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This book is an introduction to metalogic, aimed especially at
students of computer science and philosophy. “Metalogic” is so-
called because it is the discipline that studies logic itself. Logic
proper is concerned with canons of valid inference, and its sym-
bolic or formal version presents these canons using formal lan-
guages, such as those of propositional and first-order logic. Meta-
logic investigates the properties of these languages, and of the
canons of correct inference that use them. It studies topics such
as how to give precise meaning to the expressions of these for-
mal languages, how to justify the canons of valid inference, what
the properties of various derivation systems are, including their
computational properties. These questions are important and
interesting in their own right, because the languages and deriva-
tion systems investigated are applied in many different areas—
in mathematics, philosophy, computer science, and linguistics,
especially—but they also serve as examples of how to study for-
mal systems in general. The logical languages we study here are
not the only ones people are interested in. For instance, linguists
and philosophers are interested in languages that are much more
complicated than those of propositional and first-order logic, and
computer scientists are interested in other kinds of languages
altogether, such as programming languages. And the methods
we discuss—how to give semantics for formal languages, how
to prove results about formal languages, how to investigate the

xiii



properties of formal languages—are applicable in those cases as
well.

Like any discipline, metalogic both has a set of results or facts,
and a store of methods and techniques, and this text covers both.
Many students won’t need to know all of the results we discuss
outside of this course, but they will need and use the methods
we use to establish them. The Lowenheim-Skolem theorem, say,
does not often make an appearance in computer science, but the
methods we use to prove it do. On the other hand, many of the
results we discuss do have relevance for certain debates, say, in the
philosophy of science and in metaphysics. Philosophy students
may not need to be able to prove these results outside this course,
but they do need to understand what the results are—and you
really only understand these results if you have thought through
the definitions and proofs needed to establish them. These are, in
part, the reasons for why the results and the methods covered in
this text are recommended study—in some cases even required—
for students of computer science and philosophy.

The material is divided into three parts. Part I concerns it-
self with the theory of sets. Logic and metalogic is historically
connected very closely to what’s called the “foundations of math-
ematics.” Mathematical foundations deal with how ultimately
mathematical objects such as integers, rational, and real num-
bers, functions, spaces, etc., should be understood. Set theory
provides one answer (there are others), and so set theory and
logic have long been studied side-by-side. Sets, relations, and
functions are also ubiquitous in any sort of formal investigation,
not just in mathematics but also in computer science and in some
of the more technical corners of philosophy. Certainly for the pur-
poses of formulating and proving results about the semantics and
proof theory of logic and the foundation of computability it is es-
sential to have a terminology in which to do this. For instance,
we will talk about sets of expressions, relations of consequence
and provability, interpretations of predicate symbols (which turn
out to be relations), computable functions, and various relations
between and constructions using them. It will be good to have



shorthand symbols for these, and think through the general prop-
erties of sets, relations, and functions. If you are not used to think-
ing mathematically and to formulating mathematical proofs, then
think of the first part on set theory as a training ground: all the
basic definitions will be given, and we’ll give increasingly compli-
cated proofs using them. Note that understanding these proofs—
and being able to find and formulate them yourself—is perhaps
more important than understanding the results, especially in the
first part. If mathematical thinking is new to you, it is important
that you think through the examples and problems.

In the first part we will establish one important result, how-
ever. This result—Cantor’s theorem—relies on one of the most
striking examples of conceptual analysis to be found anywhere
in the sciences, namely, Cantor’s analysis of infinity. Infinity has
puzzled mathematicians and philosophers alike for centuries. Un-
til Cantor, no-one knew how to properly think about it. Many
people even considered it a mistake to think about it at all, and
believed that the notion of an infinite collection itself was incoher-
ent. Cantor made infinity into a subject we can coherently work
with, and developed an entire theory of infinite collections—and
infinite numbers with which we can measure the sizes of infinite
collections. He showed that there are different levels of infinity.
This theory of “transfinite” numbers is beautiful and intricate,
and we won’t get very far into it; but we will be able to show
that there are different levels of infinity, specifically, that there
are “countable” and “uncountable” levels of infinity. This result
has important applications, but it is also really the kind of result
that any self-respecting mathematician, computer scientist, and
philosopher should know.

In part II, we turn to first-order logic. We will define the lan-
guage of first-order logic and its semantics, i.e., what first-order
structures are and when a sentence of first-order logic is true in a
structure. This will enable us to do two important things: (1) We
can define, with mathematical precision, when a sentence is a
logical consequence of another. (2) We can also consider how
the relations that make up a first-order structure are described—



characterized—by the sentences that are true in them. This in
particular leads us to a discussion of the axiomatic method, in
which sentences of first-order languages are used to characterize
certain kinds of structures. Proof theory will occupy us next, and
we will consider the original version of the sequent calculus and
natural deduction as defined in the 1930s by Gerhard Gentzen.
(Your instructor may choose to cover only one, then any refer-
ence to “derivations” and “derivability” will mean whatever sys-
tem they chose.) The semantic notion of consequence and the
syntactic notion of derivability give us two completely different
ways to make precise the idea that a sentence may follow from
some others. The soundness and completeness theorems link
these two characterization. In particular, we will prove Godel’s
completeness theorem, which states that whenever a sentence is
a semantic consequence of some others, then it is also derivable
from them. An equivalent formulation is: if a collection of sen-
tences is consistent—in the sense that nothing contradictory can
be proved from them—then there is a structure that makes all of
them true.

The second formulation of the completeness theorem is per-
haps the more surprising. Around the time Go6del proved this
result (in 1929), the German mathematician David Hilbert fa-
mously held the view that consistency (i.e., freedom from con-
tradiction) is all that mathematical existence requires. In other
words, whenever a mathematician can coherently describe a
structure or class of structures, then they should be entitled to be-
lieve in the existence of such structures. At the time, many found
this idea preposterous: just because you can describe a struc-
ture without contradicting yourself, it surely does not follow that
such a structure actually exists. But that is exactly what Godel’s
completeness theorem says. In addition to this paradoxical—
and certainly philosophically intriguing—aspect, the complete-
ness theorem also has two important applications which allow us
to prove further results about the existence of structures which
make given sentences true. These are the compactness and the
Lowenheim-Skolem theorems.



In part III, we connect logic with computability. Again, there
is a historical connection: David Hilbert had posed as a funda-
mental problem of logic to find a mechanical method which would
decide, of a given sentence of logic, whether it has a proof. Such
a method exists, of course, for propositional logic: one just has
to check all truth tables, and since there are only finitely many
of them, the method eventually yields a correct answer. Such a
straightforward method is not possible for first-order logic, since
the number of possible structures is infinite (and structures them-
selves may be infinite). Logicians were working to find a more
ingenious methods for years. Alonzo Church and Alan Turing
eventually established that there is no such method. In order to
do this, it was necessary to first provide a precise definition of
what a mechanical method is in general. If a decision procedure
had been proposed, presumably it would have been recognized
as an effective method. To prove that no effective method exists,
you have to define “effective method” first and give an impossi-
bility proof on the basis of that definition. This is what Turing
did: he proposed the idea of a Turing machine' as a mathemati-
cal model of what a mechanical procedure can, in principle, do.
This is another example of a conceptual analysis of an informal
concept using mathematical machinery; and it is perhaps of the
same order of importance for computer science as Cantor’s anal-
ysis of infinity is for mathematics. Our last major undertaking
will be the proof of two impossibility theorems: we will show that
the so-called “halting problem” cannot be solved by Turing ma-
chines, and finally that Hilbert’s “decision problem” (for logic)
also cannot.

This text is mathematical, in the sense that we discuss math-
ematical definitions and prove our results mathematically. But it
is not mathematical in the sense that you need extensive math-
ematical background knowledge. Nothing in this text requires
knowledge of algebra, trigonometry, or calculus. We have made
a special effort to also not require any familiarity with the way

1Turing of course did not call it that himself.



mathematics works: in fact, part of the point is to develop the kinds
of reasoning and proof skills required to understand and prove
our results. The organization of the text follows mathematical
convention, for one reason: these conventions have been devel-
oped because clarity and precision are especially important, and
so, e.g., it is critical to know when something is asserted as the
conclusion of an argument, is offered as a reason for something
else, or is intended to introduce new vocabulary. So we follow
mathematical convention and label passages as “definitions” if
they are used to introduce new terminology or symbols; and as
“theorems,” “propositions,” “lemmas,” or “corollaries” when we
record a result or finding. Other than these conventions, we will
use the methods of logical proof that may already be familiar
from a first logic course, and we will also make extensive use
of the method of induction to prove results. Two chapters of the
appendix are devoted to these proof methods.

Notes for instructors The material in this book is suitable for
a semesterlong second course in formal logic. I cover it in 12
weeks in Logic II taught at the University of Calgary, although I
don’t cover everything in as much detail as there is in this book.
For instance, I typically only talk about natural deduction, and
leave out detailed proofs of completeness for identity. Students
have taken Logic I, typically taught from forall x: Calgary, which
uses the same natural deduction rules, except in Fitch format.

The most recent version of this book is available in PDF at
slc.openlogicproject.org, but changes frequently. The CC BY li-
cense gives you the right to download and distribute the book
yourself. In order to ensure that all your students have the same
version of the book throughout the term you’re using it, you
should do so: upload the PDF you decide to use to your LMS
rather than merely give your students the link. You are also free
to have the PDF’s printed by your bookstore, but some bookstores
will be able to purchase and stock the softcover books available
on Amazon.


https://forallx.openlogicproject.org
https://slc.openlogicproject.org

The syntax, semantics, and proof systems for first-order logic
are supported by Graham Leach-Krouses’s free, online logic
teaching software application Carnap (carnap.io). This allows
for submission and automated marking of exercises such as natu-
ral deduction and sequent calculus derivations, giving structures
for simple theories, and symbolization exercises. There is also a
Turing machine simulator at turing.openlogicproject.org that can
be used to illustrate the material in part III. The examples there
are available pre-loaded in the simulator.


https://carnap.io
https://turing.openlogicproject.org

Georg Cantor
1845 - 1918
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CHAPTER 1

1.1 Extensionality

A set is a collection of objects, considered as a single object. The
objects making up the set are called elements or members of the
set. If x is an element of a set a, we write x € a; if not, we write
x ¢ a. The set which has no elements is called the empty set and
denoted “0”.

It does not matter how we specify the set, or how we order
its elements, or indeed how many times we count its elements.
All that matters are what its elements are. We codify this in the
following principle.

Definition 1.1 (Extensionality). If 4 and B are sets, then 4 =
B iff every element of 4 is also an element of B, and vice versa.

Extensionality licenses some notation. In general, when we
have some objects ay, ..., a,, then {a1,...,a,} is the set whose
elements are aj,...,a,. We emphasise the word “¢ke”, since ex-
tensionality tells us that there can be only one such set. Indeed,
extensionality also licenses the following:

{a,a,b} = {a,b} = {b,a}.



This delivers on the point that, when we consider sets, we don’t
care about the order of their elements, or how many times they
are specified.

Example 1.2. Whenever you have a bunch of objects, you can
collect them together in a set. The set of Richard’s siblings, for
instance, is a set that contains one person, and we could write it as
S = {Ruth}. The set of positive integers less than 4 is {1,2, 3}, but
it can also be written as {3,2,1} or even as {1,2,1,2,3}. These are
all the same set, by extensionality. For every element of {1,2,3}
is also an element of {3,2,1} (and of {1,2,1,2,3}), and vice versa.

Frequently we’ll specify a set by some property that its ele-
ments share. We’ll use the following shorthand notation for that:
{x : ¢(x)}, where the ¢(x) stands for the property that x has to
have in order to be counted among the elements of the set.

Example 1.3. In our example, we could have specified S also as
§ = {x : x is a sibling of Richard}.

