Number adaptation: A critical look

Sami Yousif ¹, Sam Clarke ², & Elizabeth Brannon ¹

¹. Department of Psychology, University of Pennsylvania
². Department of Philosophy, University of Southern California

Running Head : Number adaptation: A critical look
Addresses for correspondence : Sami Yousif
Department of Psychology
University of Pennsylvania
425 S. University Ave, Stephen A. Levin Bldg.
Philadelphia, PA, 19104-6241
Email : sryousif@sas.upenn.edu
Word Count : 15,671 (including Methods)
Data : https://osf.io/eh3ws/
Version : Preprint
Abstract (229 words)

It is often assumed that adaptation — a temporary change in sensitivity to a perceptual dimension following exposure to that dimension — is a litmus test for what is and is not a “primary visual attribute”. Thus, papers purporting to find evidence of number adaptation motivate a claim of great philosophical significance: That number is something that can be seen in much the way that canonical visual features, like color, contrast, size, and speed, can. Fifteen years after its reported discovery, number adaptation’s existence seems to be nearly undisputed, with dozens of papers documenting support for the phenomenon. The aim of this paper is to offer a counterweight — to critically assess the evidence for and against number adaptation. After surveying the many reasons for thinking that number adaptation exists, we introduce several lesser-known reasons to be skeptical. We then advance an alternative account — the old news hypothesis — which can accommodate previously published findings while explaining various (otherwise unexplained) anomalies in the existing literature. Next, we describe the results of eight pre-registered experiments which pit our novel old news hypothesis against the received number adaptation hypothesis. Collectively, the results of these experiments undermine the number adaptation hypothesis on several fronts, whilst consistently supporting the old news hypothesis. More broadly our work raises questions about the status of adaptation itself as a means of discerning what is and is not a visual attribute.
1. Introduction

It is sometimes joked that vision science primarily serves to catalogue phenomena long known by magicians, cinematographers, and petty thieves. Occasionally, however, its discoveries offer to profoundly transform our understanding of what it means to see. Take the reported discovery of visual number adaptation. Since the pioneering work of Burr and Ross (2008) it has become widely accepted that observers visually adapt to the number of items in a seen collection, much as we adapt to other visible properties, like color, size, and motion. The claim is that prolonged exposure to a large number of seen items causes a middling number of items in that region to appear less numerous than they otherwise would. Conversely, prolonged exposure to a small number of items reportedly causes a middling number of items in that region to appear more numerous than they otherwise would.

These are stunning results. In canonical examples of visual number adaptation, observers enjoy obvious and phenomenologically striking aftereffects. If you adapt to 300 dots in a left-hand region of visual space, a test display containing 100 dots in that region will look remarkably sparse when compared to an otherwise identical collection of 100 dots in an un-adapted region (see Burr & Ross, 2008; see also Demo #1 in the supplemental materials on our OSF page). Since researchers have taken steps to rule out simpler explanations (e.g., by controlling for the total brightness and/or surface area of collections), received wisdom is that these results reflect adaptation to the number of items in seen collections. And because adaptation effects of this sort have been deemed rare or absent from thought and post-perceptual cognition (Block, 2022; c.f. Phillips & Firestone, forthcoming), number adaptation has been taken to suggest that number is a “primary” visual attribute, on a par with color and other low-level visual properties (Anobile et al., 2016; c.f., Smortchkova, 2020). So, while numbers are abstract objects, located outside of space or time, number adaptation has been taken to establish that numbers nevertheless feature in the contents of human vision and visual experience; that, strange as it sounds, we literally see number.

Given the practical, philosophical, and theoretical implications of these claims, it is perhaps surprising that the existence of visual number adaptation has gone largely unchallenged (but see Dakin et al., 2011; Durgin, 2008; Morgan et al., 2014). The aim of the present work is to critically assess evidence for the phenomenon. We begin our discussion by explaining why visual number adaptation appears to be an extremely well-supported empirical phenomenon, acknowledging that a cursory examination of the literature would seem to suggest that its existence has been established many times over (Section 2). We next outline unacknowledged concerns with extant evidence and note several published findings that seem to sit awkwardly with the existence of genuine number adaptation (Section 3). In doing so, a question arises: What would an alternative explanation for reported cases of the phenomenon look like? Section 4 answers to this question, introducing a simple and independently motivated old news hypothesis that explains key results traditionally marshalled in support of visual number adaptation. Sections 5 then describes the results of 8 pre-registered experiments designed to pit the predictions of our old news hypothesis
against those of the received *number adaptation hypothesis*. In each experiment, the predictions of our old news hypothesis were borne out, and the arguments in support of genuine number adaptation undermined. Section 6 considers broader ramifications of these results.

2. The Case for Visual Number Adaptation

The evidence amassed in favor of visual number adaptation can seem truly overwhelming. To date, more than 30 studies have been published reporting its existence, with many of these studies finding clever ways to rule out non-numerical confounds as the primary drivers of the observed effects. Furthermore, the one prominent counterproposal advanced against the number adaptation hypothesis has ultimately proven unpersuasive (Desimone et al 2020; but see Section 6). Collectively, this provides strong *prima facie* reason to accept visual number adaptation as a genuine empirical phenomenon.

Consider the original demonstration provided in Burr and Ross’s (2008) supplementary materials (Figure 1A) — perhaps the most famous illustration of visual number adaptation, one which many readers will have encountered previously. In this example, observers are instructed to stare at a central fixation point on a screen for 30 seconds. To the left and right of this fixation point are collections of dots which vary in number. In particular, a collection to the left of the fixation point contains many dots (~200) while a right-hand collection contains significantly fewer (~10). Having stared at the central fixation point for 30 seconds, the original collections are replaced with two new collections (in the regions of space previously occupied by the original adaptors). But while both new collections contain an identical yet middling number of dots (~30), observers find that they now look markedly different. Specifically, the right-hand collection appears (at least briefly) to contain significantly *more* dots than the left. Burr and Ross’s explanation is that observers have adapted to the large number of dots in the left-hand region of the original image, yielding a repulsive aftereffect such that the middling number of dots in the adapted region comes to appear less numerous. Meanwhile adaptation to the small number of dots in the right-hand region of the original image has caused the middling number of dots in that region to appear more numerous than it otherwise would. In either case, visual adaptation to the *number* of dots is seen to yield a repulsive visual aftereffect that operates independently of the dots and their low-level properties (e.g., their size, shape, and color). Thus, when observers adapt to a large number of dots such that a middling collection appears less numerous, it is claimed that “no particular dots seem to be missing” (Burr & Ross, 2008, p. 426; see also Munton 2021). Rather, observers see the dots, but adaptation alters the numerical value their visual systems attribute to the collection.

We encourage readers to try or re-try Burr and Ross’s original example for themselves (see also Demo #1 in our own supplemental materials). There is no denying that something happens: The test displays really do look markedly different after the initial period of adaptation. Even so, you might wonder why this phenomenologically salient difference should be seen to reflect adaptation to the *number* of items in the displays, rather than some other feature of the dots or collections.
Burr and Ross’s answer is that non-numerical confounds were controlled in their experiments. For instance, while the dots in their canonical demonstration (see Figure 1A) were all identical in size, Burr and Ross varied the size of the dots in a subsequent study to ensure that observers were not simply adapting to the total surface area of the collections, or the total perimeter of the dots (this is reminiscent of the way classic investigations of non-symbolic number discrimination control for non-numerical confounds by varying the size of test items; e.g., Xu & Spelke, 2000 with human infants, or Brannon & Terrace, 1998 with non-human animals). In addition, the judged collections always contained an (approximately) equal number of black and white dots and were always presented on a middling grey background. This meant that collections were always equated for brightness, indicating that the reported effects could not be explained by known effects of adaptation to luminance. Despite controlling for these confounds, Burr and Ross reported number adaptation effects that were staggering in size: Adaptation to 400 dots for 30 seconds caused a 70% reduction (!) in the perceived number of dots in a 100-dot collection (though recent estimates appear more conservative: Burr, Anobile, and Arrighi [2018] report that these effects are “large, up to a factor of two in each direction” [p. 3], with Aagten-Murphy and Burr [2016] reporting that perceived number is “shifted by up to 50%” [p. 2]).

The most prominent challenge to the number adaptation hypothesis has been that these effects merely reflect the visual system’s known tendency to adapt to the density of seen collections, rather than number itself (Dakin et al., 2011; Durgin, 2008; Morgan et al., 2014). This was a legitimate concern when faced with initial reports of number adaptation: The collections of dots used in Burr and Ross’s displays always occupied a uniformly sized region of space on the screen. So, while dot size sometimes varied, collections containing a larger number of dots tended to be significantly denser than collections containing a middling number of dots, while collections containing a middling number of dots tended to be denser than collections containing a small number of dots. However, subsequent work appears to have successfully addressed these concerns. Perhaps most notably, Desimone and colleagues (2020) controlled density in an especially elegant way, by varying the size of the spatial envelopes in which dots were located, and nevertheless found evidence for visual number adaptation.

In fact, there have now been many demonstrations of number adaptation that could seem to stand as decisive evidence of its existence. For instance, Fornaciai and colleagues (2016) sought to establish that adaptation operates on number (and not simply non-numerical confounds) by connecting dots with thin lines, effectively turning pairs of dots into single dumbbell-shaped objects (see Franconerri et al., 2009; He et al., 2009). This manipulation reduced the number of bounded (visual) items in seen collections (Palmer & Rock, 1994; Spelke, 1990), thereby changing their perceived number, more-or-less independently of other physical properties of the collections (e.g., area, density). In so doing, Fornaciai and colleagues provided evidence that adaptation is influenced by manipulations in the number of perceived items, independently of those items’ low-level properties (Figure 1C). For instance, after adapting to 20 unbounded dots, observers reported experiencing a reduction in number for displays of 20 paired dots (putatively because the
connections reduced perceived number) but *not* for displays of 20 unconnected dots (putatively because the adaptor and target were now perceived as equinumerous). This is a compelling manipulation of perceived number, since the addition of connecting lines in an adaptor *increases* the total surface area, perimeter, and density of the items, but *decreases* perceived number.

