with 
metaphysically impossible antecedents—so-called counterpossibles—are true.26  Yet many 
philosophers maintain that there are false counterpossibles,27 and they will accordingly reject 
Definition 1. Naturally they will also reject Williamson’s argument for the logical 
equivalence of the two sides of Definition 1. For our own part, we think that there are good 
reasons to think that all counterpossibles are true.28 However, we need not assume either that 
principle or Definition 1, which entails it, in order to establish (£*) or (a fortiori) (£). Our 
arguments for both relied on only one direction of the putative definitional equivalence of 
£A and (¬A £® ^): the entailment of £A by (¬A £® ^). And that direction is typically not 
questioned by philosophers who think there are false counterpossibles. Such philosophers 
typically reject NECESSITY while accepting POSSIBILITY, from which (¬A £® ^) ® £A is 
derivable in K.29 To make vivid why rejecting the entailment of £A by (¬A £® ^) would be 

                                                
24 4 is a redundant step on the way to this conclusion. It is a theorem, not an axiom, of standard axiomatizations 
of S5. 
25 That is, the logic of metaphysical modality without indexicals. When indexical operators (such as ‘actually’) 
are present, Necessitation must be restricted. But there are no indexical operators in the language of 
mathematics. See note 18?? for further discussion. 
26 Here is a proof. Suppose for a reductio that there is a false counterpossible. Then, for some A and B, £¬A is 
true and A £® B is false. Then, by Definition 1, A £® ^ is true. But if A £® ^ is true then so is A £® C, for 
any C. (Everything is a truth-functional consequence of ^, and any truth-functional consequence of a 
proposition counterfactually implied A is also counterfactually implied by A.) So, in particular, A £® B is true, 
contrary to hypothesis. 
27 E.g., Lowe (2012), Brogaard and Salerno (2013), and Berto et al. (forthcoming). 
28 See Williamson (forthcoming a, forthcoming b, and 2010). 
29 See Strohminger and Yli-Vakkuri (2017: §3) for review. Berto, French, Priest, and Ripley’s (forthcoming) 
development of a logic that allows counterpossibles to be false but nevertheless validates POSSIBILITY is a 
recent representative example. Similarly, Lowe (2012) maintains that there are false counterpossibles and 
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a bad idea, consider the issue in terms of possible worlds semantics. In any standard possible 
worlds semantics, the existence of a counterexample to the entailment of £A by ¬A £® ^ 
would require the existence of a world at which ^ is true, which in turn would require the 
truth of ¯^. But clearly no truth-functional contradiction is possibly true.30,31 
 The second objection proceeds from a thesis we’ll call DISPENSABILITY. 
DISPENSABILITY says that any counterfactuals in pure mathematics are dispensable in that 
they contribute nothing to the content of mathematics, in the sense that what mathematics 
contributes to our total body of knowledge it would still contribute (albeit perhaps in a less 
reader-friendly way) if its counterfactuals were replaced by indicative or (if these are 
different) material conditionals.32 DISPENSABILITY is consistent with, and can be motivated 
by, a variety of views about the role of counterfactual conditionals in mathematics. For 
example, an advocate of DISPENSABILITY might think that there are, contrary to appearances, 
no counterfactuals in mathematical texts, and that the subjunctive conditional construction 
has a different semantics in mathematical and other contexts. Or he might think that 
mathematicians are simply being careless when they use subjunctive conditionals, and that 
what they really mean to express by these conditionals, when push comes to shove, are the 
corresponding indicative or material conditionals. Or, rather more plausibly, she might 
concede that, as in the case of epistemic modals, there are good reasons for the occurrence of 
counterfactuals in mathematical texts, and that they are even indispensable for some (e.g., 
pragmatic) purposes, but, like epistemic modals, counterfactuals are nevertheless dispensable 
to what mathematics contributes to our knowledge. According to this perspective, we are 
making the same kind of mistake that would be made by someone who takes pure 
mathematics to be committed to various epistemic claims on account of the ubiquity of 
epistemic modals in mathematical texts. Clearly that would be a mistake: whatever role 
epistemic modals play in those texts, mathematics is not in the business of teaching us 
anything about knowledge: the actual axioms, proofs, and results of mathematics, when 
strictly and literally stated, do not concern knowledge,33 no matter what epistemic language 
one finds in standard mathematical texts. Similarly, the objection goes, those same axioms, 