Example 1.4. A number is called perfect iff it is equal to the sum
of its proper divisors (i.e., numbers that evenly divide it but aren’t
identical to the number). For instance, 6 is perfect because its
proper divisors are 1, 2, and 3, and 6 = 1+ 2 + 3. In fact, 6 is
the only positive integer less than 10 that is perfect. So, using
extensionality, we can say:

{6} = {x : x is perfect and 0 < x < 10}

We read the notation on the right as “the set of x’s such that x
is perfect and 0 < x < 10”. The identity here confirms that,
when we consider sets, we don’t care about how they are spec-
ified. And, more generally, extensionality guarantees that there
is always only one set of x’s such that ¢(x). So, extensionality
justifies calling {x : ¢(x)} the set of x’s such that ¢(x).

Extensionality gives us a way for showing that sets are iden-
tical: to show that 4 = B, show that whenever x € A then also
x € B, and whenever y € B then also y € 4.



1.2 Subsets and Power Sets

We will often want to compare sets. And one obvious kind of
comparison one might make is as follows: everything in one set is
in the other too. This situation is sufficiently important for us to
introduce some new notation.

Definition 1.5 (Subset). If every element of a set 4 is also an el-
ement of B, then we say that 4 is a subset of B, and write 4 C B.
If A is not a subset of B we write A £ B. If A C Bbut A # B, we
write 4 C B and say that A4 is a proper subset of B.

Example 1.6. Every set is a subset of itself, and 0 is a subset of
every set. The set of even numbers is a subset of the set of natural
numbers. Also, {a,b} C {a,b,c}. But {a,b,e} is not a subset of
{a,b,c}.

Example 1.7. The number 2 is an element of the set of integers,
whereas the set of even numbers is a subset of the set of integers.
However, a set may happen to both be an element and a subset
of some other set, e.g., {0} € {0,{0}} and also {0} C {0,{0}}.

Extensionality gives a criterion of identity for sets: 4 = B
iff every element of A4 is also an element of B and vice versa.
The definition of “subset” defines A C B precisely as the first
half of this criterion: every element of 4 is also an element of B.
Of course the definition also applies if we switch 4 and B: that
is, B € A iff every element of B is also an element of 4. And
that, in turn, is exactly the “vice versa” part of extensionality. In
other words, extensionality entails that sets are equal iff they are

subsets of one another.

Proposition 1.8. A =B iff both A C B and B C A.

Now is also a good opportunity to introduce some further
bits of helpful notation. In defining when 4 is a subset of B
we said that “every element of 4 is ...,” and filled the “...” with



“an element of B”. But this is such a common shape of expression
that it will be helpful to introduce some formal notation for it.

Definition 1.9. (Vx € A)y abbreviates Vx(x € 4— ¢). Similarly,
(3x € A)p abbreviates Ax(x € A A @).

Using this notation, we can say that 4 C B iff (Vx € A)x € B.
Now we move on to considering a certain kind of set: the set
of all subsets of a given set.

Definition 1.10 (Power Set). The set consisting of all subsets
of a set 4 is called the power set of A, written p(4).

o(A) = {B: B C 4}

Example 1.11. What are all the possible subsets of {a,b,c}?
They are: 0, {a}, {b}, {c}, {a.b}, {a.c}, {b,c}, {a.b,c}. The
set of all these subsets is p({a,b,c}):

p({a.b,c}) = {0.{a}.{b}.{c}.{a.b}.{b.c}.{a.c}.{a.b.c}}

1.3 Some Important Sets

Example 1.12. We will mostly be dealing with sets whose ele-
ments are mathematical objects. Four such sets are important
enough to have specific names:

N =1{0,1,2,3,...}
the set of natural numbers
z=A...,-2,-1,0,1,2,...}
the set of integers
Q={m/n:m,n € Z and n # 0}
the set of rationals
R = (~00,00)

the set of real numbers (the continuum)



These are all infinite sets, that is, they each have infinitely many
elements.

As we move through these sets, we are adding more numbers
to our stock. Indeed, it should be clear that N C Z C Q C R:
after all, every natural number is an integer; every integer is a
rational; and every rational is a real. Equally, it should be clear
that N C Z ¢ Q, since —1 is an integer but not a natural number,
and 1/2 is rational but not integer. It is less obvious that Q ¢ R,
i.e., that there are some real numbers which are not rational.

We’ll sometimes also use the set of positive integers Z* =
{1,2,3,...} and the set containing just the first two natural num-
bers B = {0,1}.

Example 1.13 (Strings). Another interesting example is the set
A* of finite strings over an alphabet A: any finite sequence of
elements of 4 is a string over A. We include the empty string A
among the strings over A4, for every alphabet 4. For instance,

B* = {A,0,1,00,01,10,11,
000,001,010,011,100,101,110,111,0000,. . .}.

If x = x1...x, € A"is a string consisting of n “letters” from 4,
then we say length of the string is » and write len(x) = n.

Example 1.14 (Infinite sequences). For any set 4 we may also
consider the set A“ of infinite sequences of elements of 4. An
infinite sequence ajagagas ... consists of a one-way infinite list of
objects, each one of which is an element of 4.

1.4 Unions and Intersections

In section 1.1, we introduced definitions of sets by abstraction,
i.e., definitions of the form {x : ¢(x)}. Here, we invoke some
property ¢, and this property can mention sets we’ve already
defined. So for instance, if 4 and B are sets, the set {x : x €
AVx € B} consists of all those objects which are elements of either
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The union 4 U B of two sets is set of elements of 4 together with
those of B.

A or B, i.e., it’s the set that combines the elements of 4 and B.
We can visualize this as in Figure 1.1, where the highlighted area
indicates the elements of the two sets 4 and B together.

This operation on sets—combining them—is very useful and
common, and so we give it a formal name and a symbol.

Definition 1.15 (Union). The union of two sets 4 and B, writ-
ten 4 U B, is the set of all things which are elements of 4, B, or
both.

AUB={x:x€ AV xeB}

Example 1.16. Since the multiplicity of elements doesn’t mat-
ter, the union of two sets which have an element in common con-
tains that element only once, e.g., {a,b,c¢}U{a,0,1} = {a,b,¢,0,1}.
The union of a set and one of its subsets is just the bigger set:
{a,b,c} U{a} ={a,b,c}.
The union of a set with the empty set is identical to the set:
{a,b,c} V0 =1{a,b,c}.

We can also consider a “dual” operation to union. This is the
operation that forms the set of all elements that are elements of 4
and are also elements of B. This operation is called intersection,
and can be depicted as in Figure 1.2.



The intersection 4N B of two sets is the set of elements they have in
common.

Definition 1.17 (Intersection). The intersection of two sets A
and B, written 4 N B, is the set of all things which are elements
of both 4 and B.

ANB={x:x€ AANx € B}

Two sets are called disjoint if their intersection is empty. This
means they have no elements in common.

Example 1.18. If two sets have no elements in common, their
intersection is empty: {a,b,¢} N {0,1} = 0.

If two sets do have elements in common, their intersection is
the set of all those: {a,b,c} N {a,b,d} = {a,b}.

The intersection of a set with one of its subsets is just the
smaller set: {a,b,c} N{a,b} = {a,b}.

The intersection of any set with the empty set is empty:

{a,b,c} N0 =0.

We can also form the union or intersection of more than two
sets. An elegant way of dealing with this in general is the follow-
ing: suppose you collect all the sets you want to form the union
(or intersection) of into a single set. Then we can define the union
of all our original sets as the set of all objects which belong to at



least one element of the set, and the intersection as the set of all
objects which belong to every element of the set.

Definition 1.19. If 4 is a set of sets, then |J 4 is the set of ele-
ments of elements of 4:

UA = {x : x belongs to an element of 4}, i.e,,
= {x : there is a B € 4 so that x € B}

Definition 1.20. If 4 is a set of sets, then (] 4 is the set of objects
which all elements of 4 have in common:

ﬂA = {x : x belongs to every element of 4}, i.e.,

={x:forall Be A,x € B}

Example 1.21. Suppose 4 = {{a.b},{a.d,e}.{a,d}}. Then
UAd=1{a,b,d,e} and A4 ={a}.

We could also do the same for a sequence of sets A4;, 4o, ...

UA,- = {x : x belongs to one of the 4;}
mA,- = {x : x belongs to every 4;}.

When we have an index of sets, i.e., some set 7 such that
we are considering A; for each i € I, we may also use these

= Jidi:ien}

iel

(ai=(){di:ien}

iel

abbreviations:

Finally, we may want to think about the set of all elements
in A which are not in B. We can depict this as in Figure 1.3.



The difference 4 \ B of two sets is the set of those elements of 4
which are not also elements of B.

Definition 1.22 (Difference). The set difference A\ B is the set
of all elements of A4 which are not also elements of B, i.e.,

A\B={x:x€ Aand x ¢ B}.

1.5 Pairs, Tuples, Cartesian Products

It follows from extensionality that sets have no order to their
elements. So if we want to represent order, we use ordered pairs
(x,9). In an unordered pair {x,y}, the order does not matter:
{x,9} = {y,x}. In an ordered pair, it does: if x # y, then (x,y) #
(9,%).

How should we think about ordered pairs in set theory? Cru-
cially, we want to preserve the idea that ordered pairs are iden-
tical iff they share the same first element and share the same
second element, i.e.:

(a,b) = {c,d) iff both a =cand b =d.

We can define ordered pairs in set theory using the Wiener
Kuratowski definition.



Definition 1.23 (Ordered pair). (a,b) = {{a},{a,b}}.

Having fixed a definition of an ordered pair, we can use it
to define further sets. For example, sometimes we also want or-
dered sequences of more than two objects, e.g., triples (x,y,2),
quadruples (x,y,z,u), and so on. We can think of triples as spe-
cial ordered pairs, where the first element is itself an ordered pair:
(x,9,2) is {({(x,9),2z). The same is true for quadruples: (x,y,z,u)
is ({({(x,),2),u), and so on. In general, we talk of ordered n-tuples
(X1, .., %p).

Certain sets of ordered pairs, or other ordered n-tuples, will
be useful.

Definition 1.24 (Cartesian product). Given sets 4 and B,
their Cartesian product A x B is defined by

AXB={(x,y9):x € Aand y € B}.

Example 1.25. If 4 = {0,1}, and B = {1,4,b}, then their prod-

uct is
Ax B =1{(0,1),(0,a),{0,b),{(1,1),{1,a),{1,b)}.

Example 1.26. If 4 is a set, the product of 4 with itself, 4 x 4,
is also written A2. It is the set of all pairs (x,y) with x,y € 4. The
set of all triples (x,7,2) is 4%, and so on. We can give a recursive
definition:

Al =4
A = 4% % 4

Proposition 1.27. If A has n elements and B has m elements, then
AX B has n - m elements.



Proof. For every element x in 4, there are m elements of the form
(x,y) € AX B. Let By = {{x,y) : y € B}. Since whenever x1 # xg,
(x1,9) # (x2,9), By, N By, = 0. But if 4 = {x1,...,x,}, then
AXB=B, U---UB,,and so has n - m elements.

To visualize this, arrange the elements of 4 X B in a grid:

By = {(x1.p1) (x1.2) oo (X1,0m)}
By, = {{x2.91) (x2,92) ... (x2,ym)}
Bo = ((tay1) (imyn) - {Faymd)

Since the x; are all different, and the y; are all different, no two of
the pairs in this grid are the same, and there are n - m of them.O

Example 1.28. If 4 is a set, a word over 4 is any sequence of
elements of 4. A sequence can be thought of as an n-tuple of ele-
ments of 4. For instance, if 4 = {a,b,c}, then the sequence “bac”
can be thought of as the triple (4,a,c). Words, i.e., sequences of
symbols, are of crucial importance in computer science. By con-
vention, we count elements of 4 as sequences of length 1, and 0
as the sequence of length 0. The set of all words over A4 then is

A ={0}uduAudu...

1.6 Russell’s Paradox

Extensionality licenses the notation {x : ¢(x)}, for the set of x’s
such that ¢(x). However, all that extensionality really licenses is
the following thought. If there is a set whose members are all
and only the ¢’s, then there is only one such set. Otherwise put:
having fixed some ¢, the set {x : ¢(x)} is unique, if it exists.