Figure 1. (A) Burr and Ross’ original (2008) example of number adaptation, found in their supplementary materials. Having stared at a central fixation point on the original adaptor image (top) for 30 seconds, two identical collections in a test display (bottom) appear to contain a different number of dots. (B) Some argued that such results are simply explained by visual adaptation to density, not number. However, Desimone et al. (2020) varied the size of the spatial envelopes in which dots were located to empirically disentangle number and density – their results were taken to undermine the density adaptation hypothesis. (C) Connecting pairs of dots into single dumbbell shaped objects reduces perceived number. Thus, the right display looks like it contains fewer dots than the left display, even though both contain 20 dots (by comparison, the middle display contains 10 dots, thereby matching the quantity of bounded objects in the connected array). This manipulation of perceived number it said to influence number adaptation accordingly. (D) Arrighi et al. (2014) report that subjects who adapt to a large number of heard tones, perceive a collection of seen dots to be smaller in number than in a baseline condition, where observers do not first adapt to heard tones or seen dots. (E) Anobile et al. (2019) reported that the number of taps that an observer produces in the left-or-right region of space affects seen number in comparable ways. Thus, producing a large number of taps on the left causes a middling number of dots in a display on the left of a screen to appear less numerous than it otherwise would. You can try this for yourself: Do you experience the effect?
Perhaps even more striking, Burr’s group has published several cases of cross-modal number adaptation (Figures 1D & 1E). For instance, they report that adaptation to a large sequence of heard tones causes a middling number of seen items to appear less numerous, and vice versa (Arrighi et al., 2014). Similar work has found that number adaptation generalizes from touch to vision (Togoli & Arrighi, 2021) and from vision to action (e.g., in the form of manual taps on a tabletop; Anobile et al., 2016). What’s crucial is that these cross-modal studies seem to naturally eliminate non-numerical confounds as the primary drivers of these effects. After all, in an auditory-visual adaptation effect, the repulsive aftereffects described cannot be put down to properties like the area, density, size, or brightness of seen collections since the sequences of heard tones won’t have these properties. Conversely, lower-level properties of the heard tones – for instance, pitch, duration, and loudness – are not visible. As such, it seems that these lower-level properties cannot be all that observers are adapting to. Hence, cross-modal studies appear to offer independent and near-decisive evidence that observers genuinely adapt to perceived number and not just low-level properties of observed collections (Burr, 2017; Burr, Anobile, & Arrighi, 2018; Clarke & Beck, 2021; Block, 2022).

3. Initial grounds for doubt

Faced with evidence of this sort, the existence of visual number adaptation seems hard to resist. Familiar illustrations of ‘number adaptation’ yield dramatic alterations to visual phenomenology that readers can freely experience for themselves; early investigations of the phenomenon ruled out simpler explanations by varying the size and brightness of the items enumerated; there has only been one serious counterproposal to the number adaptation hypothesis (the proposal that observers are merely adapting to dot density) and this has been undermined by subsequent studies; finally, there is compelling evidence that number adaptation operates independently of low-level confounds (e.g., from studies that manipulate number independently of area and density using well-known numerical illusions, or by taking a cross-modal approach). Perhaps, then, the existence of visual number adaptation is settled.

Despite this mountain of evidence, we think closer inspection of the number adaptation literature reveals several reasons to be skeptical.

First, it is an underappreciated fact that number adaptation is remarkably brittle. For instance, in one recent study by Burr’s group, Grasso et al. (2022) reported that changing the color of test displays as compared with the original adaptors eliminated the number adaptation effect entirely. That is, when observers adapted to a large collection of blue dots before being presented with a middling-sized collection of green dots in an overlapping region of space, Grasso and colleagues found no evidence of number adaptation — participants simply discriminated the number of items in the test display as they would have had they skipped the adaptation phase completely. This is a surprising finding given that number adaptation is supposed to be sufficiently abstract that it transcends modalities, generalizing from vision to audition, or action to vision (e.g., Anobile et al.,
Indeed, it is the reported existence of such cross-modal adaptation effects that is often touted as definitive proof that the relevant effects pertain to number and not simply low-level confounds (Anobile et al., 2016; Burr, 2017; see also: Block, 2023, p. 87-88; Clarke & Beck, 2021). But how could it be that number adaptation is sufficiently abstract to generalize from vision to audition, but not from blue dots to green dots? Even within color space, a change from blue to green is about as minimal an intervention as one could conceive.

Second, we note that many documented cases of visual number adaptation fail to elicit phenomenologically compelling effects. For instance, the phenomenological effects of cross-modal adaptation seem distinctly underwhelming (to illustrate, we invite readers to compare the examples provided in supplementary materials to Arrighi et al. [2014] with those from Burr & Ross [2008] or to try tapping their hands on a desk before looking at a collection of dots [c.f. Togoli & Arrighi, 2021]). Similarly, claimed instances of ‘reverse adaptation’ (wherein a small-number display causes a middling-number display to appear more numerous) are difficult to experience directly. Try for yourself: Examine the original demonstration from Burr & Ross (2008), but this time covering up the more numerous adaptor (or see Demo #5 in our supplementary materials). Given that you are now adapting to a low number on the left, you should see the right test image as containing a larger number than the left test image. Do you?

While a lack of phenomenologically compelling demonstrations is not decisive, it raises questions about what exactly is going on in these studies, motivating the thought that cases of this sort will likely differ in important ways from more familiar examples of number adaptation.

Finally, it is worth noting that number adaptation is unlike paradigm instances of visual adaptation in various interesting respects. First, canonical forms of visual adaptation are retinotopic. Number adaptation is not. Number adaptation has been reported as spatiotopic or “not completely retinotopic” (Burr, Anobile & Arrighi, 2018, p. 2), though some cases of number adaptation appear to be neither spatiotopic nor retinotopic (e.g., Arrighi et al., 2014). Second, number adaptation is argued to depend on the deployment of visuospatial attention in ways that paradigm cases of visual adaptation do not. For instance, Grasso et al. (2021) found that visually adapting to a single high-number collection yields a stronger reduction in the perceived number of items in a middling test display than when observers adapt to two collections (e.g., one high and one middling [or neutral] in number) simultaneously. Once again, this is atypical: Other canonical kinds of adaptation, like orientation adaptation, are not influenced by the presence of multiple adaptors, as Grasso and colleagues themselves show. While these differences do not refute the existence of number adaptation, they are unexpected in the sense that they are not independently predicted by the

1 This point is even acknowledged by staunch critics of a number sense. For example, Leibovich et al. (2017) note that cross-modal studies provide “[a] very strong line of evidence” that number is the relevant perceptual dimension (p.5). But while they are at pains to reject this conclusion (suggesting, instead, that they involve a more general “sense of magnitude”), the counterarguments that they advance simply target a related but orthogonal suggestion: that the numerical acuity in question is innate and congenital (c.f., Izard et al. 2009).
number adaptation theory. Should some alternative to the number adaptation hypothesis straightforwardly predict these results, that would be a mark in its favor.

With these complications in view, the remainder of this paper will be devoted to offering, motivating, and testing an alternative to the number adaptation hypothesis which we think offers a simple explanation for extant evidence, and straightforwardly predicts the above discrepancies. For brevity, we call our proposed alternative the old news hypothesis.

4. The Old News Hypothesis

To introduce our hypothesis, consider Burr and Ross’s original demonstration of number adaptation, provided in the supplementary materials to their (2008) study and discussed above (Figure 1A/Demo #1 in our supplementary materials). In this example, observers are presented with two collections: one collection contains a large number of dots to the left of a central fixation point, and one collection contains a small number of dots to its right. After staring at the central fixation point for 30 seconds the original collections are replaced with two novel collections of dots in the same spatial location as the original adaptors. But while both novel collections contain an identical yet middling number of dots, observers now find that the collection on the right appears to contain more dots. The difference here is phenomenologically striking and hard to deny.

According to the orthodox number adaptation hypothesis, this effect is a direct result of having adapted to a large number of dots in the left region of space, and a small number of dots in the right. In both cases this yields a repulsive numerical aftereffect. Thus, adaptation to a large number on the left causes the middling number of dots on the left to appear less numerous than they otherwise would, while adaptation to a small number on the right causes the middling number of dots on the right to appear more numerous than they otherwise would. Crucially, however, “no particular dot disappears from the test patch” and “new dots are not created” (Burr, Anobile & Arrighis 2018, p.3). The accepted interpretation is, thus, that observers adapt to number in abstraction from other properties of the collections, yielding a repulsive and bidirectional aftereffect. According to Burr and Ross (2008), this is akin to motion adaptation, in which an item’s perceived direction of movement is distorted independently of its perceived spatial position (Addams 1834; Crane 1988; c.f. Bayne 2010) or chromatic adaptation which alters perceived illumination independently of color (Smithson & Zaidi, 2004).

The old news hypothesis rejects this suggestion. It explains the above result by instead appealing to the visual system’s known tendency to filter out old information and to prioritize newsworthy content (McBurney, 2010, p. 406; Bonneh et al., 2014; Block, 2023, p. 99). As such, it proposes that if/when the dots located in a test display are visually represented as the same objects from the

2 In emphasising as much, the old news hypothesis is agnostic as to whether the function of delivering the news is unique to perception, and it is also agnostic on whether this is perception’s primary function (compare Block 2022 and Phillips and Firestone forthcoming for conflicting positions on both points).
original adaptors (and, thus, as old news), visual sensitivity to these is reduced as compared with dots that are represented as new. Consequently, there is a real sense in which old dots “disappear” from view, or otherwise fail to be registered by the observer.