                                                                                                                                                  
accepts POSSIBILITY, with, however, less promising results (see Strohminger and Yli-Vakkuri 2017: §4 for 
criticisms). 
30 A subtle complication arises when we retreat to versions of our arguments that do not rely on Definition 1, for 
then we can no longer assume that the language of mathematics can express the necessity of any mathematical 
statement: without Definition 1, we have no argument that £A is in the language of mathematics whenever A is. 
To derive (£) and (£*) we must either consider a mathematical language enriched with £ or interpret ‘A1, …, 
An ⊢ B’ to mean something like ‘For some C1, …, Cn, each of C1, …, Cn is informally provable from A1, …, An 
and B is formally provable in K from C1, …, Cn and POSSIBILITY’. The second option strikes us as 
particularly attractive. It still delivers a result that displays the commitment of mathematics to the necessity of 
provable mathematical truths. Since K is sound and POSSIBILITY is valid, the result becomes that mathematics 
is committed to the necessity of its provable truths in the sense that (i) whenever A is provable in the 
mathematics itself, so are some statements from which £A logically follows, and that (ii), whatever 
mathematical statement A may be, £A Ú £¬A is logically follows from statements provable in mathematics. 
31 Granted, certain proponents of the view that there are false counterpossibles may take the further radical step 
of not merely rejecting the view that DEDUCTION holds for logical consequence but also that it holds for 
informal provability in mathematics. We are not going to engage with such radicalism, except to remind the 
reader that DEDUCTION is a part of the practice of mathematics, and so the radical step is tantamount to 
revisionism about that practice. 
32 Quine was a prominent defender of this view. In fact, he held the even stronger view that counterfactuals were 
dispensable to all of science. See, e.g., Quine (1994: 149-50). 
33 Some areas of mathematics—game theory, for example, and certainly epistemic logic, if it counts as part of 
mathematics—might be thought to concern knowledge, but, even if they do, it would be a mistake to treat the 
presence of epistemic modals as evidence of the commitment of mathematics to claims about knowledge. 
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proofs, and results, strictly and literally stated, do not concern counterfactual matters,34 no 
matter what counterfactual-sounding language one finds in mathematical texts. 
 A great deal could be said about possible motivations for DISPENSABILITY (we find 
the hypotheses of carelessness and special semantics to be especially implausible35), but there 
is no need to engage with its motivations when we can attack DISPENSABILITY directly, and 
we will. 
 In fact, counterfactuals are absolutely indispensable to what mathematics contributes 
to our total body of knowledge—which is to say, DISPENSABILITY is false. Note first that 
myriad applications of mathematics to the hustle and bustle of both everyday life and 
engineering require our knowing that mathematical truths would remain true even if things 
had gone differently in various ways. For example, in justifying a particular engineering 
solution, one often appeals to mathematical truths in reasoning about how things would have 
gone if one had opted for an alternative solution. In doing so one assumes—and if one is 
successful, one knows—that those mathematical truths would have been true even if one had 
opted for the alternative solution. Note second that, as the queen of the sciences, mathematics 
is primed for application in any area of objective inquiry, whether it be the science of 
electromagnetism, the theory of rook and pawn endings, or natural language semantics. Each 
of these disciplines deploys its own counterfactuals, and in applying mathematics to them one 
must know that the truths of mathematics would remain true also under their counterfactual 
suppositions. Notably such counterfactual suppositions often include ones that are 
nomologically impossible and yet are not treated as ones from which anything whatsoever 
follows. For example, when doing physics, we are perfectly happy to hold the truths of 
mathematics fixed when suppositionally reasoning about the behavior of particles under 
various permutations of the standard model, and our comfort level does not at all diminish 
when reasoning about models that we take to be nomologically impossible. The success of 
our practice of applying mathematics to anything whatsoever requires that we know that 
mathematical truths would remain true under any counterfactual suppositions whatsoever36—
which is to say, it requires that we know that mathematical truths would remain true no 
matter what, or, equivalently, that they are necessary truths. 
 The third objection turns on the point that, for any restricted necessity £¢, one can 
define an associated ‘restricted counterfactual’ £® ¢ that obeys the principle 
 

£¢A « (¬A £® ¢^). 
 
