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Abstract. Although Kurt Gddel does not figure prominently in the his-
tory of computabilty theory, he exerted a significant influence on some of
the founders of the field, both through his published work and through
personal interaction. In particular, Godel’s 1931 paper on incomplete-
ness and the methods developed therein were important for the early
development of recursive function theory and the lambda calculus at the
hands of Church, Kleene, and Rosser. Church and his students studied
Godel 1931, and Godel taught a seminar at Princeton in 1934. Seen in the
historical context, Godel was an important catalyst for the emergence of
computability theory in the mid 1930s.

1 Introduction

Kurt Godel’s contributions to logic rank among the most important work
in logic, and among the most important in 20th century mathematics.
The theory of computability, and much of theoretical computer science
more generally, has its roots, historically as well as conceptually, in the
field of logic, and so it is a given that many of Godel’s results are also
important in the field of theoretical computer science. However, it would
be an exaggeration to say that Godel was himself a pioneer of the field.
That distinction belongs to those who lay the groundwork for a math-
ematical analysis of the concept of computation: Church, Kleene, Post,
Rosser, and Turing, and those who followed in their footsteps. Neverthe-
less, the early work of Church, Kleene and Rosser was heavily influenced
by Godel, and it is perhaps not an exaggeration to say that their work
was made possibly only by Godel’s earlier contributions.

The historical background both for Goédel’s early work and that of
Church, Rosser, and Kleene lies in the context of the foundational debate
of the 1920s. Hilbert’s program for the foundations of mathematics was
the driving force behind many of the advances in logic during that time.
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His belief that all mathematical questions are in principle decidable under-
wrote his belief that the formal systems of mathematics considered then,
such as arithmetic, analysis, and set theory, are complete in the sense that
for any sentence A in the respective language, either A or —A is derivable
in the system. (Although Hilbert himself had reservations whether this is
the case in “higher domains”, e.g., set theory, he did believe it was true
for first and second-order arithmetic.) In a related sense, this was also
the basis for Hilbert’s conjecture that first-order logic is complete in the
sense that any valid sentence is derivable from the axioms of the predicate
calculus. (It was known by the mid 1920s that first-order logic is not com-
plete in the first, syntactic sense described above—there are formulas A
such that neither A nor —A is derivable in first-order logic alone.) It was
also the basis for his aim in the work on the decision problem for logic,
i.e., that it should be possible to find a procedure to decide, for any given
sentence of first-order logic, whether it is provable from the axioms of the
predicate calculus or not. Hilbert’s firm belief that classical mathematics
is secure in the sense that the axioms of arithmetic and set theory do
no lead to contradictions suggested that it should be possible to prove
that these axioms are consistent, and since the statement of consistency
is a purely combinatorial one about what sequences of formulas of cer-
tain sorts there are, that consistency could be proved using elementary,
“finitary” methods. These methodologically motivated questions, then,
guided the work of the Hilbert school: to solve the decision problem by
giving a decision problem for predicate logic; to prove that arithmetic and
logic are complete; and to find a finitary consistency proof of arithmetic
and analysis.

In 1929 and 1930, Gdédel solved the latter two problems. In his dis-
sertation (1929; 1930), he showed that first-order logic is complete, and
in his Habilitationsschrift (1930; 1931) he showed that arithmetic is in-
complete. Very soon afterward he himself accepted the consequence of
the second incompleteness theorem that no finitary consistency proof of
arithmetic can be given, a consequence that others (e.g., von Neumann
and Herbrand) accepted more readily. Although Church and Turing gave
the definitive (negative) solution to the decision problem, Godel also ac-
tively contributed to the literature on Hilbert’s first task (Godel, 1932,
1933).