To see how this offers to explain Burr and Ross’s paradigmatic example, consider that adaptation to a large number of items in the left-hand region of the original adaptor display provides many more opportunities for the visual system to (rightly or wrongly) identify items in the left-hand test display as items from that original adaptor (and, thus, as old news to be filtered out, when there are new dots to see). Why? Because spatial proximity is known to be one of the strongest cues to item identity for the visual system (Flombaum, Scholl & Santos, 2009) and adapting to a large number of dots in a spatial region makes it statistically more likely that some of those dots will overlap or sit adjacent to dots in a subsequent test display. In this way, adaptation to a collection with more items on the left should tend to result in more dots from the left collection of the test display being interpreted as old dots from the original adaptor. Since the visual system filters out old news to prioritize conscious awareness or sensitivity to dots that it deems ‘new’, the upshot is that observers literally end up seeing fewer of the dots in the left-hand test display (see Figure 2 for a visual explanation). This need not involve adaptation to the number of items in the collections.

Figure 2. The ‘old news’ hypothesis offers to explain Burr & Ross’s (2008) example by positing that observers fail to see ‘old’ objects in the test display, since the visual system prioritizes presentation of ‘the news’ (McBurney, 2010, p. 406; Block, 2023, p. 99).
One might be tempted to reject this “old news hypothesis” on the grounds that it is not parsimonious. Why entertain a new explanation for a phenomenon that already has an agreed-upon explanation? The answer, we think, is that the “old news hypothesis” should be viewed as the default explanation, since it is motivated by known principles of visual perception. A myriad of long-established and well-known phenomena — including binocular rivalry, Troxler fading, and motion induced blindness — reflect the visual system’s general tendency to filter out old information. Readers are especially encouraged to look online at demonstrations of Troxler fading, in which one can see, within a matter of seconds, what it looks like for ‘old information’ to be filtered from awareness by the visual system (Troxler, 1804). These phenomena often result in “observers fail[ing] to be consciously aware of objects and events” that are presented “right in front of” them (New & Scholl, 2008, p. 653). In cases of motion induced blindness, for instance, “fully visible and attended objects” disappear entirely from conscious awareness when they are left largely unchanged and are presented onto “global moving patterns” (New & Scholl, 2018, p. 1). While the mechanisms of Troxler fading and motion induced blindness differ in important ways (Bonneh et al., 2014), the visual system’s tendency to filter out old news is so pervasive that many theorists have gone so far as to conjecture that the primary function of human vision is that of delivering the news (McBurney, 2010; Block, 2022). Hence, if we limit ourselves to Burr and Ross’s original example, discussed above, it could seem that the old news hypothesis is the most parsimonious explanation for apparent number adaptation. Without independent motivation, it is the number adaptation hypothesis that seems ontologically extravagant.

The old news hypothesis is further supported when we consider that it offers to straightforwardly explain the discrepant findings noted in Section 3. First, take Grasso et al.’s (2022) finding that changing the color of the dots in adaptor and test displays (e.g., from blue to green) eliminates number adaptation entirely. As we have discussed, this is puzzling from the perspective of visual number adaptation: How is it that number adaptation reaches across modalities (see Arrighi et al., 2014) but not across a minimal color change? This puzzling result is easily accommodated by the old news hypothesis: Because changing the color of an old dot renders it newsworthy once again by resulting in something new for the visual system to make salient for the observer. Approached through the lens of the old news hypothesis, changes of this sort should eliminate apparent cases of number adaptation.

Second, the old news hypothesis can explain Grasso et al.’s (2021) finding that adaptation to two displays (one which is high in number and one which is middling in number and, thus, matches its target in number) yields a weaker adaptation effect than when observers adapt to a single (high adaptor) display. Since familiarization to a middling number adaptor will result in some opportunities for items in spatially overlapping test displays to be deemed old news (familiar dots), the old news hypothesis predicts that observers would experience a modest reduction in the number of perceived items therein. This inevitably results in a smaller contrast with a contralateral display whose perceived number has been more dramatically reduced and does not require that we invoke
any effects of visuo-spatial attention to explain the result — a welcome conclusion, we think, since adaptation effects are (by all accounts) normally considered immune to such effects (ibid.).

Finally, the old news hypothesis explains why reverse number adaptation (i.e., adaptation to a small number of items such that a middling number of dots then appears more numerous than it otherwise would — Demo #5 in our supplementary materials) is phenomenologically underwhelming. Readers are again encouraged to experience this for themselves. Prima facie, nothing happens! This is exactly what the old news hypothesis predicts. The old news hypothesis explains canonical cases of number adaptation by appealing to the fact that ‘old’ information is filtered from awareness, thereby reducing perceived number. This explanation, by definition, is unidirectional; it could never explain why a stimulus would appear more numerous. Yet as far as we can see (and as we will go on to show, in the following section) it does not appear that there are any cases where a stimulus is perceived as more numerous as a result of adaptation.

Still, we are not suggesting that any of the arguments here decisively establish the old news hypothesis as true, nor that they refute the existence of visual number adaptation. We are simply noting that there is an alternative explanation for classic cases of visual number adaptation that is well-motivated and deserves to be investigated further. This alternative explanation — the old news hypothesis — is parsimonious in that it appeals only to well-known mechanisms of visual filtering, and has the virtue of neatly explaining various (otherwise puzzling) results that complicate the evidence for visual number adaptation. With this in view, the remainder of this paper describes the results of 8 pre-registered experiments, which were designed to empirically disentangle these two competing hypotheses.

5. Experiments

In what follows, we describe the results of 8 pre-registered experiments designed to test the predictions of our old news hypothesis. Experiments 1-4b demonstrate that canonical cases of number adaptation (e.g., Burr and Ross’s original demonstration, discussed above) can be fully explained by our old news hypothesis, and thus provide no reason to posit number adaptation. Experiments 5-6b consider ‘harder’ cases which have seemed (to many) to decisively establish the existence of number adaptation (e.g., connectedness studies and reported cases of cross-modal adaptation). To foreshadow: The old news hypothesis straightforwardly predicted every result we observed, while many of these results ran contrary to the predictions of the number adaptation hypothesis. Boldly stated, our results suggest that there is currently no reason to posit the existence of number adaptation, and considerable reason to explore the old news hypothesis further.

Experiment 1 – Overlap

Our first experiment was intended to serve as a basic proof of principle. We tested whether ‘number adaptation’ is influenced by the degree of spatial overlap between dots in the adaptor and the target stimuli. We focused on spatial overlap given that spatial proximity is a particularly strong
cue to item identity (Flombaum et al., 2009). Given that the old news hypothesis posits that dots are filtered out by the visual system when they are unchanging across the adaptor and test displays (and, thus, deemed ‘old news’) we predicted that increasing the amount of spatial overlap of dots between the adaptor and test stimulus would increase the amount of information that is filtered out and thus decrease the perceived number of items in the test stimulus. In other words, more overlap should result in a stronger and more robust adaptation effect.

To test this basic prediction, Experiment 1 had the following structure: On all trials, observers were presented with two adaptors (one on each side of the screen). One of the adaptors always had 100% overlap with its subsequent target, meaning that every dot present in the test display had been present in the same location, and with the same color, in the original adaptor. Meanwhile, the other adaptor always had 0% overlap with its subsequent target, meaning that every dot present in the target was in a location that had not been previously occupied by any dots in the adaptor. The adaptors and targets also varied in a number of systematic ways. (For a detailed description, see Methods.)

We found a canonical ‘number adaptation’ effect (see Figure 3A–C). Observers were more likely to indicate that the left side had more dots when they had adapted to a higher number on the right (66% of the time; \(t(19)=18.9, p<.001, d=4.22 \), and they were more likely to indicate that the right side had more when they were adapted to a higher number on the left (74% of the time; \(t(19)=22.2, p<.001, d=4.96 \)). Moreover, observers were sensitive to the number of dots that were present in the test displays. Averaged across all manipulations, observers selected the side with more dots in the test displays 61% of the time (\(t(19)=3.93, p<.001, d=.88 \)). Our critical question, however, was whether the degree of item overlap would influence adaptation. It did: Observers were strongly influenced by the degree of overlap between the items in the adaptors and targets. Collapsing across all other manipulations, observers were significantly more likely to indicate that the side with 0% overlap was more numerous (59% of the time, \(t(19)=3.58, p=.002, d=.80 \)). The same is true even if we look only at those trials for which the target number was equated; observers still chose the side with 0% overlap 61% of the time (\(t(19)=3.82, p=.001, d=.86 \)).

A reviewer helpfully pointed out that our design is slightly different from the designs of some other number adaptation study in that it did not include a 400 ms. delay between the adaptor and target stimuli (Burr & Ross, 2008) and wondered whether this could explain the overlap effect. We opted not to include this delay because we wanted our studies to resemble the demonstration of number adaptation that was originally popularized by Burr and Ross (2008), and which did not contain that delay. We also reasoned that results of inserting a 400ms delay should not alter the conclusions from our experiment without the delay. For a start, if the overlap effect did not persist over 400ms, as the reviewer speculated, this could still be explained by appeal to the old news hypothesis. After all, ensuring that all the dots momentarily disappear and subsequently pop back into existence is surely something that the visual system might wish to make salient to the subject. Thus, it is possible that a delay might eliminate the effect, precisely because old news was driving the original result. Secondly and conversely, if the results persisted, this would still be evidence
that overlap was a relevant confound in number adaptation experiments. Finally, if the results persisted but the effects of overlap were reduced or weakened, it is possible that this could be attributed to the delay decreasing the visual system’s certainty about which dots correspond to which other dots and, thus, which dots were old news (thereby increasing the influence of the number of dots, but decreasing the influence of precise spatial overlap). In other words, we felt that whether or not we observed an effect of overlap after a 400ms delay would have no bearing on the validity of the old news hypothesis (or, for that matter, the number adaptation hypothesis). Nevertheless, for good measure, we replicated Experiment 1 with the 400 ms delay between the adaptors and the targets. Collapsing across all other manipulations, there was no effect of overlap ($t(19)=.37, p=.72, d=.08$). But looking only at our critical trials (as we pre-registered we would do), there was a significant, albeit weakened, effect of overlap ($t(19)=2.58, p=.02, d=.58$). These data are included as Experiment S1 in the data file on our OSF page.