Even granting that mathematics deploys counterfactual discourse, it may be suggested that 
the counterfactuals in play are restricted in some way, and consequently mathematics is not 
committed to the necessity simpliciter of mathematical truths, but only to their necessity in 

                                                
34 As in the case of knowledge, one might think that this claim is undermined by the existence of counterfactual 
logic as a bona fide area of mathematical inquiry, but, in any case, it would be hard to argue from mathematical 
commitment to some kind of counterfactual logic to the claims we wish to argue for. After all, our claims 
concern informal provability, and our premises include claims about counterfactuals that are not principles of 
any reasonable counterfactual logic. 
35 The short story is that the hypothesis of careless ascribes implausible deficits in semantic processing to 
sophisticated mathematicians, and the hypothesis of special semantics is supported by no linguistic data. And it 
is no more plausible to suggest that, like Hodges’ example ‘can be embedded’, counterfactuals in mathematics 
are being used non-literally. 
36 This sentence contains our reply to Gideon Rosen’s (2002) parable of the two tribes who disagree about 
whether it is metaphysically contingent that there are numbers. Rosen finds it hard to tell which tribe is right. 
Our view is that the ‘modally deviant’ tribe (to use his term) would have a hard time applying mathematics as 
widely as we do. And if they did apply mathematics as widely, they would be in the awkward position of not 
knowing that various of their applications were correct.  
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some restricted sense. By analogy, suppose you are playing craps and you throw a red die and 
a green die, and the first comes up six and the second three. It is then natural for you to say: 
‘If the green die had come up six, I would have had boxcars’. It’s pretty clear here that you 
are somehow restricting the domain of the possibilities your counterfactual generalizes over 
to ones that match the actual world with respect ones in which the red die comes up six. 
(Without this restriction, what you say may well be false: perhaps, for all you know, if the 
green die had come up six, it would have done so by bumping into the red die and causing it 
to come up one.) One might similarly suspect that the counterfactuals of pure mathematics 
involve a de jure restriction to (e.g.) possibilities that in which the actual truths of pure 
mathematics are true. And if that is right, then counterfactuals of pure mathematics would be 
unimpugned by possibilities in which the truths of mathematics were different from what 
they actually are, and facts like (1) would not, after all, manifest a mathematical commitment 
to the necessity of mathematical truths, but only to their truth. (One could imagine various 
other versions of the view that mathematical counterfactuals are restricted in some way; any 
of them would undermine our arguments. We only offer this one as an illustration.) 
 This objection fails for pretty much the same reason as the previous one did. If the 
counterfactuals of pure mathematics were restricted in the way just described, or indeed in 
any other way, then it would be a mystery how we get to know that our applications of 
mathematics in everyday life, engineering, and other fields of objective inquiry are correct. It 
would be a mystery what entitles us to deploy mathematics under the counterfactual 
suppositions of all of these other areas of thought.37 Some explanation would be needed of 
why mathematical counterfactuals, in spite of being restricted, are nevertheless at least as 
unrestricted as any of the counterfactuals of any of the areas of thought to which we routinely 
and successfully apply mathematics. By far the most natural explanation is the one that we, in 
effect, have assumed is correct: that the counterfactuals of pure mathematics are completely 
unrestricted.  

This epistemological issue is not very different from the analogous epistemological 
issue concerning the perfectly general logical laws articulable in an indexical-free second-
order language, such as  
 

"p(p Ú ¬p). 
 
What we said about provable mathematical truths in §2 carries over smoothly to the case of 
provable logical laws, and what we said about unprovable mathematical truths in §3 carries 
over smoothly to the case of unprovable logical laws. And here too one might worry that the 
counterfactuals we deploy in our informal proofs of laws like "p(p Ú ¬p) are somehow 
restricted and therefore do not manifest a logical commitment to the metaphysical necessity 
of (indexical-free) second-order logic. And here too it would be correct to reply that if those 
counterfactuals were restricted, then it would be a complete mystery where we get the license 
to apply the logical laws in question under any counterfactual suppositions concerning any 
subject matter whatsoever. 
 
 
 
 
 

                                                
37 Using lingo popular among Kratzerians, if the modal base of pure mathematical counterfactuals were not 
known to be the domain of all possibilities, then one could not with security deploy pure mathematics under 
counterfactual suppositions made in contexts that involve a wider modal base. 