Church’s first publications on the A-calculus were similarly concerned
with foundational problems in mathematics: Church’s stated aim was
to develop a new axiomatization of logic which avoids the paradoxes,
but in a manner different from Russell’s theory of types or axiomatic
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set theory. Although we now think of the (simple) A-calculus as a for-
malism for expressing computable functions, Church did not originally
conceive of it in that way—for him, the system which evolved into the
A-calculus was a logical formalism which, he hoped, would be capable
of serving as a contradiction-free formalization of mathematics. Unfortu-
nately, Church’s original system proved to be inconsistent (Kleene and
Rosser, 1935). Kleene’s and Rosser’s proof that it was inconsistent made
essential use of the method of Gédel coding introduced in (Godel, 1931).
Kleene’s (1935) development of arithmetic and the representability of re-
cursive functions within the A-calculus was motivated, in part, by the
aim of reproducing Godel’s incompleteness result in the context of the
A-calculus, and his important normal form theorem also relied on Gédel
coding. It was in the context of this turn towards metamathematical inves-
tigations of the A-calculus along the lines of Godel (1931) that the notion
of A-definability achieved pride of place in the work of Church, Kleene,
and Rosser. The positive results obtained by Kleene to the effect that a
great many recursive functions could be formalized in the A-calculus led
Church to formulate what now has come to be known as Church’s Thesis,
viz., that every effectively computable function is A-definable. And again
it was Godel, who at the time (1934) was in Princeton, who led Church
and his students to take a broader view: his skepticism about Church’s
thesis when first formulated regarding A-definability and his proposal that
general recursiveness might be a better candidate for a precise character-
ization of effective computability led Kleene to show that the two notions
are coextensive: every A-definable function is general recursive and con-
versely (Kleene, 1936b).

In what follows, I will give an outline of the early history of recursion
theory, with special emphasis on the role Godel and his results played in
it. In my survey of these developments, I rely heavily on the recollections
of Kleene (1981; 1987) and the analyses of Davis (1982) and Sieg (1997),
as well as chapter V of Dawson’s (1997) biography of Godel.

2 Church’s System and Godel’s Incompleteness Result

In the years 1929-1931, Church developed an alternative formulation of
logic (Church, 1932, 1933), which he hoped would serve as a new founda-
tion of mathematics which would avoid the paradoxes. Church taught a
course on logic in the Fall of 1931, where Kleene, then a graduate student,
took notes. During that time, Church and Kleene were first introduced
to Godel’s work on incompleteness: the occasion was a talk by John von
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Neumann on Godel’s work. Church and Kleene immediately studied the
paper in detail. At the time, it was not yet clear how general Godel’s
results were. Church believed that the incompleteness of Godel’s system
P (a type-theoretic higher-order formulation of Peano arithmetic) relies
essentially on some feature of type theory, and that Godel’s result would
not apply to Church’s own system. It nevertheless seems like it became
a pressing issue for Church to determine to what extent Godel’s results
and methods could be carried out in his system. He set Kleene to work on
the task of obtaining Peano arithmetic in the system. Kleene succeeded
in carrying this out in the first half of 1932. It involved, in particular,
showing that various number-theoretic functions are A-definable. In July
1932, Godel wrote to Church, asking if Church’s system could be proved
consistent relative to Principia Mathematica. Church was skeptical of the
usefulness of such a relative consistency proof. He wrote,

In fact, the only evidence for the freedom from contradiction
of Principia Mathematica is the empirical evidence arising from
the fact that the system has been in use for some time, many of
its consequences have been drawn, and no one has found a con-
tradiction. If my system be really free from contradiction, then
an equal amount of work in deriving its consequences should pro-
vide an equal weight of empirical evidence for its freedom from
contradiction. [...]

But it remains barely possible that a proof of freedom from
contradiction for my system can be found somewhat along the lines
suggested by Hilbert. I have, in fact, made several unsuccessful
attempts to do this.