In sum, Experiment 1 establishes that overlap can significantly influence the strength of ‘number adaptation’ effects. This is consistent with our old news hypothesis, since overlap (and spatial proximity more generally) is an important cue to item identity for the visual system and, hence, to an item’s status as old news. Had such a result failed to materialize we accept that this would have strongly undermined our proposal.

At the same time, we do not claim these results come anywhere close to refuting the number adaptation hypothesis. Proponents of number adaptation can accommodate the observed effects of overlap by acknowledging that low-level effects of (e.g.,) contrast adaptation affect observers’ sensitivity to dots, thereby influencing their perceived number. Thus, they might legitimately interpret these findings as reflecting a compound effect — both number adaptation and overlap influence perceived number.

Even so, it is worth noting that the effects of overlap found in Experiment 1 already highlight a significant confound in existing studies of visual number adaptation. As far as we can tell, dot positions in prior number adaptation studies have always been fully randomized. The inevitable consequence is that adaptors containing large numbers of dots are more likely to have more dots overlap with those in their corresponding target displays. Indeed, this finding is important even if number adaptation genuinely obtains. For one, proponents of visual number adaptation regularly seek to quantify the strength of numerical adaptation effects — for instance, reporting that adaptation to a 400dot display can cause a 100dot display to appear equinumerous to just 30 dots in an un-adapted region (Burr & Ross, 2008; c.f., Aagten-Murphy and Burr, 2016; c.f., Burr, Anobile, and Arrighi, 2018). But if it is true that low-level effects of overlap explain at least a portion of the observed effects — and it seems clear that they do — describing the magnitude of the effects in this way is misleading at best.

Experiments 2 & 3 – Color and Motion

Experiment 1 showed that spatial overlap (a cue to object identity and, thus, specific dots being old news for the visual system) significantly influences observer responses in number adaptation.
tasks. While this finding does not refute the existence of genuine number adaptation, it is consistent with, and motivates further consideration of, our old news hypothesis. Thus arises the question: Could cues to visual dot identity fully explain the documented reduction in perceived number, associated with adaptation to high-number collections?

Figure 3. Design and results of Experiments 1-3. (A, D, G) A visual depiction of a representative trial. (B, E, H) The proportion of time that observers chose the right side as a function of the trial type. (C, F, I) The magnitude of the relevant effect for each observer. Error bars represent +/- 1 SE.
Prima facie, it might seem not. After all, ‘number adaptation’ was not entirely eliminated when dots enjoyed 0% overlap across adaptor and test displays (as can be seen in the supplemental Demo #2.1 on the OSF page). Thus, dots in adaptor and test displays need not perfectly overlap to elicit the reduction in perceived number that is standardly associated with high-number adaptation. This does not settle the question, however. For a start, fully controlling for the effects of overlap, found in Experiment 1, is easier said than done. For even when there is 0% physical overlap among dots in an adaptor and test display, we cannot assume that the visual system does not treat dots as overlapping. This is because the receptive fields of adapted neurons are sufficiently large that low-level adaptation effects need not require perfect overlap among items. Indeed, the receptive fields of neurons are known to be larger in the periphery (Alonso & Chen, 2009), including those neurons in the lateral intraparietal sulcus (Ben Hamed et al., 2001) which are hypothesized to implement the number adaptation effects under consideration (Roitman, Brannon, & Platt, 2007; Anobile et al., 2016). As such, it is possible that this explains the otherwise puzzling fact that number adaptation (and particularly, the associated reduction in perceived number observed after adapting to a large-number display) is strongest when collections are presented in the periphery (Arrighi et al., 2014). In fact, we are not aware of any robust number adaptation effects that do not depend on the items being presented in the periphery. This point is worth a moment’s reflection: There is no obvious reason why number adaptation should be stronger in the periphery, not least because this is (yet again) atypical of visual adaptation in general (e.g., Gao, Webster, & Jiang, 2019).

To compound matters, overlap is not the only cue to object identity that must be considered when adjudicating the old news hypothesis. To illustrate, try flicking back and forth between the adaptor and test displays in Burr and Ross’s original example; here, you will experience apparent motion of individual dots. That is, you will not perceive some dots disappearing and new dots popping into existence; you will perceive some individual dots as appearing to move from one location to another. Thus, it is demonstrably the case that individual dots are tracked by the visual system across adaptor and test displays. The visual mechanisms involved in filtering out old news might filter out old dots when they move in predictable ways so as to prioritize visual discrimination of dots which are entirely new or otherwise novel — as plausibly occurs in cases of Troxler fading (see: ‘Pacman illusion’ or ‘Lilac Chaser illusion’) and cases of motion induced blindness, where slowly moving target items (akin to floaters in the eye) disappear from view (New & Scholl, 2018).

Indeed, prior work on number adaptation has already provided reason to believe that old news may explain adaptation effects in their entirety. Most notably, Grasso and colleagues (2022) showed that simply switching the color of items from adaptors to targets fully eliminates number adaptation, perhaps, as they argue, because the perceptual system is sensitive to ‘salient environmental features.’ On our account, however, these findings are better explained by the fact that color changes render ‘old dots’ newsworthy again for the visual system.

To test this explicitly, Experiment 2 compared two key conditions: In one condition, dots in a test display had 100% spatial overlap with dots in their corresponding adaptor, just like the previous experiment. In another condition, dots in a test display also had 100% spatial overlap with dots in
their corresponding adaptor but, unlike before, every dot changed color (i.e., every dot that was white turned black and vice versa). As expected (and consistent with the abovementioned prior work, conducted by staunch proponents of number adaptation), a simple color swap significantly influenced the magnitude of the adaptation effect \(t(19)=2.48, p=.023, d=.55\); see Figure 3D-F). Note that this effect is more subtle, both statistically and phenomenologically (see Demo #3). Here, we intend to make no claims about what information (e.g., color vs. location changes) is meant to be more newsworthy; we are only observing that newsworthy differences between the adaptor and target do seem to affect the adaptation to some degree.

In many respects, the work of Grasso and colleagues makes our key point in an even more compelling way (i.e., they observe a complete elimination of adaptation when colors change). What is different here is that our effects cannot be explained by a global change in the color of the stimuli, as both adaptor and test displays were always composed of an equal proportion of black and white dots. In our experiment, what differed between the adaptor and test displays was merely the correspondence between the colors of the dots and their given locations. In other words, the result here hints at the fact that the relevant adaptation is occurring (at least in part) at the level of individual items (rather than the ensemble).

Of course, this is only one piece of evidence. Perhaps color changes are unique in eliminating the number adaptation effect (though we struggle to discern a principled explanation for why this might be). However, if the old news hypothesis is correct, and a reduction in perceived number is entirely driven by the visual system’s filtering out of old news, we would predict that making old dots newsworthy in other (seemingly unrelated) ways should, likewise, eliminate apparent cases of number adaptation entirely. Simply put, unexpected changes to the dots should, again, constitute ‘news’ such that the visual system will make ‘old’ dots salient to the observer once again, thereby preventing these from disappearing.

Experiment 3 sought to manipulate the ‘newsworthiness’ of old dots in a novel way — by constructing dynamic displays in which the dots moved around within fixed spatial envelopes on the screen in pseudo-random (and, hence, unpredictable) directions. On the number adaptation hypothesis, there is no reason (that we can conceive of) why motion should eliminate the adaptation effect. After all, observers continue to readily discriminate the number of dots in the collections and all dots were bound to move around fixed spatial envelopes. However, if the effects of ‘number adaptation’ are instead driven by the newsworthiness of the dots (as the old news hypothesis predicts), the reduction in number that is associated with large-number adaptation should be eliminated in a dynamic display where the random motion of dots constantly provides newsworthy content for the visual system.

With these dynamic stimuli, we ran a basic number adaptation study in which adaptors had either 60 dots or 30 dots and targets had 25, 30, or 35 dots (see Figure 3G). For the entirety of the adaptation and test periods, the dots moved continuously around the display (at different trajectories and speeds). We used smaller numerical values than the previous experiments to
accommodate the dynamic stimuli (i.e., to ensure that the dots were not constantly overlapping with one another throughout the animation). These numbers were chosen to be consistent with prior work which has reported robust adaptation for these same values (DeSimone et al., 2020).

Crucially, the dynamic nature of the displays did not interfere with observers’ ability to compare the numerical values of the arrays: Observers were able to successfully discriminate between 25, 30, and 35 dots in the target ($t(19)=4.48, p<.001, d=1.00$). Even so, we failed to observe any evidence of number adaptation (see Figure 3 H-I). Observers were no more likely to choose the side on which they had adapted to 30 dots versus 60 ($t(19)=.42, p=.68, d=.09$).

This null effect is (once again) straightforwardly predicted by the old news hypothesis. Since pseudo-random motion ensures that the displays are constantly changing, the visual system is constantly presented with new information. By contrast, the null effect (once again) appears to be in tension with the ‘number adaptation’ hypothesis. Boldly stated, it is difficult to see why moving dots should eliminate number adaptation effects (entirely!), given that number adaptation is supposed to concern an ensemble percept that abstracts away from low-level properties of the display, and given that observers continued to perceive and discriminate the approximate number of dots that the moving collections contained. Indeed, this much is particularly perplexing when we remind ourselves that number adaptation is supposed to generalize across modalities. Why would “a perceptual system that transcends vision and audition to encode an abstract sense of number in space and in time...” (Arrighi et al., 2014, p. 1) falter under the most basic of dynamic viewing conditions (even when participants continue to approximately enumerate the collections), or when dots enjoy a modest change of color (as in Experiment 2, as well as Grasso et al., 2022a)?

Experiments 4a & 4b – Reverse Adaptation

The findings from Experiments 1-3 place pressure on the claim that number adaptation accounts for the apparent reduction in number associated with adaptation to large collections. Even so, our alternative hypothesis — that the visual system is simply filtering out ‘old news’ — might seem to fare no better. This is because there are well-known findings that appear to be directly at odds with our proposal.