But this conditional is important! Crucially, not every prop-
erty lends itself to comprehension. That is, some properties do not
define sets. If they all did, then we would run into outright contra-
dictions. The most famous example of this is Russell’s Paradox.



Sets may be elements of other sets—for instance, the power
set of a set 4 is made up of sets. And so it makes sense to ask or
investigate whether a set is an element of another set. Can a set
be a member of itself? Nothing about the idea of a set seems to
rule this out. For instance, if all sets form a collection of objects,
one might think that they can be collected into a single set—the
set of all sets. And it, being a set, would be an element of the set
of all sets.

Russell’s Paradox arises when we consider the property of not
having itself as an element, of being non-self-membered. What if we
suppose that there is a set of all sets that do not have themselves
as an element? Does

R={x:x¢x}
exist? It turns out that we can prove that it does not.

Theorem 1.29 (Russell’s Paradox). Thereisnoset R ={x:x ¢

X}

Proof. For reductio, suppose that R = {x : x ¢ x} exists. Then R €
Riff R ¢ R, since sets are extensional. But this is a contradicion.o

Let’s run through the proof that no set R of non-self-
membered sets can exist more slowly. If R exists, it makes sense
to ask if R € R or not—it must be either € R or ¢ R. Suppose
the former is true, i.e., R € R. R was defined as the set of all
sets that are not elements of themselves, and so if R € R, then R
does not have this defining property of R. But only sets that have
this property are in R, hence, R cannot be an element of R, i.e.,
R ¢ R. But R can’t both be and not be an element of R, so we
have a contradiction.

Since the assumption that R € R leads to a contradiction, we
have R ¢ R. But this also leads to a contradiction! Forif R ¢ R, it
does have the defining property of R, and so would be an element
of R just like all the other non-self-membered sets. And again, it
can’t both not be and be an element of R.



How do we set up a set theory which avoids falling into Rus-
sell’s Paradox, i.e., which avoids making the inconsistent claim that
R = {x: x ¢ x} exists? Well, we would need to lay down axioms
which give us very precise conditions for stating when sets exist
(and when they don’t).

The set theory sketched in this chapter doesn’t do this. It’s
genuinely naive. It tells you only that sets obey extensionality and
that, if you have some sets, you can form their union, intersection,
etc. It is possible to develop set theory more rigorously than
this.

Summary

A set is a collection of objects, the elements of the set. We write
x € Aif x is an element of 4. Sets are extensional—they are
completely determined by their elements. Sets are specified by
listing the elements explicitly or by giving a property the ele-
ments share (abstraction). Extensionality means that the order
or way of listing or specifying the elements of a set doesn’t mat-
ter. To prove that 4 and B are the same set (4 = B) one has to
prove that every element of X is an element of ¥ and vice versa.

Important sets include the natural (N), integer (Z), rational
(Q), and real (R) numbers, but also strings (X*) and infinite
sequences (X“) of objects. 4 is a subset of B, 4 C B, if every
element of A4 is also one of B. The collection of all subsets of
a set B is itself a set, the power set ¢(B) of B. We can form
the union 4 U B and intersection 4 N B of sets. An ordered
pair (x,y) consists of two objects x and y, but in that specific
order. The pairs (x, y) and (y,x) are different pairs (unless x = ).
The set of all pairs (x,y) where x € 4 and y € B is called the
Cartesian product 4 x B of 4 and B. We write 42 for 4 X 4; so
for instance N? is the set of pairs of natural numbers.



Problems

Problem 1.1. Prove that there is at most one empty set, i.e.,
show that if 4 and B are sets without elements, then 4 = B.

Problem 1.2. List all subsets of {a,b,c¢,d}.

Problem 1.3. Show that if 4 has n elements, then ¢(A4) has 2"
elements.

Problem 1.4. Prove that if 4 C B, then AU B = B.

Problem 1.5. Prove rigorously that if 4 C B, then AN B = A.
Problem 1.6. Show that if 4 is a set and 4 € B, then 4 C |J B.
Problem 1.7. Prove that if 4 ¢ B, then B\ 4 # 0.

Problem 1.8. Using Definition 1.23, prove that (a,b) = (¢, d) iff
both a =¢ and b =d.

Problem 1.9. List all elements of {1,2,3}5.

Problem 1.10. Show, by induction on £, that for all £ > 1, if 4
has n elements, then 4* has n* elements.



CHAPTER 2

2.1 Relations as Sets

In section 1.3, we mentioned some important sets: N, Z, Q, R.
You will no doubt remember some interesting relations between
the elements of some of these sets. For instance, each of these sets
has a completely standard order relation on it. There is also the
relation is identical with that every object bears to itself and to no
other thing. There are many more interesting relations that we’ll
encounter, and even more possible relations. Before we review
them, though, we will start by pointing out that we can look at
relations as a special sort of set.

For this, recall two things from section 1.5. First, recall the
notion of a ordered pair: given a and b, we can form (a,b). Im-
portantly, the order of elements does matter here. So if a # &
then (a,b) # (b,a). (Contrast this with unordered pairs, i.e., 2-
element sets, where {a,b} = {b,a}.) Second, recall the notion of
a Cartesian product: if A and B are sets, then we can form 4 X B,
the set of all pairs (x,y) with x € 4 and y € B. In particular,
A% = A x A is the set of all ordered pairs from 4.

Now we will consider a particular relation on a set: the <-
relation on the set N of natural numbers. Consider the set of all
pairs of numbers (n,m) where n < m, i.e.,

R={(n,m):n,meN and n < m}.
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There is a close connection between n being less than m, and the
pair (n,m) being a member of R, namely:

n < miff (n,m) € R.

Indeed, without any loss of information, we can consider the set
R to be the <-relation on N.

In the same way we can construct a subset of N? for any rela-
tion between numbers. Conversely, given any set of pairs of num-
bers § C N2, there is a corresponding relation between numbers,
namely, the relationship z bears to m if and only if (z,m) € S.
This justifies the following definition:

Definition 2.1 (Binary relation). A binary relation on a set A is
a subset of 42. If R C A% is a binary relation on 4 and x,y € 4,
we sometimes write Rxy (or xRy) for (x,y) € R.

Example 2.2. The set N? of pairs of natural numbers can be
listed in a 2-dimensional matrix like this:

(0,0) (0,1) (0,2) <0,3)
(LO)y (L) (L2) (1,3
(2,00 (2,1) (2,2) (2,3)
(3,00 (3.1) (3,2) (3,3)

We have put the diagonal, here, in bold, since the subset of N2
consisting of the pairs lying on the diagonal, i.e.,

{€0,0),(1,1),¢2,2),...},

is the identity relation on N. (Since the identity relation is popular,
let’s define Id4 = {{(x,x) : x € X} for any set A.) The subset of
all pairs lying above the diagonal, i.e.,

L={(0,1),(0,2),...,(1,2),{1,3),...,(2,3),(2,4),. ..},



is the less than relation, i.e., Lnm iff n < m. The subset of pairs
below the diagonal, i.e.,

G ={(1,0),¢(2,0),(2,1),¢(3,0),(3,1),(3,2),... },

is the greater than relation, i.e., Gnm iff > m. The union of L
with 7, which we might call K = L U I, is the less than or equal to
relation: Knm iff n < m. Similarly, H = G U I is the greater than
or equal to relation. These relations L, G, K, and H are special
kinds of relations called orders. L and G have the property that
no number bears L or G to itself (i.e., for all n, neither Lzn nor
Gnn). Relations with this property are called irreflexive, and, if
they also happen to be orders, they are called strict orders.

Although orders and identity are important and natural re-
lations, it should be emphasized that according to our defini-
tion any subset of A% is a relation on 4, regardless of how un-
natural or contrived it seems. In particular, 0 is a relation on
any set (the empty relation, which no pair of elements bears),
and A4? itself is a relation on 4 as well (one which every pair
bears), called the universal relation. But also something like
E={(n,m):n>5o0rmxn >34} counts as a relation.

2.2 Special Properties of Relations

Some kinds of relations turn out to be so common that they have
been given special names. For instance, < and C both relate their
respective domains (say, N in the case of < and ¢(4) in the case
of C) in similar ways. To get at exactly how these relations are
similar, and how they differ, we categorize them according to
some special properties that relations can have. It turns out that
(combinations of) some of these special properties are especially
important: orders and equivalence relations.



Definition 2.3 (Reflexivity). A relation R C 42 is reflexive iff,
for every x € 4, Rxx.

Definition 2.4 (Transitivity). A relation R C A2 is transitive iff,
whenever Rxy and Ryz, then also Rxz.

Definition 2.5 (Symmetry). A relation R C 42 is symmetric iff,
whenever Rxy, then also Ryx.

Definition 2.6 (Anti-symmetry). A relation R C 42 is anti-sym-
metric iff, whenever both Rxy and Ryx, then x = y (or, in other
words: if x # y then either -Rxy or =Ryx).

In a symmetric relation, Rxy and Ryx always hold together,
or neither holds. In an anti-symmetric relation, the only way for
Rxy and Ryx to hold together is if x = y. Note that this does not
require that Rxy and Ryx holds when x = y, only that it isn’t ruled
out. So an anti-symmetric relation can be reflexive, but it is not
the case that every anti-symmetric relation is reflexive. Also note
that being anti-symmetric and merely not being symmetric are
different conditions. In fact, a relation can be both symmetric
and anti-symmetric at the same time (e.g., the identity relation
is).

Definition 2.7 (Connectivity). A relation R C A? is connected
if for all x,y € A, if x # y, then either Rxy or Ryx.

Definition 2.8 (Irreflexivity). A relation R C 42 is called ir
reflexive if, for all x € 4, not Rxx.



Definition 2.9 (Asymmetry). A relation R C A is called asym-
metric if for no pair x,y € 4 we have both Rxy and Ryx.

Note that if 4 # 0, then no irreflexive relation on A4 is reflex-
ive and every asymmetric relation on 4 is also anti-symmetric.
However, there are R C A2 that are not reflexive and also not
irreflexive, and there are anti-symmetric relations that are not
asymmetric.

2.3 Equivalence Relations

The identity relation on a set is reflexive, symmetric, and transi-
tive. Relations R that have all three of these properties are very
common.

Definition 2.10 (Equivalence relation). A relation R C 42
that is reflexive, symmetric, and transitive is called an equivalence
relation. Elements x and y of A are said to be R-equivalent if Rxy.

Equivalence relations give rise to the notion of an equivalence
class. An equivalence relation “chunks up” the domain into differ-
ent partitions. Within each partition, all the objects are related
to one another; and no objects from different partitions relate
to one another. Sometimes, it’s helpful just to talk about these
partitions directly. To that end, we introduce a definition:

Definition 2.11. Let R C 4? be an equivalence relation. For
each x € A, the equivalence class of x in A is the set [x]p = {y €
A : Rxy}. The quotient of A under R is A/r= {[x]r : x € 4}, i.e,,
the set of these equivalence classes.

The next result vindicates the definition of an equivalence
class, in proving that the equivalence classes are indeed the par-
titions of 4:



Proposition 2.12. If R C A% is an equivalence relation, then Rxy

iff [x]r = [y]r-

Proof. For the left-to-right direction, suppose Rxy, and let z €
[x]r. By definition, then, Rxz. Since R is an equivalence relation,
Ryz. (Spelling this out: as Rxy and R is symmetric we have
Ryx, and as Rxz and R is transitive we have Ryz.) So z € [y]r.
Generalising, [x]r C [y]r. But exactly similarly, [y]r € [x]&. So
[x]r = [y]r, by extensionality.