Dr. von Neumann called my attention last fall to your paper
entitled “Uber formal unentscheidbare sitze der Principia Mathe-
matica.” I have been unable to see, however, that your conclusions
in §4 of this paper apply to my system. Possibly your argument can
be modified so as to make it apply to my system, but I have not
been able to find such a modification of your argument. (Church
to Godel, July 27, 1932. Godel 2003a, 368-369)

Section §4 of Godel (1931) which Church mentions here is the section in
which Goédel sketched the second incompleteness theorem. Since Godel did
not provide a complete proof of the theorem—indeed, the first complete
proof did not appear until Hilbert and Bernays (1939)—Church was surely
justified in doubting that the result applies to his system. It leaves open
the question, however, of whether Church believed, at the time, that the
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construction of the first incompleteness theorem do go through in his
System.

Kleene reports (Crossley, 1975) that he carried out the development of
Peano arithmetic in Church’s system between January and June 1932, and
then wrote up the results over the following year. The paper reporting
these results (Kleene, 1935) was received by the American Journal of
Mathematics on October 9, 1933, and in revised version on June 18,
1934. The paper also contains the arithmetization of syntax, making use
of Godel’s methods and results, and a proof that all primitive recursive
functions are A-definable. Kleene also showed that for any formula in the
formalism of Principia Mathematica, the question of whether it is provable
is equivalent to the question of whether a certain expression of Church’s
system has a normal form. Only a few months after Kleene submitted the
final version of his paper, in November 1934, Rosser and he submitted
another paper to the Annals of mathematics (Kleene and Rosser, 1935). In
it, they showed that Church’s system, as well as Curry’s combinatory logic
(Curry, 1930), were inconsistent. In their proof, they again made extensive
use of Godel’s arithmetization of syntax, and were able to derive a version
of Richard’s paradox within the system. The fragment of Church’s system
with the logical axioms removed is demonstrably consistent: it is the
simple A-calculus (see Barendregt 1997 for the impact of A-calculus in
computer science, and Seldin 2006 for a history of the A-calculus).

Church, then, turned out to be right: Godel’s second incompleteness
theorem does not apply to his system—because the theorem only applies
to consistent formal systems. But in order to obtain this result, and many
of the positive results due to Kleene which provided the foundation for
Church’s undecidability results a year later, Godel’s methods were of cru-
cial importance, both because they motivated a certain line of inquiry
and because Kleene, Rosser, and Church were able to build on them.

The methods introduced in Godel (1931) and used by Kleene and
Rosser to show that Church’s system was inconsistent also figure promi-
nently in Church’s negative solution of the decision problem. Church
(1935, 1936b) first showed that the question of whether a given expression
of the A-calculus has a normal form is not recursive. In the same paper,
Church also stated what is now known as “Church’s Thesis,” viz., that
the general recursive functions (and hence, the A-definable ones) are just
the “effectively computable” ones. The theorem and the thesis combine
to yield the result that having a normal form is not an effectively decid-
able property. The genesis of Church’s Thesis will be outlined in the next
section. Here, I want to stress only that the result itself, and with it the
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negative solution of the decision problem for first-order logic (Church,
1936a), made essential use of Godel’s work.

Kleene (1987) himself emphasizes the importance of Godel (1931) in
the work that he and Rosser carried out in their seminal contributions to
recursion theory in the early 1930s:

After the colloquium [by von Neumann in the fall of 1931],
Church’s course continued uninterruptedly concentrating on his
formal system; but on the side we all read G&del’s paper, which
to me opened up a whole new world of fascinating ideas and per-
spectives.

3 Godel and Church’s Thesis

Godel’s (1931) had a dramatic and lasting influence on the pioneers of
recursion theory and the development of the A-calculus. Godel had a
more direct and personal influence in the formation of Church’s thesis.
He visited Princeton in the 1933/34 academic year and gave a series of
lectures there between February and May 1934, which was attended by
Church, Kleene, and Rosser. Kleene’s work on defining various number-
theoretic functions in the A-calculus (1935) first prompted Church to put
forward a tentative version of the thesis in late 1933 or early 1934, in the
form: every effectively calculable function is A-definable. In conversation,
Godel expressed skepticism about the thesis.