Take, for instance, reported cases of ‘reverse number adaptation’, where a low-number adaptor causes a middling number target to appear more numerous (e.g., Aulet & Lourenco, 2023; Burr & Ross, 2008). If ‘old’ items are causing similar items in the targets to be filtered out, how could this manifest an increase in perceived number? On the face of it, this evidence is more consistent with the number adaptation hypothesis.

Given the significance of ‘reverse’ number adaptation, we investigated this phenomenon in two additional experiments. In Experiment 4a, we replicated the basic effect (see Figure 4A). We demonstrated that in a double-adaptor trial (where observers adapt to a low-number on one side of a screen and a middling number on the other) observers are indeed more likely to choose the side where they had adapted to a low number as more numerous when subsequently tested on two
middling collections (78% of the time; \(t(19)=19.6, p<.001, d=4.38\); see Figure 4C). On the number adaptation account, these findings are easily explained: The low-number adaptor causes the corresponding target to appear more numerous due to a repulsive aftereffect. Meanwhile, the middling-number adaptor has no effect on observers’ perception of a middling test display since there is no change in number (this is akin to the way that adapting to a red surface and then being presented with more red fails to yield a discernable, repulsive aftereffect).

Crucially, the old news hypothesis offers an alternative explanation for this result. On the view that ‘old’ information is being filtered out in favor of the ‘new’, we predicted that adaptation to the middling-number adaptor caused less of the dots in an equinumerous test display to be seen, since a middling number adaptor enables more dots to be erroneously identified with those from the adaptor. Thus, where the number adaptation hypothesis explains the results of Experiment 4 by appealing to a perceived increase in number caused by adaptation to a low-number display (and adaptation to the middling-number adaptor having no effect on the perceived quantity of a middling-number test display), the old news hypothesis explains this result in terms of a decrease in perceived number brought about by the middling-number adaptor. In other words, the number adaptation hypothesis and the old news hypothesis explain the above case of reverse adaptation by positing effects that primarily occur on opposite sides of the display.

To test these divergent explanations, Experiment 4b ‘split’ the adaptors used in Experiment 4a in half (see Figure 4B). We used identical stimuli to those described above but separated adaptor displays such that each trial consisted of only one adaptor at a time. Thus, observers either adapted to a single low-number adaptor on one side of the screen (with this expected to elicit an increase in perceived number on the number adaptation hypothesis and little to no effect on the old news hypothesis) or a single middle-number adaptor on the other (with this expected to elicit a decrease in perceived number on the old news hypothesis and little to no effect on the number adaptation hypothesis). Consistent with the old news hypothesis, we found that responses were entirely driven by the middling-number adaptors (see Figure 4D). On the trials where observers adapted to a single middling-number adaptor, observers chose the contralateral side 73% of the time (\(t(19)=6.35, p<.001, d=1.42\)). In contrast, on trials where observers adapted to a single low-number adaptor, observers chose that same side only 54% of the time, no different from chance (\(t(19)=1.01, p=.23, d=.23\)).

These results suggest that reverse number adaptation does not genuinely obtain. While there was no discernible effect elicited by adaptation to a low number display, there was a pronounced effect of adaptation to a middling number display. You can see as much for yourself. Earlier in this paper, we invited readers to see this phenomenon (or a lack of it) for themselves (see Demo #5).

In both cases, the findings from Experiment 4b run contrary to the predictions of the number adaptation hypothesis. They are, however, predicted by the old news hypothesis which holds that apparent cases of number adaptation are entirely driven by visual mechanisms filtering out old news (and thus, reducing the number of items that observers see). Since adaptation to a middling-
number adaptor provides more opportunities for dots in the test display to be identified as old dots, already adapted to, the old news hypothesis predicts that less dots will be seen in a test display when that test display occupies a region of space that overlaps with a middling number adaptor.

![Figure 4](image)

Figure 4. Design and results of Experiments 4a and 4b. (A) A visual depiction of a representative trial in Experiment 4a. (B) A visual depiction of representative trials in Experiment 4b. (C) Results of Experiment 4a. (D) Results of Experiment 4b. Error bars represent +/- 1 SE.

Interim summary and discussion

Experiments 1-4 introduce four novel results that problematize received formulations of the ‘number adaptation’ hypothesis — the effect of overlap in Experiment 1, the elimination of an adaptation effect following simple color changes at the level of individual items in Experiment 2, the fact that motion eliminated number adaptation entirely in Experiment 3, and the fact that apparent cases of ‘reverse adaptation’ failed to obtain in Experiment 4b. Indeed, at least two of
these results (those from Experiments 3 and 4b) seem to straightforwardly contradict the predictions of the ‘number adaptation’ hypothesis.

Meanwhile, all these results bear out the predictions of an independently motivated alternative explanation for purported cases of the phenomena: each is consistent with, and predicted by, the view that the visual system is simply ‘filtering out old information’ in apparent cases of number adaptation. On this view, it makes sense that overlap would increase the effects of adaptation: Items of the same color and in the same location are ‘old news’. It also makes sense that a change in color, or the introduction of random motion, would eliminate any sign of adaptation: A color change, or an unpredicted change in position, is newsworthy to the visual system. Finally, it makes sense why a middling-number adaptor would cause a middling-number target to appear less numerous (insofar as there are opportunities for overlap, or item identity to be tracked, there are opportunities for new dots in a test display to be deemed ‘old news’ and, thus, familiar from an adaptor). Thus, Experiments 1-4 reveal that canonical illustrations of visual number adaptation – such as the illustration provided in Burr and Ross’s (2008) supplementary materials, described above, and seen by many – provide little reason to posit the existence of number adaptation at all. On inspection, they are more consistent with our proposal.

Nevertheless, proponents of number adaptation might dismiss this suggestion for independent reasons. They will maintain the number adaptation hypothesis remains well motivated since our proposal fails to accommodate two remaining elephants (‘salient environmental features’) in the room — the fact that ‘number’ adaptation is affected by connectedness, wherein the visual system adapts to the number of whole bounded objects in an array, independently of those objects’ low-level confounds (Fornaciai et al., 2016), and the fact that there are cross-modal number adaptation effects. Cross-modal effects, in particular, are considered a ‘gold standard’ in the sense that they cannot be explained by low-level confounds like density or area or overlap. Indeed, the existence of cross-modal effects is often discussed as the strongest evidence in favor of number adaptation (Burr, 2017; Block, 2022). Buoyed by the results of Experiments 1-4, Experiment 5, 6a, and 6b were designed to examine these reported effects more closely.

Experiment 5 & 6 – Connectedness and Cross-Modal Effects

Broadly speaking, cues to objecthood influence perceived number. For instance, connecting pairs of dots with thin lines effectively turns pairs of dots into bounded dumbbell shaped objects, and this is known to significantly reduce the perceived number of dots in a collection (Franconeri et al., 2009; Yu et al., 2019). Indeed, such results persist even though observers are instructed to ignore the lines and attend only to the dots. Thus, it is as if observers cannot help but visually enumerate the bounded objects in a seen collection, even when this is detrimental to task performance and even though the addition of connecting lines increases items’ continuous properties (e.g., their total surface area) while reducing their number (see He et al., 2009).

Previous research has found that connectedness also influences ‘number adaptation’. Fornaciai and colleagues found that after adapting to 20 unconnected dots, perceived number is reduced for 10
unconnected dots as well as 20 paired dots, but not 20 unconnected dots (Fornaciai et al., 2016). Thus, it appears that ‘number’ adaptation is influenced by the visual system’s enumeration of whole bounded objects, and that it is not simply operating over continuous properties of the stimulus; after all, the introduction of additional connecting lines increases the total surface area of the items while reducing their perceived number.

However, when we ran a version of Fornaciai et al.’s experiment ourselves, we found a different pattern of results. Whereas Fornaciai and colleagues only found number adaptation when observers, who had adapted to 20 items, were tested on 20 connected dots (i.e., 10 bounded dumbbells) or 10 unconnected dots, we found adaptation in all three conditions, including when observers adapted to 20 unconnected dots and were subsequently tested on a new collection of 20 unconnected dots (20 unconnected dots: $t(19)=3.09$, $p=.006$, $d=.69$; 20 paired dots: $t(19)=4.14$, $p<.001$, $d=.93$; 10 unconnected dots: $t(19)=3.44$, $p=.003$, $d=.77$). None of these effects was significantly different from any other (ps>.30).

Such results reflect more than a failed replication. We found a positive result where a null result was originally reported. This positive result is at odds with received formulations of the number adaptation hypothesis, since adapting to 20 unconnected items should not influence one’s subsequent perception of 20 unconnected items on this account. Indeed, the lack of an adaptation effect in this condition was a direct prediction of Fornaciai et al.’s study. Much as adaptation to a red surface does not affect one’s perception of a separate red surface, adaptation to a middling number should not influence one’s subsequent perception of another middling collection. It is, however, exactly what we should expect if the visual system were filtering out unchanging content. Having adapted to 20 unbounded items, we should expect that some of the 20 dots in a test display might (rightly or wrongly) be identified as old news and therefore filtered out from view.

In two further experiments — Experiments 6a and 6b — we investigated cross-modal adaptation. Experiment 6a was a first attempt at a replication, based on our reading of the method used by Arrighi and colleagues (2014). It was not intended to be a direct replication, but rather a close approximation of the original design. In pre-registering Experiment 6a, we noted that, if we should fail to replicate the original findings, we would reach out to the original authors and then run an updated version of the task based on their feedback. Experiment 6b is the result of modifying the design after corresponding with the original authors.

In Experiment 6a, there were two key trial types: Visual-to-auditory trials (see Figure 6A) and auditory-to-visual trials (see Figure 6B). Within each trial type, there were two possible rates at which the adaptor could be presented (8hz vs. 2hz). In this task, all sounds were played in both ears (via headphones) and all visual stimuli were presented centrally. The key prediction of the number adaptation view is that number estimates should be lower after observers adapt to an 8hz adaptor and higher when they adapt to a 2hz adaptor.