For the right-to-left direction, suppose [x]r = [y]r. Since R is
reflexive, Ryy, so y € [y]g. Thus also y € [x]r by the assumption
that [x]r = [y]r. So Rxy. O

Example 2.13. A nice example of equivalence relations comes
from modular arithmetic. For any a, 4, and n € N, say that
a =, b iff dividing a by n gives remainder 4. (Somewhat more
symbolically: a =, b iff (3k € N)a — b = kn.) Now, =, is an
equivalence relation, for any zn. And there are exactly n distinct
equivalence classes generated by =,; that is, N/= has n elements.
These are: the set of numbers divisible by n without remainder,
i.e., [0]=,; the set of numbers divisible by z with remainder 1, i.e.,
[1],; ...; and the set of numbers divisible by n with remainder
n-1,ie, [n-1]-,.

2.4 Orders

Many of our comparisons involve describing some objects as be-
ing “less than”, “equal to”, or “greater than” other objects, in a
certain respect. These involve order relations. But there are differ-
ent kinds of order relations. For instance, some require that any
two objects be comparable, others don’t. Some include identity
(like <) and some exclude it (like <). It will help us to have a

taxonomy here.



Definition 2.14 (Preorder). A relation which is both reflexive
and transitive is called a preorder.

Definition 2.15 (Partial order). A preorder which is also anti-
symmetric is called a partial order.

Definition 2.16 (Linear order). A partial order which is also
connected is called a total order or linear order.

Example 2.17. Every linear order is also a partial order, and
every partial order is also a preorder, but the converses don’t
hold. The universal relation on 4 is a preorder, since it is reflexive
and transitive. But, if 4 has more than one element, the universal
relation is not anti-symmetric, and so not a partial order.

Example 2.18. Consider the no longer than relation < on B*: x <
y iff len(x) < len(y). This is a preorder (reflexive and transitive),
and even connected, but not a partial order, since it is not anti-
symmetric. For instance, 01 < 10 and 10 < 01, but 01 # 10.

Example 2.19. An important partial order is the relation C on a
set of sets. This is not in general a linear order, since if a # 4 and
we consider p({a,b}) = {0,{a},{b},{a,b}}, we see that {a} & {b}
and {a} # {b} and {6} ¢ {a}.

Example 2.20. The relation of divisibility without remainder gives
us a partial order which isn’t a linear order. For integers n, m, we
write n | m to mean n (evenly) divides m, i.e., iff there is some
integer £ so that m = kn. On N, this is a partial order, but not
a linear order: for instance, 2 1 3 and also 3 ¥ 2. Considered
as a relation on Z, divisibility is only a preorder since it is not
anti-symmetric: 1 | -1 and -1 | 1 but 1 # -1.



Definition 2.21 (Strict order). A strict order is a relation which
is irreflexive, asymmetric, and transitive.

Definition 2.22 (Strict linear order). A strict order which is
also connected is called a strict linear order.

Example 2.23. < is the linear order corresponding to the strict
linear order <. C is the partial order corresponding to the strict
order C.

Definition 2.24 (Total order). A strict order which is also con-
nected is called a total order. This is also sometimes called a strict
linear order.

Any strict order R on A can be turned into a partial order by
adding the diagonal Idy, i.e., adding all the pairs (x,x). (This
is called the reflexive closure of R.) Conversely, starting from a
partial order, one can get a strict order by removing Id4. These
next two results make this precise.

Proposition 2.25. If R is a strict order on A, then R* = R UIdy is
a partial order. Moreover, if R is total, then R* is a linear order.

Proof. Suppose R is a strict order, i.e., R C A and R is irreflexive,
asymmetric, and transitive. Let R* = R UId4. We have to show
that R is reflexive, antisymmetric, and transitive.

R* is clearly reflexive, since (x,x) € Id4 € R* for all x € 4.

To show R* is antisymmetric, suppose for reductio that R*xy
and R*yx but x # y. Since (x,y) € R UIdy, but (x,y) ¢ Idx, we
must have (x,y) € R, i.e., Rxy. Similarly, Ryx. But this contra-
dicts the assumption that R is asymmetric.

To establish transitivity, suppose that R*xy and R*yz. If both
(x,9) € R and (y,z) € R, then (x,z) € R since R is transitive.
Otherwise, either (x,y) € Idy, i.e., x = y, or (y,z) € Idy, i.e.,



y = z. In the first case, we have that R*yz by assumption, x = y,
hence R*xz. Similarly in the second case. In either case, R xz,
thus, R" is also transitive.

Concerning the “moreover” clause, suppose R is a total order,
i.e., that R is connected. So for all x # y, either Rxy or Ryx, i.e.,
either (x,y) € R or (y,x) € R. Since R C R*, this remains true of
R*, so R" is connected as well. O

Proposition 2.26. If R is a partial order on X, then R~ = R \ Idx
is a strict order. Moreover, if R is linear, then R~ is total.

Proof. This is left as an exercise. O

Example 2.27. < is the linear order corresponding to the total
order <. C is the partial order corresponding to the strict order <.

The following simple result which establishes that total orders
satisfy an extensionality-like property:

Proposition 2.28. If < totally orders A, then:
(Va,b € A)(Vx € A)(x <a<>x<b) > a=b)

Proof. Suppose (Vx € A)(x < a< x <b). If a < b, then a < aq,
contradicting the fact that < is irreflexive; so a ¢ 5. Exactly
similarly, b £ a. So a = b, as < is connected. o

2.5 Graphs

A graph is a diagram in which points—called “nodes” or “ver-
tices” (plural of “vertex”)—are connected by edges. Graphs are
a ubiquitous tool in discrete mathematics and in computer sci-
ence. They are incredibly useful for representing, and visualizing,
relationships and structures, from concrete things like networks
of various kinds to abstract structures such as the possible out-
comes of decisions. There are many different kinds of graphs in



the literature which differ, e.g., according to whether the edges
are directed or not, have labels or not, whether there can be edges
from a node to the same node, multiple edges between the same
nodes, etc. Directed graphs have a special connection to relations.

Definition 2.29 (Directed graph). A directed graph G = (V,E)
is a set of vertices V and a set of edges E C V2.

According to our definition, a graph just is a set together with
a relation on that set. Of course, when talking about graphs, it’s
only natural to expect that they are graphically represented: we
can draw a graph by connecting two vertices »; and vy by an
arrow iff (v1,v9) € E. The only difference between a relation by
itself and a graph is that a graph specifies the set of vertices, i.e., a
graph may have isolated vertices. The important point, however,
is that every relation R on a set X can be seen as a directed graph
(X,R), and conversely, a directed graph (V,E) can be seen as a
relation E C V2 with the set V explicitly specified.

Example 2.30. The graph (V,E) with IV = {1,2,3,4} and E =
{(1,1),(1,2),(1,3),(2,3)} looks like this:

?@



This is a different graph than (V’,E) with V' = {1,2,3}, which
looks like this:

2.6 Operations on Relations

It is often useful to modify or combine relations. In Proposi-
tion 2.25, we considered the union of relations, which is just the
union of two relations considered as sets of pairs. Similarly, in
Proposition 2.26, we considered the relative difference of rela-
tions. Here are some other operations we can perform on rela-
tions.

Definition 2.31. Let R, § be relations, and 4 be any set.

The inverse of R is R™1 = {(y,x) : (x,y) € R}.

The relative product of R and S is (R | S) = {{(x,2) : y(Rxy A
Syz)}.

The restriction of R to Ais R4 = R N A2.

The application of R to Ais R[A] = {y : (3x € A)Rxy}

Example 2.32. Let S C Z? be the successor relation on Z, i.e.,
S ={(x,9) €Z? : x +1 =y}, so that Sxy iff x +1 = y.

S~1 is the predecessor relation on Z, i.e., {{x,y) € Z? : x -1 =
I}

S| Sis {{(x,9) €Z?: x+2 =y}

S T is the successor relation on N.

S1{1,2,3}] is {2,3,4}.



Definition 2.33 (Transitive closure). Let R C 4% be a binary
relation.

The transitive closure of R is R* = | Jy< ey R", where we recur-
sively define R! = R and R""1 = R" | R.

The reflexive transitive closure of R is R* = R* U Idy.

Example 2.34. Take the successor relation § C Z2. S%xy iff x +
2=y, 8%xyiff x+3 =y, etc. So S*xy iff x + n = y for some n > 1.
In other words, $*xy iff x < y, and S*xy iff x < y.

Summary

A relation R on a set 4 is a way of relating elements of 4. We
write Rxy if the relation holds between x and y. Formally, we can
consider R as the sets of pairs (x,y) € 4% such that Rxy. Being
less than, greater than, equal to, evenly dividing, being the same
length as, a subset of, and the same size as are all important
examples of relations (on sets of numbers, strings, or of sets).
Graphs are a general way of visually representing relations. But
a graph can also be seen as a binary relation (the edge relation)
together with the underlying set of vertices.

Some relations share certain features which makes them espe-
cially interesting or useful. A relation R is reflexive if everything
is R-related to itself; symmetric, if with Rxy also Ryx holds for
any x and y; and transitive if Rxy and Ryz guarantees Rxz. Re-
lations that have all three of these properties are equivalence
relations. A relation is anti-symmetric if Rxy and Ryx guaran-
tees x = y. Partial orders are those relations that are reflexive,
anti-symmetric, and transitive. A linear order is any partial or-
der which satisfies that for any x and y, either Rxy or x = y or
Ryx. (Generally, a relation with this property is connected).

Since relations are sets (of pairs), they can be operated on as
sets (e.g., we can form the union and intersection of relations).
We can also chain them together (relative product R | S). If we



form the relative product of R with itself arbitrarily many times
we get the transitive closure R* of R.

Problems

Problem 2.1. List the elements of the relation € on the set

p({a.b.c}). )

Problem 2.2. Give examples of relations that are (a) reflex-
ive and symmetric but not transitive, (b) reflexive and anti-
symmetric, (c) anti-symmetric, transitive, but not reflexive, and
(d) reflexive, symmetric, and transitive. Do not use relations on
numbers or sets.

Problem 2.3. Show that =, is an equivalence relation, for any
n € N, and that N/= has exactly n members.

Problem 2.4. Give a proof of Proposition 2.26.

Problem 2.5. Consider the less-than-orequal-to relation < on
the set {1,2,3,4} as a graph and draw the corresponding dia-
gram.

Problem 2.6. Show that the transitive closure of R is in fact tran-
sitive.



CHAPTER 3

3.1 Basics

A function is a map which sends each element of a given set to a
specific element in some (other) given set. For instance, the op-
eration of adding 1 defines a function: each number 7 is mapped
to a unique number z + 1.

More generally, functions may take pairs, triples, etc., as in-
puts and returns some kind of output. Many functions are fa-
miliar to us from basic arithmetic. For instance, addition and
multiplication are functions. They take in two numbers and re-
turn a third.

In this mathematical, abstract sense, a function is a black box:
what matters is only what output is paired with what input, not
the method for calculating the output.

Definition 3.1 (Function). A function f: A — B is a mapping
of each element of 4 to an element of B.

We call 4 the domain of f and B the codomain of f. The
elements of 4 are called inputs or arguments of f, and the element
of B that is paired with an argument x by f is called the value
of f for argument x, written f(x).

The range ran(f) of f is the subset of the codomain consisting
of the values of f for some argument; ran(f) = {f(x) : x € 4}.

29
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A function is a mapping of each element of one set to an element of
another. An arrow points from an argument in the domain to the corresponding
value in the codomain.

The diagram in Figure 3.1 may help to think about functions.
The ellipse on the left represents the function’s domain; the el-
lipse on the right represents the function’s codomain; and an ar-
row points from an argument in the domain to the corresponding
value in the codomain.

Example 3.2. Multiplication takes pairs of natural numbers as
inputs and maps them to natural numbers as outputs, so goes
from N X N (the domain) to N (the codomain). As it turns out,
the range is also N, since every n € N is n X 1.

Example 3.3. Multiplication is a function because it pairs each
input—each pair of natural numbers—with a single output:
x: N2 — N. By contrast, the square root operation applied to
the domain N is not functional, since each positive integer n has
two square roots: yn and —\n. We can make it functional by
only returning the positive square root: V' : N — R.

Example 3.4. The relation that pairs each student in a class with
their final grade is a function—no student can get two different
final grades in the same class. The relation that pairs each student
in a class with their parents is not a function: students can have
zero, or two, or more parents.