Towards the end of his Princeton lectures, Godel introduced the no-
tion of general recursive function. This notion was based on a suggestion
by Herbrand in a letter to Godel of April 7, 1931 (Godel, 2003b, 14-21).
In the lectures, Godel (1934, 368-369), defined the general recursive func-
tions as those which can be computed using a specific set of substitution
rules from a set of defining equations, and for which the result of the
computation is uniquely determined. (For a discussion of the connection
between Herbrand’s and Godel’s notions, see Sieg 2005.) Godel did not at
first propose the definition of general recursive function as an explication
of the informal notion of “effectively computable,” but only as an explica-
tion of the notion of “recursive function.” In 1931, Godel had introduced
the primitive recursive functions (although he called them then just “re-
cursive functions”). It was already known since the mid-1920s (Hilbert,
1926; Ackermann, 1928) that there are non-primitive recursive functions
which can be defined by double recursion, and in the early 1930s, Péter
(1934, 1935) studied such recursive functions in more detail.
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Godel was interested in a precise characterization of intuitively recur-
sive functions. Kleene (1936b) soon succeeded in establishing that the gen-
eral recursive functions are exactly the A-definable ones, and this seems
to have been a reason for Church to propose his thesis in print in 1935.
Kleene (1936a) is a systematic study of Godel’s class of general recursive
functions. It contains Kleene’s normal form theorem, that every general
recursive function can be written as f(uxz[g(z) = 0]), with f, g primitive
recursive, Kleene’s T predicate, and examples of non-recursive functions
and relations based on it.

For a more detailed historical discussion on the origin of Church’s
Thesis and Godel’s influence, see Davis (1982) and Sieg (1997).

4 Godel and Complexity Theory

Another work of Godel’s played a role in the development and gradual
acceptance of Church’s Thesis—although Goédel himself apparently be-
came convinced of the truth of the thesis only through Turing’s work.
That work was an abstract on length of proofs (Gédel, 1936). In stating
his Thesis, Church (1936b, §7) had introduced the notion of functions
computable in a logic S: f is is computable in S if there is some term ¢
so that for every numeral m there is a numeral n with S F ¢(m) = n iff
f(m) = n (following Kleene 1952, §59, such functions are also called reck-
onable in S). In a note added in proof, Godel (1936) remarked that this
notion of computability is absolute, in the sense that if a function is com-
putable in a higher-order system S, it already is computable in first-order
arithmetic—i.e., the general recursive functions are all the functions com-
putable in any consistent system S containing arithmetic. The reason for
this is, of course, that if the system is formal in the sense that its proofs
are recursively enumerable, then then function is computable by searching
through all proofs until one finds one of ¢(m) = n, and this procedure is
insensitive to the logical strength of the theory S. This result served both
Church and later also Godel as evidence for the Church-Turing Thesis
(see Godel 1946 and Sieg 1997, 2006).

The main part of (Godel, 1936), however, was not concerned with
computability so much as with proof complexity. The result that Godel
announced concerned speed-up of proofs (measured as number of sym-
bols) between n-th and (n + 1)st-order arithmetic. (Buss 1994 contains a
proof of the result.) 20 years later, Godel was again thinking about proof
complexity. In an intriguing letter to John von Neumann on March 20,
1956 (Godel, 2003b, 372-377), Godel discussed the complexity of deciding
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for a formula A of first-order logic, whether A has a proof with k& symbols
or less. Cook has shown that this problem is NP-complete (see Hartmanis
1989 and Buss 1995).

Unlike Godel’s earliest work, his thoughts on proof complexity and
feasible computation in the letter to von Neumann had no impact on
the historical development of computability and complexity theory. It
nevertheless shows that questions of the nature of computability, even
though they were not at the forefront of Godel’s thought or prominent in
his publications, did occupy Goédel throughout his professional career.
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