We failed to find any evidence of number adaptation. For visual-to-auditory trials, there was a significant effect of adaptor number, but in the opposite direction of what the number adaptation
view would predict. Adapting to the 8hz adaptor *increased* estimated number ($t(19)=2.61, p=.017, d=.58$; see Figure 6A). For auditory-to-visual trials, there was a marginal effect of adaptor number in the expected direction ($t(19)=2.04, p=.055, d=.46$; see Figure 6B). Combined across both trial types, then, there was no meaningful effect of the adaptors on number estimation ($t(19)=.15, p=.89, d=.03$).

Figure 5. Design and results of Experiment 5. Each bar represents the magnitude of the key effect in each condition. Error bars represent +/- 1 SE. The key finding here is a significant result in the 20-dot condition, where Fornaciai and colleagues (2016) found a null effect.

We want to emphasize that Experiment 6a was not a direct replication of the original cross-modal adaptation effect reported in Arrighi et al. (2014; see methods for details on how they differed).
However, if cross-modal number adaptation is genuine, we see no reason why a significant result should not have been observed. This was still a fair test of the broader theory.

Figure 6. Results of Experiment 6a and 6b. (A, B) Results of Experiment 6a, for each type of cross-modal adaptation. (C, D) Visual-to-auditory adaptation results of Experiment 6b, for spatiotopic and non-spatiotopic adaptation trials. (E, F) Auditory-to-visual adaptation results of Experiment 6b, for spatiotopic and non-spatiotopic adaptation trials. Error bars represent +/- 1 SE. There is no evidence of cross-modal adaptation.
Nevertheless, in an aim to be thorough, we conducted a modified version of the task based on feedback from the original authors. These modifications included adding a familiarization period, blocking the trials, adding a lengthier adaptor at the beginning of each block, and presenting the stimuli on different sides of space (rather than centrally, or in both ears). For more details, see *Methods*. One important detail is that, in this version, the adaptors were always presented on the left side. This is relevant for the analyses below.

For the visual-to-auditory trials (see Figure 6C-D), there was a small, non-significant adaptation effect, both when the target stimuli were presented on the left ($t(19)=1.55, p=.14, d=.35$) and the right ($t(19)=1.70, p=.11, d=.38$), such that observers produced lower number estimates following a higher frequency adaptor. Even if this non-significant effect is taken seriously because it is in the predicted direction, it is not spatiotopic (replicating the original findings; Arrighi et al., 2014).

For the auditory-to-visual trials (see Figure E-F), there was a small, non-significant adaptation effect, when the target stimuli were presented on the left ($t(19)=.29, p=.77, d=.07$) and an equally small non-significant effect in the opposite direction when the target stimuli were presented on the right ($t(19)=.49, p=.63, d=.11$).

As in Experiment 6a, we again observed inconsistent, marginal-at-best effects of number adaptation in a cross-modal paradigm; this makes for a noticeable difference with the robust effects documented in the original study. Moreover, as in the original work, we found no evidence of spatiotopic effects. Put simply, the results here undermine grand claims about the generality of number adaptation.

Of course, we should not abandon an influential theory because of a single failed replication (or two!). However, we made every effort to replicate these cross-modal effects (including two pre-registered experiments and multiple rounds of pilot data collection) and repeatedly failed. If any doubt remains about the validity and replicability of cross-modal number adaptation, we propose a collaborative, pre-registered, multi-site test with other interested research groups. We further propose that, if such a replication is to occur, all raw data should be made available in full, as we have done for these experiments, so that research groups can more easily compare their findings.

6. Discussion

Collectively, the eight experiments reported here pose serious problems for the number adaptation hypothesis. We contend that these results are more parsimoniously explained by the alternative hypothesis that we have advanced — the notion that the visual system is merely filtering out ‘old news.’ In addition to all the empirical support provided here, this alternative hypothesis is motivated by well-known phenomena (e.g., Troxler Fading and Motion Induced Blindness), explains otherwise puzzling results (e.g., that color changes eliminate number adaptation entirely), and follows from well-established principles of visual perception (e.g., that unchanging information, especially in the periphery, will disappear from awareness).
First, we demonstrated that the spatial correspondence between adaptors and targets influences adaptation: Dots that overlap more in space are more likely to fade from awareness at test (Experiment 1). Second, we showed that this effect of overlap is reduced when the individual items in the display change colors (Experiment 2). Whereas others have argued that such effects reflect the visual system’s sensitivity to “salient environmental features” (Grasso et al., 2022), we contend that the color change is ‘newsworthy’ to the visual system and therefore prevents it from filtering out otherwise ‘old’ items. Moreover, the fact that color changes eliminate the adaptation effect, even when individual black dots turn white (and vice versa) in collections containing an even number of black and white dots (see Experiment 2) indicates that these ‘old news’ effects occur at the level of individual items, rather than the collection as a whole, in line with the predictions of our account. Third, we showed that number adaptation is eliminated in dynamic displays (Experiment 3). When dots move around the display area, no adaptation is observed. The lack of adaptation in dynamic displays is predicted by our hypothesis — unpredicted changes in direction/motion trajectory render ‘old’ dots newsworthy — but (once again) this places pressure on the traditional conception of number adaptation. How is it possible that number adaptation is sufficiently abstract to transcend modalities (e.g., Arrighi et al., 2014), but not sufficiently abstract to survive motion or a simple color change? If number adaptation is truly general, in the way its proponents maintain, adaptation should surely persist across changes of color and motion.

In additional studies, we addressed some of the strongest evidence that has been cited in support of number adaptation. For instance, we considered ‘reverse adaptation’, where a low-number adaptor causes a middling-number target to appear more numerous. We replicated an apparent reverse adaptation effect (Experiment 4a) but went on to show that it is explained not by adaptation to a small number adaptor yielding an increase in perceived number, but instead by a reduction in apparent number elicited by adaptation to a middling number adaptor (Experiment 4b). This is precisely what the old-news hypothesis predicts, since it predicts that the visual system would filter out more old items on this middling-number side of the display. However, this is precisely the opposite of what’s predicted by the number adaptation account: on this view, adaptation to a middling (‘neutral’) number adaptor should not alter the perceived number of items in a middling number display, just as adapting to green should not cause a green surface to appear otherwise.

Next, we investigated the claim that number adaptation is influenced by ‘connections’ between items in a display. While our experiment (Experiment 5) replicated some aspects of the prior work supporting these claims, we found a broader pattern of results that was at odds with number adaptation (but expected on the old news hypothesis). In particular: Adapting to a display of 20 dots caused a subsequent target display of 20 dots to appear less numerous (contrary to the original reported effects but in line with our proposal; c.f. Fornaciai et al., 2016)

Finally, we considered what is perhaps the strongest evidence for the existence of genuine number adaptation: cross-modal number adaptation. Previous studies report that adapting to sequences of tones can alter the perceived number of seen dots in a sequence of flashes or collection of dots and vice versa. Yet, despite our persistent efforts to replicate these effects, we were unable to do so
(Experiments 6a and 6b). In fact, the one significant effect we found in both experiments went in the opposite direction from what is predicted by the number adaptation hypothesis.

Is there hope for number adaptation?

Our findings undermine many prominent claims about number adaptation. For instance, it is unlikely there are genuine cases of ‘reverse adaptation’ wherein adaptation to a small-number adaptor causes a middling test display to appear *more* numerous than it otherwise would. While Experiment 4A replicated a canonical example of what has traditionally been interpreted as reverse adaptation, Experiment 4B demonstrated that the effect was ultimately driven by adaptation to a ‘neutral adaptor’ in the contralateral side of the display *reducing* the number of seen dots in its target location. This pattern of results is precisely what our old news hypothesis predicts.

Our concerns with the existence of reverse adaptation are amplified by the fact that we have never seen nor been able to create a phenomenologically compelling demonstration of the phenomenon (see [Demo #5](#) in our supplemental materials). For certain phenomena, phenomenological demonstrations are a bonus, not a requirement. But for number adaptation, demonstrations *are* the phenomenon. It is hard to imagine that this research program would have had the impact it has had if it were not the case that people can so readily appreciate the effects for themselves. If not for the phenomenology, after all, how would one argue that this is a perceptual phenomenon? Independently of our experimental results, a lack of phenomenologically compelling demonstrations should be a cause for concern.

Another critical claim made by proponents of the number adaptation hypothesis is that the effects are cross-modal. We have, however, failed to find cross-modal number effects, despite repeated efforts to match Arrighi et al.’s original (2014) design as closely as possible. These failures persisted when we sought external advice on our design from proponents of the phenomenon. While we are more than willing to attempt additional replications of this basic finding, we find it hard to identify any principled reason why the design we employed should not have been effective under basic assumptions of the number adaptation hypothesis.

Evne so, it is perhaps ironic that the strongest reason to doubt the existence of cross-modal number adaptation exists may come from data reported by proponents of number adaptation. Grasso and colleagues (2022) reported that the effect ‘breaks’ when dots change in color. In Experiment 2 we found that this breakdown occurs even if the cumulative color distribution remains unchanged (i.e., swapping black for white and white for black in black and white dot displays). We have also shown that number adaptation breaks for dynamic stimuli (i.e., when dots move continuously around a display in pseudo-random ways — Experiment 3). Such results are hard to square with the number adaptation hypothesis. In principle, it seems possible that number adaptation operates at a sufficiently abstract level for cross-modal adaptation to occur. Yet it seems hard to see how number adaptation might generalize across modalities given that it does *not* generalize across more subtle changes to visual input such as color. Of course, it is not *impossible* that number adaptation may operate in exactly this way. In that case, though, proponents of number adaptation would need to
be more specific about the mechanisms underlying the adaptation, so that the number adaptation hypothesis can make meaningful predictions. We need to understand why exactly one should expect that number adaptation effects occur in one direction but not the other, why they occur in static but not dynamic displays, why they supposedly reach across modalities but not across colors, and so on. Without clear answers to these questions, the number adaptation hypothesis is piecemeal.

We admit that none of our arguments provide definitive proof that number adaptation does not exist. It might. We have only argued that there is an alternative explanation for the results currently documented. Though our recommended old-news hypothesis is independently motivated, appealing only to well-known mechanisms and processes of visual perception that all parties should accept as genuine, we do not claim to have proved a negative.