We can define functions by specifying in some precise way
what the value of the function is for every possible argment. Dif-
ferent ways of doing this are by giving a formula, describing a



method for computing the value, or listing the values for each
argument. However functions are defined, we must make sure
that for each argment we specify one, and only one, value.

Example 3.5. Let f: N — N be defined such that f(x) = x + 1.
This is a definition that specifies f as a function which takes in
natural numbers and outputs natural numbers. It tells us that,
given a natural number x, f will output its successor ¥ + 1. In
this case, the codomain N is not the range of f, since the natural
number 0 is not the successor of any natural number. The range
of f is the set of all positive integers, Z*.

Example 3.6. Let g: N — N be defined such that g(x) = x+2-1.
This tells us that g is a function which takes in natural numbers
and outputs natural numbers. Given a natural number z, g will
output the predecessor of the successor of the successor of x, i.e.,
x+1.

We just considered two functions, f and g, with different def-
initions. However, these are the same function. After all, for any
natural number n, we have that f(n) =n+1=n+2-1= g(n).
Otherwise put: our definitions for f and g specify the same map-
ping by means of different equations. Implicitly, then, we are
relying upon a principle of extensionality for functions,

if Vx f(x) = g(x), then f =g
provided that f and g share the same domain and codomain.

Example 3.7. We can also define functions by cases. For in-
stance, we could define 4: N — N by

X if x is even
h(x) = {2
() {x—“ if x is odd.

Since every natural number is either even or odd, the output of
this function will always be a natural number. Just remember that
if you define a function by cases, every possible input must fall
into exactly one case. In some cases, this will require a proof that
the cases are exhaustive and exclusive.
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A surjective function has every element of the codomain as a value.

3.2 Kinds of Functions

It will be useful to introduce a kind of taxonomy for some of the
kinds of functions which we encounter most frequently.

To start, we might want to consider functions which have the
property that every member of the codomain is a value of the
function. Such functions are called surjective, and can be pic-
tured as in Figure 3.2.

Definition 3.8 (Surjective function). A function f: 4 — B is
surjective iff B is also the range of f, i.e., for every y € B there is
at least one x € 4 such that f(x) =y, or in symbols:

(Vy € B)(3x € A)f (%) = y.

We call such a function a surjection from 4 to B.

If you want to show that f is a surjection, then you need to
show that every object in f’s codomain is the value of f(x) for
some input x.

Note that any function induces a surjection. After all, given a
function f: A — B, let f’: A — ran(f) be defined by f'(x) =
f(x). Since ran(f) is defined as {f (x) € B : x € A}, this function
f’ is guaranteed to be a surjection

Now, any function maps each possible input to a unique out-
put. But there are also functions which never map different inputs
to the same outputs. Such functions are called injective, and can
be pictured as in Figure 3.3.
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An injective function never maps two different arguments to the
same value.

Definition 3.9 (Injective function). A function f: 4 — B is
injective iff for each y € B there is at most one x € A such
that f(x) = y. We call such a function an injection from 4 to B.

If you want to show that f is an injection, you need to show
that for any elements x and y of f’s domain, if f(x) = f(y), then

x=).

Example 3.10. The constant function f: N — N given by
f(x) =1 is neither injective, nor surjective.

The identity function f: N — N given by f(x) = «x is both
injective and surjective.

The successor function f: N — N given by f(x) = x +1 is
injective but not surjective.

The function f: N — N defined by:

£ if x is even
f(x) = {zﬂ

5 if x is odd.

is surjective, but not injective.

Often enough, we want to consider functions which are both
injective and surjective. We call such functions bijective. They
look like the function pictured in Figure 3.4. Bijections are also
sometimes called one-to-one correspondences, since they uniquely
pair elements of the codomain with elements of the domain.
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A bijective function uniquely pairs the elements of the codomain
with those of the domain.

Definition 3.11 (Bijection). A function f: 4 — B is bijective
iff it is both surjective and injective. We call such a function
a bijection from A4 to B (or between 4 and B).

3.3 Functions as Relations

A function which maps elements of 4 to elements of B obviously
defines a relation between 4 and B, namely the relation which
holds between x and y iff f(x) = y. In fact, we might even—if we
are interested in reducing the building blocks of mathematics for
instance—identify the function f with this relation, i.e., with a
set of pairs. This then raises the question: which relations define
functions in this way?

Definition 3.12 (Graph of a function). Let f: 4 — B be a
function. The graph of f is the relation Ry C A X B defined
by

Ry ={(xp): f(x) =y}

The graph of a function is uniquely determined, by extension-
ality. Moreover, extensionality (on sets) will immediate vindicate
the implicit principle of extensionality for functions, whereby if
f and g share a domain and codomain then they are identical if
they agree on all values.

Similarly, if a relation is “functional”, then it is the graph of
a function.



Proposition 3.13. Let R C A X B be such that:
7. If Rxy and Rxz then y = z; and
2. for every x € A there is some y € B such that (x,y) € R.

Then R is the graph of the function f: A — B defined by f (x) =y iff
Rxy.

Proof- Suppose there is a y such that Rxy. If there were another
z # y such that Rxz, the condition on R would be violated.
Hence, if there is a y such that Rxy, this y is unique, and so
f is well-defined. Obviously, Ry = R. o

Every function f: A — B has a graph, i.e., a relation on AxB
defined by f(x) = . On the other hand, every relation R € AX B
with the properties given in Proposition 3.13 is the graph of a
function f: A — B. Because of this close connection between
functions and their graphs, we can think of a function simply as
its graph. In other words, functions can be identified with certain
relations, i.e., with certain sets of tuples. We can now consider
performing similar operations on functions as we performed on
relations (see section 2.6). In particular:

Definition 3.14. Let f: 4 — B be a function with C C 4.

The restriction of f to C is the function f [¢: C — B defined
by (f1¢)(x) = f(x) for all x € C. In other words, f ¢ = {(x,y) €
Ry:xeC}.

The application of f to Cis f[C] = {f(x) : x € C}. We also
call this the image of C under f.

It follows from these definition that ran(f) = f[dom(f)],
for any function f. These notions are exactly as one would ex-
pect, given the definitions in section 2.6 and our identification of
functions with relations. But two other operations—inverses and
relative products—require a little more detail. We will provide
that in the section 3.4 and section 3.5.



3.4 Inverses of Functions

We think of functions as maps. An obvious question to ask about
functions, then, is whether the mapping can be “reversed.” For
instance, the successor function f(x) = x + 1 can be reversed, in
the sense that the function g(y) = y — 1 “undoes” what f does.

But we must be careful. Although the definition of g defines
a function Z — Z, it does not define a function N — N, since
£(0) ¢ N. So even in simple cases, it is not quite obvious whether
a function can be reversed; it may depend on the domain and
codomain.

This is made more precise by the notion of an inverse of a
function.

Definition 3.15. A function g: B — A is an inverse of a function

f:A—- Bif f(g(y)) =yand g(f(x)) =xforallx € Aand y € B.

If f has an inverse g, we often write f ! instead of g.
Now we will determine when functions have inverses. A good
candidate for an inverse of f: A — Bis g: B — A “defined by”

g(y) = “the” x such that f(x) = y.

But the scare quotes around “defined by” (and “the”) suggest
that this is not a definition. At least, it will not always work, with
complete generality. For, in order for this definition to specify a
function, there has to be one and only one x such that f(x) = y—
the output of g has to be uniquely specified. Moreover, it has to
be specified for every y € B. If there are x; and xy € 4 with
x1 # xg but f(x1) = f(x2), then g(y) would not be uniquely
specified for y = f(x1) = f(x2). And if there is no x at all such
that f(x) = y, then g(y) is not specified at all. In other words,
for g to be defined, f must be both injective and surjective.
Let’s go slowly. We’ll divide the question into two: Given a
function f: 4 — B, when is there a function g: B — 4 so that
g(f(x)) = x? Such a g “undoes” what f does, and is called a /left
inverse of f. Secondly, when is there a function £: B — 4 so that



f(h(y)) = »? Such an £ is called a right inverse of f—f “undoes”
what 4 does.

Proposition 3.16. If f: A — B is injective, then there is a left
inverse g: B — A of f so that g(f(x)) = x forall x € A.

Proof. Suppose that f: A — B is injective. Consider a y € B.
If y € ran(f), there is an x € 4 so that f(x) = y. Because f
is injective, there is only one such x € 4. Then we can define:
g(y) =x,ie., g(p)is “the” x € Asuchthat f(x) =y. If y ¢ ran(f),
we can map it to any a € A. So, we can pick an a € 4 and define

g: B — Aby:
_Jx i f) =y
g@)_{a if y ¢ ran(f).

It is defined for all y € B, since for each such y € ran(f) there is
exactly one x € 4 such that f(x) = y. By definition, if y = f(x),

then g(y) = x, i.e., g(f(x)) = x. O

Proposition 3.17. If f: A — B is surjective, then there is a right
inverse h: B — A of f so that f(h(y)) =y forally € B.

Proof- Suppose that f: A — B is surjective. Consider a y € B.
Since f is surjective, there is an x, € 4 with f(x,) = y. Then we
can define: A(y) = x,, i.e., for each y € B we choose some x € 4
so that f(x) = y; since f is surjective there is always at least one
to choose from." By definition, if x = 4(y), then f(x) =y, i.e., for

any y € B, f(h(y)) =y. m

If f is surjective, then for every y the set {x : f(x) = y} is nonempty. Our
definition of % requires that we choose a single x from each of these sets. That
this is always possible is actually not obvious—in axiomatic set theory, this is
simply assumed as an axiom. In other words, this proposition assumes the so-
called axiom of choice, an issue we will gloss over. In many specific cases, e.g.,
when 4 = N or is finite, or when f actually is bijective, the axiom of choice is
not required.




By combining the ideas in the previous proof, we now get
that every surjection has an inverse, i.e., there is a single function
which is both a left and right inverse of f.

Proposition 3.18. If f: A — B is bijective, there is a func-
tion f~1: B — A so that for all x € A, f~2(f(x)) = x and for

ally € B, f(f7' () =
Proof. Exercise. o

There is a slightly more general way to extract inverses. We
saw in section 3.2 that every function f induces a surjection
f’+ A4 — ran(f) by letting f'(x) = f(x) for all x € A. Clearly,
if f is injective, then f’ is bijective, so that it has a unique in-
verse by Proposition 3.18. By a very minor abuse of notation, we
sometimes call the inverse of f’ simply “the inverse of f.”

Proposition 3.19. Show that if f: A — B has a left inverse g and
a right inverse h, then h = g.

Proof. Exercise. o

Proposition 3.20. Every function f has at most one inverse.

Proof Suppose g and £ are both inverses of f. Then in particular
g is aleft inverse of f and £ is a right inverse. By Proposition 3.19,

3.5 Composition of Functions

We saw in section 3.4 that the inverse f 1 of a bijection f is itself
a function. Another operation on functions is composition: we
can define a new function by composing two functions, f and g,
i.e., by first applying f and then g. Of course, this is only possible
if the ranges and domains match, i.e., the range of f must be a
subset of the domain of g. This operation on functions is the



The composition g o f of two functions f and g.

analogue of the operation of relative product on relations from
section 2.6.

A diagram might help to explain the idea of composition. In
Figure 3.5, we depict two functions f: 4 — Band g: B —» C
and their composition (g o f). The function (go f): 4 — C
pairs each element of 4 with an element of C. We specify which
element of C an element of A4 is paired with as follows: given an
input x € 4, first apply the function f to x, which will output
some f(x) = y € B, then apply the function g to y, which will

output some g(f(x)) =g(y) =z € C.

Definition 3.21 (Composition). Let f: 4 - Band g: B — C
be functions. The composition of f with gis go f: A — C, where
(g0 f)(x) = g(f(x)).