 18 

References 
 
Bealer, George (2002). ‘Modal Epistemology and the Rationalist Renaissance’. In Gendler and Hawthorne 

(2002). 
Berto, French, Priest, and Ripley (forthcoming). ‘Williamson on Counterpossibles’, Journal of Philosophical 

Logic. 
Boolos, George S., John P. Burgess and Richard C. Jeffrey (2007). Computability and Logic, 5th ed. Cambridge: 

Cambridge University Press. 
Brogaard, Berit and Joe Salerno (2013). ‘Remarks on Counterpossibles’, Synthese, 190: 639-660. 
Davis, Martin (1958). Computability and Unsolvability. New York: McGraw-Hill. 
Davies, Martin and Lloyd Humberstone (1980). ‘Two Notions of Necessity’, Philosophical Studies, 38:1-31. 
Dorr, Cian and John Hawthorne (2013). ‘Embedding Epistemic Modals,’ Mind, 122: 867-913. 
Gendler, Tamar Szabó and John Hawthorne, eds., (2002). Conceivability and Possibility. Oxford: OUP. 
Hale, Bob and Crispin Wright (2001). The reason’s proper study: Essays toward a neo-Fregean philosophy of 

mathematics. Oxford: OUP. 
Hodges, Wilfrid (2013). ‘Modality in mathematics’, Logique et Analyse, 56: 5-23. Online at 

http://wilfridhodges.co.uk/semantics12.pdf, accessed July 6, 2017. Page references to the latter. 
Hodges, Wilfrid (2007). ‘Necessity in Mathematics’, manuscript, online at 

http://wilfridhodges.co.uk/semantics06.pdf, accessed July 6, 2017. 
Iatridou, Sabine (2000). ‘The Grammatical Ingredients of Counterfactuality’, Linguistic Inquiry, 31(2): 231-270. 
Kaplan, David (1989). ‘Demonstratives.’ In J. Almog at al., eds., Themes from Kaplan. Oxford: Oxford OUP. 
Kratzer, Angelika (1986). ‘Conditionals’, Chicago Linguistics Society 22: 1-15. 
Lewis, David (1973). Counterfactuals. Oxford: Blackwell. 
Lowe, E. J. (2012). ‘What is the source of our knowledge of modal truths?’ Mind, 121: 919–50. 
Quine, W. V. (1994). ‘Promoting Extensonality’, Synthese, 98: 143-15. 
Raatikainen, Panu (forthcoming). ‘Neo-logicism and its logic’. History and Philosophy of Logic. 
Rosen, Gideon (2002). ‘A Study in Modal Deviance’. In Gendler and Hawthorne (2002). 
Sider, Theodore (2011). Writing the book of the world. Oxford: Oxford University Press. 
Stalnaker, R. 1968. A theory of conditionals. In Studies in Logical Theory, ed. N. Rescher, 98–112. Oxford: 

Blackwell. 
Strohminger, Margot and Juhani Yli-Vakkuri (2017). ‘The Epistemology of Modality’, Analysis, 77: 825-838 
Turing, Alan M. (1939), Systems of Logic Based on Ordinals Ph.D. thesis, Princeton University. 
Williamson, Timothy (2007). The Philosophy of Philsophy. Oxford: OUP. 
Williamson, Timothy (2010). ‘Modal Logic within Counterfactual Logic’. In B. Hale and A. Homan (eds.), 

Modality: Metaphysics, Logic, and Epistemology. Oxford: Oxford University Press. 
Williamson, Timothy (2013a). Modal Logic as Metaphysics. Oxford: OUP. 
Williamson, Timothy (2013b). ‘Logic, Metalogic, and Neutrality’, Erkenntnis, 79, supplement 2: 211-231. 
Williamson, Timothy (2016). ‘Absolute Provability and Safe Knowledge of Axioms’. In Leon Horsten and 

Philip Welch, eds, Gödel’s Disjunction. Oxford: OUP. 
Williamson, Timothy (2017). ‘Modal Science’. In Yli-Vakkuri and McCullagh (2017). 
Williamson, Timothy (forthcoming a). ‘Counterpossibles’, Topoi. 
Williamson, Timothy (forthcoming b). ‘Counterpossibles in metaphysics’. In B. Armour-Garb and F. Kroon, 

eds., Philosophical Fictionalism. Forthcoming. 
Williamson, Timothy (2007). The Philosophy of Philosophy. Oxford: Oxford University Press. 
Yli-Vakkuri, Juhani and Mark McCullagh (2017). Williamson on Modality. London: Routledge. 

 
 