This raises the question: What would it take to demonstrate that number adaptation is genuine? It would not be enough to simply show that there are cross-modal effects unless there were some accompanying answers to the questions raised above. In addition, one would have to show that these cross-modal effects are genuinely perceptual (rather than some sort of higher-level response bias). That is no trivial task, not least because the design of these experiments naturally prevents any possible comparison that one could straightforwardly experience for themselves.

It might be enough to show that there are effects of number adaptation that cannot be explained by our ‘old news’ account. However, it is unclear what these effects might look like. It is virtually impossible to eliminate any correspondence between the adaptor and test displays. Indeed, in those cases where we have done just that (by changing the colors of dots or introducing motion to the displays) adaptation effects are completely eliminated.

Similarly, evidence of a genuine ‘reverse adaptation’ effect could not be explained by our old news hypothesis. Assuming that it was not the result from a higher-level response bias or another deflationary explanation, such a result would be intriguing. However, Experiments 4a and 4b provided strong reason to doubt the existence of reverse adaptation, and we are not aware of any compelling evidence to support its existence.

Is number a primary perceptual attribute?

One of the reasons number adaptation has garnered the interest it has is for its theoretical implications — specifically, from the idea that adaptation is a marker of perceptual content (Burr & Ross, 2008; Block, 2022; c.f. Smortchkova, 2020; Firestone & Phillips, 2023). It is a thought-provoking and surprising proposal, to say the least, that number may be akin to color, size, and speed in being a ‘primary perceptual attribute’.

But does evidence against number adaptation provide reason to think number is not a ‘primary perceptual attribute’? We think not. Number may well be a perceptual attribute, but whether number adaptation is genuine need not bear on that question.
For a start, there appear to be various properties and happenings which can be visually represented, yet for which no known adaptation effects occur. For instance, Phillips and Firestone (2023) note that we can visually represent objects as to the left or to the right. However, they deny that there is compelling evidence of adaptation to these properties, criticizing recent arguments to the contrary (e.g., Block [2022, 67-8] who appeals to Finke [1989] in this connection). Similar points are raised with respect to other properties: does seeing several objects as nearby make subsequent objects look far away? Does seeing multiple objects as connected make subsequent examples look disconnected? What about symmetry: Does seeing lots of symmetrical objects make subsequent objects look asymmetrical? It seems not, despite the properties in question naturally being seen to feature among the contents of human vision.

If these criticisms succeed, then adaptability is a non-necessary feature of perceptual content. Thus, the non-existence of number adaptation need not preclude the possibility that number is computed by the visual system, not least because there may be independent reasons to posit number as a genuine content of human vision (see Clarke & Beck 2023). For one, number sensitive neurons have been found in early visual areas of the brain (Castaldi et al., 2019; DeWind et al., 2019; c.f., Fornaciai & Park, 2021). In addition, number is susceptible to many well-known recalcitrant illusions. For instance, beyond the connectedness effects described in this paper (He et al. 2009; Franconerri et al., 2009) the arrangement of dots in an array can alter their apparent number, causing one subset of the array to appear significantly more or less numerous than an equinumerous subset (Frith & Frith, 1972). The entropy of items in a collection also alters apparent number, such that homogenously colored or homogenously oriented items appear more numerous than their otherwise identical yet heterogenous counterparts (DeWind et al., 2020; Qu et al., 2022). Crucially, all these results persist even when participants know the effects to be illusory: Even when participants know two collections to be equinumerous, and reflect on this fact, the collections will continue to appear quite different in number under the above conditions. This suggests an important dissociation between putatively visual representations of number and their cognitive counterparts, indicating that there is a legitimate sense in which number features in the contents of visual perception and not just post-perceptual judgement, irrespective of whether number adaptation obtains.

Perceptual adaptation beyond number

Bracketing the above concerns, we think our discussion raises broader questions about the notion of adaptation that is at issue in various disputes in contemporary vision science.

Suppose, for instance, that future research provides more definitive evidence for number adaptation and against the old-news hypothesis. We suggest that our discussion should nevertheless serve to highlight a range of problems concerning the current understanding of number adaptation. It may be overly simplistic to say that a feature simply does or does not exhibit adaptation (Smortchkova 2020). For a start, there are likely to be different ways that one can adapt to some property or happening. Is the adaptation spatiotopic or retinotopic, for instance? Careful
work has been done to show that certain kinds of adaptation, like adaptation to causality, are retinotopic (see Kominsky & Scholl, 2020; Rolfs et al. 2013). This retinotopic specificity helps to support claims that the observed effects are genuinely perceptual in nature; it is hard (but not impossible) to imagine why non-perceptual effects would occur in specific locations on the retina (but see Firestone & Phillips, 2023). Number adaptation, in contrast, is normally considered to be spatiotopic, although there are documented number adaptation effects that are neither retinotopic nor spatiotopic (see Arrighi et al., 2014). This raises the question: Is retinotopic adaptation different from spatiotopic adaptation? Are both different from adaptation that is neither retinotopic nor spatiotopic? In what ways — and how would we know?

It is worth noting that retinotopy is important not just for how we interpret the phenomenon of number adaptation, but also for how we study it. In an effort to rule out certain spatial confounds (e.g., area, density) in number adaptation displays, some experimenters have carefully manipulated the spatial envelopes in which dots appear (see Anobile et al., 2014; DeSimone et al., 2020). That is, the adaptor stimulus might occupy a larger area on the retina than the target stimulus, or vice versa. This design choice makes sense if you think that the adaptation is merely spatiotopic. However, it is quite easy to see that the retinotopic size of the spatial envelope does matter. In Demo #7 in our supplemental materials, for instance, we show that adapting to a central clump of dots vs. a ring of dots influences not only the apparent number of dots in a test display, but also the shape of the collection. This simple demonstration, thereby, undermines the central assumption behind previous work that has manipulated area/density by varying the size of the spatial envelope that collections occupy — leaving open the possibility that, even if all our arguments fall short of target, number adaptation effects may still be explained (either in part or entirely) by confounds with density and area.

There are other aspects of ‘adaptation’ that are similarly ambiguous. In this paper, for instance, we have taken issue with the notion of ‘reverse number adaptation’. We have argued that previous reports of reverse number adaptation were spurious and that a lack of reverse number adaptation undermines the grounds for positing number adaptation in the first place. It is important to acknowledge, however, that certain better-understood forms of adaptation, most notably speed adaptation, are thought to be similarly unidirectional. In this domain, a fast adaptor can cause a subsequent stimulus to look as if it is moving slower, but a slow adaptor does not influence perceived speed in the reverse direction (e.g., Anton-Erxleben et al., 2013). This is not an isolated example. While bidirectional effects are the norm, even forms of adaptation that do exhibit bidirectional effects, like size adaptation, nevertheless exhibit important asymmetries (e.g., a large adaptor causes greater adaptation on a middling stimulus than a small adaptor will; see Pooresmaeili et al., 2013).

These modest observations raise a host of unanswered questions: Must adaptation effects be retinotopic to be considered perceptual? Must adaptation effects be bidirectional to be considered genuine? And how much of an asymmetry in this bidirectionality is important? Just as there may be no agreed-upon standards for what constitutes adaptation (Phillips & Firestone 2023), there are
no agreed-upon standards for what aspects of adaptation are meaningful or necessary when generalizing from one domain to another (Smortchkova 2020).

These are not merely semantic concerns. We are not simply raising a concern over what deserves to be called adaptation. Rather, we are highlighting a more foundational problem, which lies at the heart of various theoretical debates in which adaptation effects feature prominently. For insofar as phenomena like number adaptation are to support theoretical claims, such as the claim that number is a “primary visual attribute”, on a par with color and brightness (Burr & Ross, 2008), or insofar as the phenomenon of perceptual adaptation (in general) is to support claims over the function of perceptual processing more broadly (Block, 2022), we must assume that adaptation constitutes a unified natural kind — that there is a genuine joint in nature that distinguishes genuine adaptation effects from other related phenomena, and which thereby licenses inductive inferences from one case of ‘adaptation’ to another. Indeed, this point seems pressing given the findings discussed in this paper. For whether we are correct to deny the existence of number adaptation, it seems all but inevitable that ‘number adaptation’ will end up differing in important ways from better understood cases of the phenomenon (after all, this point is conceded by proponents of the phenomenon; see Grasso et al., 2021), leaving an awkward question: Is number adaptation still of the same fundamental kind as (e.g.) brightness or color adaptation? And if it is not, then why should the status of these latter phenomena as decisively perceptual license the conclusion that number is a ‘primary visual attribute’ in the same way?

Conclusion

In some respects, number adaptation is among the best-documented phenomena in psychophysics. There have been dozens of papers in the last fifteen years purporting to document cases of number adaptation in a variety of compelling ways. And you can see this phenomenon for yourself: In canonical cases, collections of dots quite literally change in perceived quantity. Yet lying in plain sight there is a simpler and more parsimonious explanation for many, if not all, of these findings: The visual system is simply responding differentially to new versus old information. This explanation should not come as a surprise: That ‘old news’ disappears from awareness is, itself, ‘old news’. Nevertheless, the view presented here offers a new foundation from which to understand documented effects of putative number adaptation and raises questions about the nature and meaning of adaptation itself.
Author note

All pre-registrations, raw data, and supplemental materials are available on our OSF page: https://osf.io/eh3ws/.
Methods

For all experiments, the sample size, primary dependent variables, and key statistical tests were all pre-registered. Pre-registrations, as well as demos, raw data, and materials, are available on our OSF page, here: https://osf.io/eh3ws/

In each experiment, 20 individuals (after exclusions; see below) participated (in lab) in exchange for course credit or monetary compensation. While many adaptation studies rely on ‘expert’ participants (for discussion on the challenges of adaptation experiments in naive participants, see Kominsky & Scholl, 2020), we specifically opted to use naive participants. All participants were unaware of the design as well as the hypotheses. Because of this, we thought it important to be careful to exclude any participants who responded in a way that was not in the spirit of the task (e.g., participants who responded based on what they thought the answer was rather than what they saw). We preregistered specific criteria for excluding participants based on a thorough debriefing interview after the study. Across all of the experiments, only two participants were excluded for this reason. Three additional participants were excluded because of unreasonably high response times.