Example 3.22. Consider the functions f(x) = x+1, and g(x) =
2x. Since (g o f)(x) = g(f(x)), for each input x you must first
take its successor, then multiply the result by two. So their com-
position is given by (g o f)(x) = 2(x +1).



3.6 Partial Functions

It is sometimes useful to relax the definition of function so that
it is not required that the output of the function is defined for all
possible inputs. Such mappings are called partial functions.

Definition 3.23. A partial function f: A + B is a mapping
which assigns to every element of 4 at most one element of B. If
f assigns an element of B to x € A, we say f(x) is defined, and
otherwise undefined. If f(x) is defined, we write f(x) |, other-
wise f(x) T. The domain of a partial function f is the subset of 4
where it is defined, i.e., dom(f) ={x € 4: f(x) |}.

Example 3.24. Every function f: 4 — B is also a partial func-
tion. Partial functions that are defined everywhere on 4—i.e.,
what we so far have simply called a function—are also called
total functions.

Example 3.25. The partial function f: R + R given by f(x) =
1/x is undefined for x = 0, and defined everywhere else.

Definition 3.26 (Graph of a partial function). Let f: 4 + B
be a partial function. The graph of f is the relation Ry C A X B
defined by

Ry ={{x,y): f(x) =y}

Proposition 3.27. Suppose R C AXB has the property that whenever
Rxy and Rxy’ then y = y’. Then R is the graph of the partial function
[+ X +» Y defined by: if there is a y such that Rxy, then f(x) =y,
otherwise f(x) T. If R is also serial, i.e, for each x € X there is a
y €Y such that Rxy, then f is total.

Proof Suppose there is a y such that Rxy. If there were another
y" # y such that Rxy’, the condition on R would be violated.
Hence, if there is a y such that Rxy, that y is unique, and so f is
well-defined. Obviously, Ry = R and f is total if R is serial. O



Summary

A function f: 4 — B maps every element of the domain 4 to a
unique element of the codomain B. If x € A4, we call the y that f
maps £ to the value f(x) of f for argument x. If 4 is a set of
pairs, we can think of the function f as taking two arguments.
The range ran(f) of f is the subset of B that consists of all the
values of f.

If ran(f) = B then f is called surjective. The value f(x) is
unique in that f maps x to only one f(x), never more than one.
If f(x) is also unique in the sense that no two different arguments
are mapped to the same value, f is called injective. Functions
which are both injective and surjective are called bijective.

Bijective functions have a unique inverse function f . Func-
tions can also be chained together: the function (g o f) is the
composition of f/ with g. Compositions of injective functions are
injective, and of surjective functions are surjective, and (1o f)
is the identity function.

If we relax the requirement that f must have a value for every
x € A, we get the notion of a partial functions. If f: 4 » B
is partial, we say f(x) is defined, f(x) | if f has a value for
argument x, and otherwise we say that f(x) is undefined, f(x) T.
Any (partial) function f is associated with the graph R of f,
the relation that holds iff f(x) = y.

Problems

Problem 3.1. Show that if f: A — B has a left inverse g, then
f is injective.

Problem 3.2. Show that if f: 4 — B has a right inverse 4, then
f is surjective.

Problem 3.3. Prove Proposition 3.18. You have to define f~1,
show that it is a function, and show that it is an inverse of f, i.e.,

f_l(f(x)) =x andf(f_l(y)) =yforallx € 4and y € B.



Problem 3.4. Prove Proposition 3.1q.

Problem 3.5. Show that if f: 4 — B and g: B — C are both
injective, then g o f: 4 — C is injective.

Problem 3.6. Show that if f: 4 — B and g: B — C are both
surjective, then g o f: 4 — C is surjective.

Problem 3.7. Suppose f: A — B and g: B — C. Show that the
graph of go f is Ry | R,.

Problem 3.8. Given f: A - B, define the partial function
g: B + A by: for any y € B, if there is a unique x € 4 such
that f(x) =y, then g(y) = x; otherwise g(y) T. Show that if f is

injective, then g(f(x)) = x for all x € dom(f), and f(g(y)) =y
for all y € ran(f).



CHAPTER 4

4.1 Introduction

When Georg Cantor developed set theory in the 1870s, one of his
aims was to make palatable the idea of an infinite collection—an
actual infinity, as the medievals would say. A key part of this was
his treatment of the size of different sets. If a, b and ¢ are all
distinct, then the set {a,b,c} is intuitively larger than {a,b}. But
what about infinite sets? Are they all as large as each other? It
turns out that they are not.

The first important idea here is that of an enumeration. We
can list every finite set by listing all its elements. For some infinite
sets, we can also list all their elements if we allow the list itself
to be infinite. Such sets are called countable. Cantor’s surprising
result, which we will fully understand by the end of this chapter,
was that some infinite sets are not countable.

4.2 Enumerations and Countable Sets

We’ve already given examples of sets by listing their elements.
Let’s discuss in more general terms how and when we can list the
elements of a set, even if that set is infinite.
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Definition 4.1 (Enumeration, informally). Informally, an
enumeration of a set A is a list (possibly infinite) of elements
of A such that every element of 4 appears on the list at some
finite position. If 4 has an enumeration, then 4 is said to be
countable.

A couple of points about enumerations:

1. We count as enumerations only lists which have a beginning
and in which every element other than the first has a single
element immediately preceding it. In other words, there
are only finitely many elements between the first element
of the list and any other element. In particular, this means
that every element of an enumeration has a finite position:
the first element has position 1, the second position 2, etc.

2. We can have different enumerations of the same set A which
differ by the order in which the elements appear: 4, 1, 25,
16, 9 enumerates the (set of the) first five square numbers
just as well as 1, 4, 9, 16, 25 does.

3. Redundant enumerations are still enumerations: 1, 1, 2, 2,
3, 3, ... enumerates the same set as 1, 2, 3, ... does.

4. Order and redundancy do matter when we specify an enu-
meration: we can enumerate the positive integers beginning
with 1, 2, 3, 1, ..., but the pattern is easier to see when enu-
merated in the standard way as 1, 2, 3, 4, ...

5. Enumerations must have a beginning: ..., 3, 2, 1 is not
an enumeration of the positive integers because it has no
first element. To see how this follows from the informal
definition, ask yourself, “at what position in the list does
the number 76 appear?”

6. The following is not an enumeration of the positive inte-
gers: 1,3, 5, ..., 2,4, 6, ... The problem is that the even



numbers occur at places co+1, 0o+ 2, co+ 3, rather than at
finite positions.

7. The empty set is enumerable: it is enumerated by the empty
list!

Proposition 4.2. If A has an enumeration, it has an enumeration
without repetitions.

Proof: Suppose 4 has an enumeration X1, X9, ... in which each
x; is an element of 4. We can remove repetitions from an enu-
meration by removing repeated elements. For instance, we can
turn the enumeration into a new one in which we list x; if it is
an element of 4 that is not among x, ..., x;-1 or remove x; from
the list if it already appears among x1, ..., ¥;_1. o

The last argument shows that in order to get a good handle
on enumerations and countable sets and to prove things about
them, we need a more precise definition. The following provides
it.

Definition 4.3 (Enumeration, formally). An enumeration of a
set 4 # 0 is any surjective function f: Z* — 4.

Let’s convince ourselves that the formal definition and the
informal definition using a possibly infinite list are equivalent.
First, any surjective function from Z* to a set 4 enumerates 4.
Such a function determines an enumeration as defined informally
above: the list (1), f(2), f(3), .... Since f is surjective, every
element of 4 is guaranteed to be the value of f(z) for some z €
Z*. Hence, every element of 4 appears at some finite position in
the list. Since the function may not be injective, the list may be
redundant, but that is acceptable (as noted above).

On the other hand, given a list that enumerates all elements
of A, we can define a surjective function f: Z* — A4 by letting
f(n) be the nth element of the list, or the final element of the



list if there is no nth element. The only case where this does not
produce a surjective function is when 4 is empty, and hence the
list is empty. So, every non-empty list determines a surjective
function f: Z* — A.

Definition 4.4. A set 4 is countable iff it is empty or has an
enumeration.

Example 4.5. A function enumerating the positive integers (Z*)
is simply the identity function given by f(n) = n. A function
enumerating the natural numbers N is the function g(n) = n —1.

Example 4.6. The functions f: Z* — Z* and g: Z* — Z* given
by

f(n) =2n and

g(n)=2n+1
enumerate the even positive integers and the odd positive inte-

gers, respectively. However, neither function is an enumeration
of Z*, since neither is surjective.

Example 4.7. The function f(n) = (—1)”[@] (where [x] de-
notes the ceiling function, which rounds x up to the nearest in-
teger) enumerates the set of integers Z. Notice how f generates
the values of Z by “hopping” back and forth between positive and
negative integers:

QO f@Q fB3 f@ f©6) f6) f(7)

S LIRS F TR I T

0 1 -1 2 -2 3
You can also think of f as defined by cases as follows:
0 ifn=1

f(n)=qn/2 if 7 is even
—(rn—-1)/2 if nis odd and > 1



Although it is perhaps more natural when listing the elements
of a set to start counting from the 1st element, mathematicians
like to use the natural numbers N for counting things. They talk
about the Oth, 1st, 2nd, and so on, elements of a list. Correspond-
ingly, we can define an enumeration as a surjective function from
N to 4. Of course, the two definitions are equivalent.

Proposition 4.8. There is a surjection f: Z" — A iff there is a sur-
Jection g: N — A.

Proof Given a surjection f: Z* — A, we can define g(n) = f(n+
1) for all » € N. It is easy to see that g: N — 4 is surjective.
Conversely, given a surjection g: N — 4, define f(n) = g(n+1).0

This gives us the following result:

Corollary 4.9. A set A is countable iff it is empty or there is a surjec-
tive function f: N — A.

We discussed above than an list of elements of a set 4 can
be turned into a list without repetitions. This is also true for
enumerations, but a bit harder to formulate and prove rigorously.
Any function f: Z* — A must be defined for all n € Z*. If there
are only finitely many elements in 4 then we clearly cannot have
a function defined on the infinitely many elements of Z* that
takes as values all the elements of 4 but never takes the same
value twice. In that case, i.e., in the case where the list without
repetitions is finite, we must choose a different domain for f, one
with only finitely many elements. Not having repetitions means
that f must be injective. Since it is also surjective, we are looking
for a bijection between some finite set {1,...,n} or Z* and 4.

Proposition 4.10. If f: Z* — A is surjective (i.e., an enumeration
of A), there is a bijection g: Z — A where Z is either Z* or {1,...,n}
for some n € Z*.



Proof: We define the function g recursively: Let g(1) = f(1). If
g(i) has already been defined, let g(i+1) be the first value of £ (1),
f(2), ... not already among g(1), ..., g(i), if there is one. If 4
has just n elements, then g(1), ..., g(n) are all defined, and so
we have defined a function g: {1,...,n} — A. If 4 has infinitely
many elements, then for any i there must be an element of 4
in the enumeration f (1), f(2), ..., which is not already among
g(1), ..., g(i). In this case we have defined a funtion g: Z* — 4.

The function g is surjective, since any element of 4 is among
f@), f(2), ... (since f is surjective) and so will eventually be
a value of g(i) for some i. It is also injective, since if there were
j < i such that g(j) = g(i), then g(i) would already be among
g(), ..., g(i —1), contrary to how we defined g. o

Corollary 4.11. A4 set A is countable iff it is empty or there is a bi-
jection f: N — A where either N = N or N = {0,...,n} for some
n € N.

Proof- A is countable iff 4 is empty or there is a surjective
f:Z" — A. By Proposition 4.10, the latter holds iff there is
a bijective function f: Z — 4 where Z =Z" or Z = {1,...,n}
for some n € Z*. By the same argument as in the proof of Propo-
sition 4.8, that in turn is the case iff there is a bijection g: N — 4
where either N =Nor N ={0,...,n —1}. O

4.3 Cantor’s Zig-Zag Method

We’ve already considered some “easy” enumerations. Now we
will consider something a bit harder. Consider the set of pairs of
natural numbers, which we defined in section 1.5 thus:

NxN={(n,m):nmeN}



We can organize these ordered pairs into an array, like so:

0 1 2 3
(0,0) | <0,1) | (0,2) | (0,3)
1,0y | (1,1) | (1,2) | (1,3)
(2,0) | (2,1) | (2,2) | (2,3)
(3,0) | (3,1) | (3,2) | (3,3)

WIN =IO

Clearly, every ordered pair in N X N will appear exactly once in
the array. In particular, (z, m) will appear in the nth row and mth
column. But how do we organize the elements of such an array
into a “one-dimensional” list? The pattern in the array below
demonstrates one way to do this (although of course there are
many other options):

012 |3 4
00|13 ] 610
112 4|7 |11
25| 8 |12
31913
4|14

This pattern is called Cantor’s zig-zag method. It enumerates N X N
as follows:

(0,0),¢0,1),(1,0).(0,2),(1,1).(2,0).€0,3),(1,2),(2,1),(3,0),. ..
And this establishes the following:
Proposition 4.12. N X N is countable.

Proof Let f: N — N X N take each £ € N to the tuple (n,m) €
N X N such that £ is the value of the nth row and mth column in
Cantor’s zig-zag array. o



This technique also generalises rather nicely. For example,
we can use it to enumerate the set of ordered triples of natural
numbers, i.e.:

NXNXxN={{(n,m,k):n,mk € N}

We think of N X N X N as the Cartesian product of N X N with N,
that is,

N® = (NXN) xN = {((n,m), k) : n,m, k € N}

and thus we can enumerate N3 with an array by labelling one axis
with the enumeration of N, and the other axis with the enumer-
ation of N%:

0 1 2 3

(0,0) | (0,0,0) | (0,0,1) | (0,0,2) | (0,0,3)
(0,1) | (0,1,0) | (0,1,1) | (0,1,2) | (0,1,3)
(1,0) | (1,0,0) | (1,0,1) | (1,0,2) | (1,0,3)
(0,2) | (0,2,0) | (0,2,1) | (0,2,2) | (0,2,3)

Thus, by using a method like Cantor’s zig-zag method, we may
similarly obtain an enumeration of N%. And we can keep going,
obtaining enumerations of N” for any natural number zn. So, we
have:

Proposition 4.13. N” is countable, for every n € N.

4.4 Pairing Functions and Codes

Cantor’s zig-zag method makes the enumerability of N” visually
evident. But let us focus on our array depicting N2. Following the
zig-zag line in the array and counting the places, we can check
that (1,2) is associated with the number 7. However, it would
be nice if we could compute this more directly. That is, it would



be nice to have to hand the inverse of the zig-zag enumeration,
g: N? - N, such that

£((0,0)) =0, g({0.1)) =1, g((1,0)) =2, ..., g((1,2)) =7, ...

This would enable to calculate exactly where (n,m) will occur in
our enumeration.

In fact, we can define g directly by making two observations.
First: if the nth row and mth column contains value v, then the
(n+1)st row and (m—1)st column contains value v+1. Second: the
first row of our enumeration consists of the triangular numbers,
starting with 0, 1, 3, 5, etc. The kth triangular number is the sum
of the natural numbers < &, which can be computed as £(k+1)/2.
Putting these two observations together, consider this function:

(n+m+1)(n+m)
2

g(n,m) =

We often just write g(n,m) rather that g((n,m)), since it is easier
on the eyes. This tells you first to determine the (n+m)" triangle
number, and then subtract z from it. And it populates the array
in exactly the way we would like. So in particular, the pair (1,2)
is sent to %(—3+1=7.

This function g is the inverse of an enumeration of a set of

pairs. Such functions are called pairing functions.

Definition 4.14 (Pairing function). A function f: AXB — N
is an arithmetical pairing function if f is injective. We also say
that f encodes A X B, and that f(x,y) is the code for (x,y).

We can use pairing functions encode, e.g., pairs of natural
numbers; or, in other words, we can represent each pair of el-
ements using a single number. Using the inverse of the pairing
function, we can decode the number, i.e., find out which pair it
represents.



4-5 An Alternative Pairing Function

There are other enumerations of N? that make it easier to figure
out what their inverses are. Here is one. Instead of visualizing
the enumeration in an array, start with the list of positive inte-
gers associated with (initially) empty spaces. Imagine filling these
spaces successively with pairs (n,m) as follow. Starting with the
pairs that have 0 in the first place (i.e., pairs (0,m)), put the first
(i.e., (0,0)) in the first empty place, then skip an empty space, put
the second (i.e., (0,2)) in the next empty place, skip one again,
and so forth. The (incomplete) beginning of our enumeration
now looks like this

1 2 3 4 5 6 7 8 9 10
(0,1) (0,2) (0,3) 0,4) 0,5)

Repeat this with pairs (1,m) for the place that still remain empty,
again skipping every other empty place:

1 2 3 4 5 6 7 8 9 10
(0,0) (1,0) (0,1) 0,2) (1,1) (0,3) 0,4) (1,2)

Enter pairs (2,m), (2,m), etc., in the same way. Our completed
enumeration thus starts like this:

1 2 3 4 5 6 7 8 9 10
(0,0) (1,0) <0,1) (2,0) <(0,2) (1,1) <(0,3) (3,0) (0,4) (1,2)

If we number the cells in the array above according to this enu-
meration, we will not find a neat zig-zag line, but this arrange-



ment:

012 |3 |45
o135 ]7]9 |11
12| 6 10|14 |18
2|4 |12 |20 28
3| 8|24 40
4|16 | 48
5132

We can see that the pairs in row 0 are in the odd numbered places
of our enumeration, i.e., pair (0,m) is in place 2m + 1; pairs in
the second row, (1,m), are in places whose number is the double
of an odd number, specifically, 2 - (2m +1); pairs in the third row,
(2,my), are in places whose number is four times an odd number,
4-(2m+1); and so on. The factors of (2m+1) for each row, 1, 2, 4,
8, ..., are exactly the powers of 2: 1 = 2009 =91 4=9% 8=23
... In fact, the relevant exponent is always the first member of
the pair in question. Thus, for pair (z,m) the factor is 2”. This
gives us the general formula: 2" - (2m + 1). However, this is a
mapping of pairs to positive integers, i.e., (0,0) has position 1. If
we want to begin at position 0 we must subtract 1 from the result.
This gives us:

Example 4.15. The function 4: N? — N given by
h(n,m)=2"2m+1) -1
is a pairing function for the set of pairs of natural numbers N2,

Accordingly, in our second enumeration of N, the pair (0,0)
has code £(0,0) =2°(2-0+1) -1 =0; (1,2) has code 21 - (2-2+
1)-1=2-5-1=09; (2,6) has code 2% - (2-6+1) -1 = 51.

Sometimes it is enough to encode pairs of natural numbers N?
without requiring that the encoding is surjective. Such encodings
have inverses that are only partial functions.



Example 4.16. The function j: N> — N* given by
j(n,m) =2"3™

is an injective function N2 — N,

4.6 Uncountable Sets

Some sets, such as the set Z* of positive integers, are infinite.
So far we’ve seen examples of infinite sets which were all count-
able. However, there are also infinite sets which do not have this
property. Such sets are called uncountable.

First of all, it is perhaps already surprising that there are un-
countable sets. For any countable set 4 there is a surjective func-
tion f: Z* — A. If a set is uncountable there is no such function.
That is, no function mapping the infinitely many elements of Z*
to 4 can exhaust all of 4. So there are “more” elements of 4 than
the infinitely many positive integers.

How would one prove that a set is uncountable? You have to
show that no such surjective function can exist. Equivalently, you
have to show that the elements of 4 cannot be enumerated in a
one way infinite list. The best way to do this is to show that every
list of elements of A must leave at least one element out; or that
no function f: Z* — A4 can be surjective. We can do this using
Cantor’s diagonal method. Given a list of elements of 4, say, x1, x9,
..., we construct another element of 4 which, by its construction,
cannot possibly be on that list.

Our first example is the set B® of all infinite, non-gappy se-
quences of 0’s and 1’s.

Theorem 4.17. B® is uncountable.

Proof. Suppose, by way of contradiction, that B“ is countable,
i.e., suppose that there is a list s1, s9, §3, $4, ... of all elements
of B®. Each of these s; is itself an infinite sequence of 0’s and 1’s.



Let’s call the j-th element of the i-th sequence in this list s;(j).
Then the i-th sequence s; is

si(l),si(2),s,-(3), e

We may arrange this list, and the elements of each sequence
s; in it, in an array:

1 2 3 4
s1(1) | 51(2) | 51(3) | s1(4)
52(1) | 52(2) | 52(3) | s2(4)
s3(1) | 53(2) | s3(3) | s3(4)
s4(1) | 54(2) | 54(3) | s4(4)

NN FIC NCY

The labels down the side give the number of the sequence in the
list 51, 59, ...; the numbers across the top label the elements of the
individual sequences. For instance, s1(1) is a name for whatever
number, a 0 or a 1, is the first element in the sequence s1, and so
on.

Now we construct an infinite sequence, s, of 0’s and 1’s which
cannot possibly be on this list. The definition of s will depend on
the list s1, 9, .... Any infinite list of infinite sequences of 0’s and
1’s gives rise to an infinite sequence s which is guaranteed to not
appear on the list.

To define 5, we specify what all its elements are, i.e., we spec-
ify s(n) for all n € Z*. We do this by reading down the diagonal
of the array above (hence the name “diagonal method”) and then
changing every 1 to a 0 and every O to a 1. More abstractly, we
define s5(z) to be 0 or 1 according to whether the n-th element of
the diagonal, s,(n), is 1 or 0.

$(n) = 1 ifs,(n)=0
= 0 if s,(n)=1.

If you like formulas better than definitions by cases, you could
also define 5(n) =1 — s, (n).



Clearly s is an infinite sequence of 0’s and 1’s, since it is just
the mirror sequence to the sequence of 0’s and 1’s that appear on
the diagonal of our array. So s is an element of B“. But it cannot
be on the list 51, s9, ... Why not?

It can’t be the first sequence in the list, 51, because it differs
from s; in the first element. Whatever s;(1) is, we defined (1)
to be the opposite. It can’t be the second sequence in the list,
because s differs from so in the second element: if s9(2) is 0, 5(2)
is 1, and vice versa. And so on.

More precisely: if s were on the list, there would be some £
so that s = s;. Two sequences are identical iff they agree at every
place, i.e., for any #, 5(n) = sz(n). So in particular, taking n = £
as a special case, s(k) = sz (k) would have to hold. s (k) is either
0 or 1. If it is O then 5(£) must be 1—that’s how we defined 5. But
if sz (k) = 1 then, again because of the way we defined s, 5(£) = 0.
In either case s(k) # sp (k).

We started by assuming that there is a list of elements of B,
$1, §2, ... From this list we constructed a sequence s which we
proved cannot be on the list. But it definitely is a sequence of
0’s and 1’s if all the s; are sequences of 0’s and 1’s, i.e., s € B®.
This shows in particular that there can be no list of all elements
of B“, since for any such list we could also construct a sequence s
guaranteed to not be on the list, so the assumption that there is
a list of all sequences in B“ leads to a contradiction. O

This proof method is called “diagonalization” because it uses
the diagonal of the array to define 5. Diagonalization need not
involve the presence of an array: we can show that sets are not
countable by using a similar idea even when no array and no
actual diagonal is involved.

Theorem 4.18. ©(Z") is not countable.

Proof. We proceed in the same way, by showing that for every list
of subsets of Z* there is a subset of Z" which cannot be on the



list. Suppose the following is a given list of subsets of Z*:
71,729,273, ..
We now define a set Z such that for anyn € Z", n € Ziffng AR
Z={neZ :n¢Z) o

Z is clearly a set of positive integers, since by assumption each Z,
is, and thus Z € ¢(Z*). But Z cannot be on the list. To show
this, we’ll establish that for each k € Z*, Z # Z;.