For all but two experiments (6a and 6b; explained below), participants sat approximately 60cm from a 20in by 11.25in monitor. All subsequent calculations of visual size are based on these values.

In Experiment 1, Stimuli were composed of square dots arranged in a grid shape (see Figure 3A). For each stimulus, exactly half of the dots were white, and exactly half of the dots were black. Though the stimuli varied in number, all of the stimuli were arranged in a 25x25 grid, resulting in 625 possible ‘cells’. Each dot was randomly placed in one of the 625 cells. There was a small buffer between each dot in the grid to ensure the dots did not touch neighboring dots and could thus be individuated. An individual dot was approximately .30° of visual angle. An entire stimulus covered approximately 12° of visual angle. The background was grey.

There were two kinds of stimuli in this experiment: Adaptor stimuli and test stimuli. Both the adaptor stimuli and the test stimuli abided by the constraints outlined above. Adaptor stimuli always appeared before the test stimuli, and, for this experiment, were always greater in number than the test stimuli. The key manipulation in this experiment is the extent to which items in the adaptor and test stimuli ‘overlap’. On one side of the display, the adaptor and test stimulus would have 100% spatial and color overlap such that every dot present in the test stimulus was in an identical spatial location and of an identical color as a dot in the adaptor stimulus. On the other side of the display, the adaptor and the test stimulus had 0% spatial overlap such that every dot present in the test stimulus was presented in a cell that was in the adaptor stimulus. Other than this constraint, the positions of the dots in both stimuli were fully randomized. Each trial always contained two adaptors and two targets (one on the left side, one on the right side). One of the adaptor/target pairs always had 100% overlap, and the other always had 0% overlap.
Each participant completed 42 trials. The trials were counterbalanced such that half of the trials had 100% overlap on the left side and the other half had 100% overlap on the right side. Additionally, on one-third of the trials, the left-side adaptor had a ‘low’ number (10% greater than the subsequent test stimulus) and the right-side adaptor had a ‘high’ number (300 dots, regardless of the number the subsequent test stimulus would have); on another one-third of the trials, the opposite was true; and on a final one-third of the trials, both adaptors had 300 dots. Additionally, we varied and counterbalanced the number of dots in the test stimuli: For two-sevenths of the trials, one side had 80 dots while the other had 100; in another two-sevenths of the trials, one side had 120 dots while the other had 100; all remaining trials had 100 dots on both sides. Adaptor number, target number, and overlap percentage were all counterbalanced with respect to one another. Altogether, this design allowed us to assess (1) How the adaptor number, (2) How the target number, and (3) How the degree of overlap between the adaptor and the target affected participants’ responses.

Experiment 2 was designed to be as similar as possible to Experiment 1, with one exception. Rather than one side having 0% overlap and the other having 100% overlap, both sides had 100% spatial overlap. In other words, all the dots in the target stimuli were in the same location as a dot in the corresponding adaptor. The one difference is that one side would also have identical colors, and the other would have all the colors swap (i.e., any dot that was white became black, and vice versa).

In **Experiment 3**, we tested number adaptation for dynamic stimuli (i.e., dots moving around). As with the other experiments, displays were made up of both black and white dots, adaptors were presented for 25 seconds, and targets appeared for 750ms. One of the adaptors always had 60 dots; the other always had 30 dots. For 3/7 of the trials, both targets had 30 dots. For 4/7 of the trials, the number of dots on one side of the screen was equal to 30 +/- 5 (and the other side had 30 dots). In total, there were 42 trials (7 target number conditions × 2 adaptor number conditions × 3 repetitions).

Experiment 4a was designed to be as similar as possible to Experiment 1. Only a few changes were made to the design, as explained below. This experiment was designed to test ‘reverse adaptation’ — cases where an adaptor of lower number causes a test stimulus of higher number to appear more numerous (see Burr & Ross, 2008). The numbers for the test stimuli were identical to Experiment 1, except doubled. Thus, for two-sevenths of trials, one side had 160 dots while the other had 200; for another two-sevenths of trials, one side had 240 dots while the other had 200; and all remaining trials had 200 dots on both sides. Critically, the adaptor stimuli in this experiment were always less numerous than the targets. For one-third of the trials, the left side adaptor had a ‘low’ number (50 dots) and the right-side adaptor had a ‘high’ number (10% fewer than the corresponding test stimulus; i.e., between 144 and 216 dots, depending on the number of dots in the target); for another one-third of the trials, the opposite was true; and for a final one-third of the trials, both adaptors had 50 dots. For all trials, there was 0% spatial overlap between the adaptor and the test stimulus.
Experiment 4b was modeled on Experiment 4a. But where Experiment 4a involved ‘double adaptor’ trials (i.e., trials in which adaptors appeared on both sides of the screen at once), Experiment 4b used a ‘single adaptor’ design. Adaptors appeared on either the left or right side, but not both. The stimuli used in this experiment were the same as those used in Experiment 4a. The difference here is that trials from Experiment 2a were effectively ‘split in half’. We showed participants the same test stimuli as in Experiment 4a, but with only one of the two corresponding adaptors visible beforehand. Critically, this design allowed us to assess the independent contribution of each adaptor on participants’ responses. To accommodate the fact that the number of trials would be effectively doubled, we removed all trials in which the number on either side exceeded 200 dots to prevent participants becoming excessively fatigued. Additionally, we removed trials in which both adaptors had 50 dots. These trials were not functionally necessary to test our hypothesis. Having excluded these trials and otherwise doubled the trial number (because each adaptor was shown separately), we were left with a total of 40 trials. Everything else matched Experiment 4a.

Experiment 5 was modeled after the study by Fornaciai and colleagues (2016) but used the same stimulus/task parameters as Experiment 1. Here, the dots in the target stimuli were sometimes connected via thin lines (to create an illusion of a change in number). On all trials, there was a single adaptor with 20 unconnected dots. The targets varied in three distinct trial types. For one-third of the trials, the target stimulus had ~20 unconnected dots; for another third of trials, the target stimulus had ~20 dots connected in pairs; for a final third of trials, the target stimulus had ~10 unconnected dots. Independently, for three-sevenths of the trials, both targets had an equal number of dots (20 in two of the conditions, or 10 in the third condition). For the remaining trials, one target had 16 (8) dots and the other had 20 (10). This was counterbalanced across sides. There were a total of 42 trials (3 trial types × 7 number/side combinations × 2 sides of the display).

In Experiment 6a, we attempted to replicate the cross-modal adaptation effects documented by Arrighi and colleagues (2014). This initial replication attempt was conducted based on our impression of the design having read the original paper.

Per the design of Arrighi et al., the trials consisted of an adaptor stimulus as well as a test stimulus. The adaptor stimulus consisted of items presented at either 2hz or 8hz for 6s. The target stimulus consisted of either 2, 4, 6, 8, 10, 12, 14, 16, 18, or 20 items, always presented within a 2s period. There were 2 conditions (audio/visual) x 2 adaptor frequencies (2hz/8hz) x 10 numbers (2-20, increments of 2) x 3 unique instance of each trial, for a total of 120 trials. These 120 trials were randomly intermixed with no constraints. (At the time of this pre-registration, it was unclear to us how the trials were ordered.)

Unlike the design of Arrighi et al., we did not have neutral non-adaptation trials (other than the 20 practice trials). We also did not have the initial 40s adaptation period.
In the Arrighi et al. study, stimuli were constrained so that no items appeared within 40ms of one another. We extended this window to 50ms, ensuring that we could still fit the maximum number of items within a 2s period, but allowing for slightly more space between the items.

Prior to beginning the cross-modal trials, participants completed twenty practice trials, during which they witnessed either dots flashing or tones playing (10 of each trial type). The sequences contained 2, 4, 6, 8, 10, 12, 14, 16, 18, or 20 items. For these trials only, they were given feedback about the correct answer after each response.

The task was not intended to be a perfect, direct replication. Instead, we designed a task that we thought, in principle, should reveal cross-modal adaptation effects (based on our understanding of the original findings). Because we had considerable difficulty discerning the exact experimental design based on the original materials, we specifically pre-registered that we would contact the authors about these results to get their feedback should we fail to replicate the key effects.

In Experiment 6b, we attempted another replication of cross-modal number adaptation after having consulted with the authors of the original study. This resulted in numerous substantive changes to the design.

First, we added in a ‘familiarization phase’ after the practice trials. This consisted of twenty additional practice trials without adaptation, but also without any feedback. Second, we divided the task into four blocks. These blocks were the product of a 2x2 design, with two relevant factors. One relevant factor was the rate of the adaptor (2hz vs. 8hz) and the other was the type of adaptation (auditory vs. visual). The blocks were presented in four unique orders, following a Latin square design. Third, at the beginning of each block, there was a 40s adaptation phase (followed by the usual 6s adaptation phase on each trial). Each block itself consisted of 40 trials, with 10 numbers (2-20, increments of 2) x 2 sides for the target (left/right) x 2 instances. Fourth, the adaptor was always presented on the left side. Fifth, the auditory stimuli played from either a left speaker or a right speaker that sat adjacent to the monitor, and the visual stimuli (dots 1.42º in diameter) were presented in the periphery (17.0º offset horizontally), close to the speakers (as the original authors emphasized this aspect of the design in our correspondences). The 40 trials were randomly intermixed with no constraints.

This design was still not a perfect replication of the original paper. It was designed to be as close as possible, given the information available in the paper, the information we were able to glean from our correspondence with the original authors, as well as our desire to be consistent with other aspects of our designs across the rest of our studies (in terms of experiment length, number of participants tested, etc.).

Experiments 6a and 6b were run on a separate computer/monitor, to ensure that we could run the task at the appropriate framerate. The display was 21.4in x 11.9in, running at 200hz.
References