So let k£ € Z* be arbitrary. We’ve defined Z so that for any
neZ neZifng¢ Z, In particular, taking n = k, £ € Z
iff £ ¢ Z;. But this shows that Z # Z, since k is an element of
one but not the other, and so Z and Z; have different elements.
Since k£ was arbitrary, Z is not on the list Z;, Z, ...

The preceding proof did not mention a diagonal, but you
can think of it as involving a diagonal if you picture it this way:
Imagine the sets Z1, Zy, ..., written in an array, where each ele-
ment j € Z; is listed in the j-th column. Say the first four sets on
that list are {1,2,3,...}, {2,4,6,...}, {1,2,5}, and {3,4,5,...}.
Then the array would begin with

Zi={1, 2, 3, 4 5 6, ..}
Zy={ 2 4, 6, ...}
Z3={1, 2, 5 }

Zy = 3, 4, 5, 6,

Then Z is the set obtained by going down the diagonal, leav-
ing out any numbers that appear along the diagonal and include
those j where the array has a gap in the j-th row/column. In the
above case, we would leave out 1 and 2, include 3, leave out 4,
etc.



4.7 Reduction

We showed ¢(Z*) to be uncountable by a diagonalization argu-
ment. We already had a proof that B“, the set of all infinite
sequences of Os and 1s, is uncountable. Here’s another way we
can prove that ¢(Z*) is uncountable: Show that if 9(Z") is count-
able then B is also countable. Since we know B® is not countable,
9(Z*) can’t be either. This is called reducing one problem to
another—in this case, we reduce the problem of enumerating B¢
to the problem of enumerating ¢(Z*). A solution to the latter—an
enumeration of p(Z*)—would yield a solution to the former—an
enumeration of B%.

How do we reduce the problem of enumerating a set B to
that of enumerating a set 4?7 We provide a way of turning an
enumeration of 4 into an enumeration of B. The easiest way to
do that is to define a surjective function f: 4 — B. If x1, x9, ...
enumerates 4, then f(x1), f(x2), ... would enumerate B. In our
case, we are looking for a surjective function f: p(Z*) — B“.

Proof of Theorem 4.18 by reduction. Suppose that @(Z") were
countable, and thus that there is an enumeration of it, Zj,
Zo, Zs, ...

Define the function f: 9(Z*) — B by letting f(Z) be the
sequence s; such that sz(n) = 1 iff » € Z, and sz(n) = 0 other-
wise. This clearly defines a function, since whenever Z C Z*, any
n € Z* either is an element of Z or isn’t. For instance, the set
2Z* = {2,4,6,...} of positive even numbers gets mapped to the
sequence 010101 ..., the empty set gets mapped to 0000... and
the set Z* itself to 1111....

It also is surjective: Every sequence of Os and 1s corresponds
to some set of positive integers, namely the one which has as its
members those integers corresponding to the places where the
sequence has 1s. More precisely, suppose s € B“. Define Z C Z*
by:

Z={neZ :s(n)=1}



Then f(Z) = s, as can be verified by consulting the definition
of f.

Now consider the list

1 (21).f(Z), f(Z3),. ..

Since f is surjective, every member of B“ must appear as a value
of f for some argument, and so must appear on the list. This list
must therefore enumerate all of B“.

So if 9(Z*) were countable, B would be countable. But B“
is uncountable (Theorem 4.17). Hence ¢(Z*) is uncountable. O

It is easy to be confused about the direction the reduction
goes in. For instance, a surjective function g: B® — B does not
establish that B is uncountable. (Consider g: BY — B defined
by g(s) = s(1), the function that maps a sequence of 0’s and 1’s
to its first element. It is surjective, because some sequences start
with 0 and some start with 1. But B is finite.) Note also that the
function f must be surjective, or otherwise the argument does
not go through: f(x1), f(x2), ... would then not be guaranteed
to include all the elements of B. For instance,

h(n) = 000...0
N —’
n0’s

defines a function £: Z* — B%, but Z* is countable.

4.8 Equinumerosity

We have an intuitive notion of “size” of sets, which works fine for
finite sets. But what about infinite sets? If we want to come up
with a formal way of comparing the sizes of two sets of any size,
it is a good idea to start by defining when sets are the same size.
Here is Frege:

If a waiter wants to be sure that he has laid exactly as
many knives as plates on the table, he does not need



to count either of them, if he simply lays a knife to the
right of each plate, so that every knife on the table lies
to the right of some plate. The plates and knives are
thus uniquely correlated to each other, and indeed
through that same spatial relationship. (Irege, 1884,

§70)

The insight of this passage can be brought out through a formal
definition:

Definition 4.19. A4 is equinumerous with B, written 4 = B, iff
there is a bijection f: 4 — B.

Proposition 4.20. Equinumerosity is an equivalence relation.

Proof: We must show that equinumerosity is reflexive, symmetric,
and transitive. Let 4, B, and C be sets.

Reflexivity. The identity map Id4: 4 — A, where Idg(x) = x
for all x € 4, is a bijection. So 4 ~ 4.

Symmetry. Suppose A ~ B, i.e., there is a bijection f: 4 — B.
Since f is bijective, its inverse f~! exists and is also bijective.
Hence, f~1: B — A is a bijection, so B ~ A.

Transitivity. Suppose that A ~ B and B =~ C, i.e., there are
bijections f: 4 — B and g: B — C. Then the composition
go f:A— C is bijective, so that 4 ~ C. |

Proposition 4.21. If A ~ B, then A is countable if and only if B is.

Proof- Suppose A ~ B, so there is some bijection f: 4 — B,
and suppose that 4 is countable. Then either 4 = ( or there
is a surjective function g: Z* — 4. If 4 = 0, then B = 0 also
(otherwise there would be an element y € B but no x € 4 with
g(x) = ). If, on the other hand, g: Z* — A4 is surjective, then
go f:Z" — B is surjective. To see this, let y € B. Since g



is surjective, there is an x € A such that g(x) = y. Since f is
surjective, there is an n € Z* such that f(n) = x. Hence,

(gof)(n)=g(f(n)=g(x)=y

and thus go f is surjective. We have that g o f is an enumeration
of B, and so B is countable.

If B is countable, we obtain that 4 is countable by repeating
the argument with the bijection f~1: B — 4 instead of f. |

4-9 Sets of Different Sizes, and Cantor’s
Theorem

We have offered a precise statement of the idea that two sets have
the same size. We can also offer a precise statement of the idea
that one set is smaller than another. Our definition of “is smaller
than (or equinumerous)” will require, instead of a bijection be-
tween the sets, an injection from the first set to the second. If
such a function exists, the size of the first set is less than or equal
to the size of the second. Intuitively, an injection from one set
to another guarantees that the range of the function has at least
as many elements as the domain, since no two elements of the
domain map to the same element of the range.

Definition 4.22. A4 is no larger than B, written A < B, iff there is
an injection f: 4 — B.

It is clear that this is a reflexive and transitive relation, but
that it is not symmetric (this is left as an exercise). We can also
introduce a notion, which states that one set is (strictly) smaller
than another.

Definition 4.23. A4 is smaller than B, written 4 < B, iff there is
an injection f: A — B but no bijection g: 4 — B, ie., A < B
and 4 # B.



It is clear that this is relation is anti-reflexive and transitive.
(This is left as an exercise.) Using this notation, we can say that a
set A is countable iff 4 < N, and that A4 is uncountable iff N < 4.
This allows us to restate Theorem 4.18 as the observation that
Z* < 9(Z"). In fact, Cantor (1892) proved that this last point is
perfectly general:

Theorem 4.24 (Cantor). 4 < ¢(A), for any set A.

Proof. The map f(x) = {x} is an injection f: A — ¢(4), since if
x # 9, then also {x} # {y} by extensionality, and so f(x) # f ().
So we have that 4 < p(4).

We show that there cannot be a surjective function g: 4 —
9(A4), let alone a bijective one, and hence that 4 # p(4). For sup-
pose that g: 4 — p(A4). Since g is total, every x € 4 is mapped
to a subset g(x) € A. We show that g cannot be surjective. To
do this, we define a subset 4 C A which by definition cannot be
in the range of g. Let

Zz{xeA:xeg(x)}.

Since g(x) is defined for all x € 4, 4 is clearly a well-defined
subset of A. But, it cannot be in the range of g. Let x € 4 be
arbitrary, we show that A+ g(x). If x € g(x), then it does not
satisfy ¥ ¢ g(x), and so by the definition of 4, we have x ¢ A
If x € A4, it must satisfy the defining property of 4, ie, x € 4
and x ¢ g(x). Since x was arbitrary, this shows that for each
x€d xe g(x) iff x ¢ 4, and so g(x) # A. In other words, 4

cannot be in the range of g, contradicting the assumption that g
is surjective. o

It’s instructive to compare the proof of Theorem 4.24 to that
of Theorem 4.18. There we showed that for any list Z;, Zy, ..., of
subsets of Z* one can construct a set Z of numbers guaranteed
not to be on the list. It was guaranteed not to be on the list
because, for every n € Z*, n € Z, iff n ¢ Z. This way, there is
always some number that is an element of one of Z, or Z but not



the other. We follow the same idea here, except the indices n are
now elements of 4 instead of Z*. The set B is defined so that it
is different from g(x) for each x € 4, because x € g(x) iff x ¢ B.
Again, there is always an element of 4 which is an element of one
of g(x) and B but not the other. And just as Z therefore cannot
be on the list Z;, Zy, ..., B cannot be in the range of g.

The proof is also worth comparing with the proof of Russell’s
Paradox, Theorem 1.29. Indeed, Cantor’s Theorem was the in-
spiration for Russell’s own paradox.

4.10 The Notion of Size, and
Schréder-Bernstein

Here is an intuitive thought: if 4 is no larger than B and B is no
larger than 4, then 4 and B are equinumerous. To be honest, if
this thought were wrong, then we could scarcely justify the thought
that our defined notion of equinumerosity has anything to do
with comparisons of “sizes” between sets! Fortunately, though,
the intuitive thought is correct. This is justified by the Schroder-
Bernstein Theorem.

Theorem 4.25 (Schréoder-Bernstein). [f4 < B and B < A, then
A= B.

In other words, if there is an injection from A4 to B, and an in-
jection from B to A, then there is a bijection from 4 to B.

This result, however, is really rather difficult to prove. Indeed,
although Cantor stated the result, others proved it." For now, you
can (and must) take it on trust.

Fortunately, Schréoder-Bernstein is correct, and it vindicates our
thinking of the relations we defined, i.e., 4 * Band 4 < B, as hav-
ing something to do with “size”. Moreover, Schréder-Bernstein is
very useful. It can be difficult to think of a bijection between two
equinumerous sets. The Schroder-Bernstein Theorem allows us

1For more on the history, see e.g., Potter (2004, pp. 165-6).



to break the comparison down into cases so we only have to think
of an injection from the first to the second, and vice-versa.

Summary

The size of a set 4 can be measured by a natural number if the set
is finite, and sizes can be compared by comparing these numbers.
If sets are infinite, things are more complicated. The first level of
infinity is that of countably infinite sets. A set 4 is countable
if its elements can be arranged in an enumeration, a one-way
infinite list, i.e., when there is a surjective function f: Z* — 4. It
is countably infinite if it is countable but not finite. Cantor’s zig-
zag method shows that the sets of pairs of elements of countably
infinite sets is also countable; and this can be used to show that
even the set of rational numbers Q is countable.

There are, however, infinite sets that are not countable: these
sets are called uncountable. There are two ways of showing that
a set is uncountable: directly, using a diagonal argument, or
by reduction. To give a diagonal argument, we assume that the
set 4 in question is countable, and use a hypothetical enumera-
tion to define an element of 4 which, by the very way we define
it, is guaranteed to be different from every element in the enu-
meration. So the enumeration can’t be an enumeration of all
of A after all, and we’ve shown that no enumeration of 4 can
exist. A reduction shows that 4 is uncountable by associating
every element of 4 with an element of some known uncountable
set B in a surjective way. If this is possible, than a hypothetical
enumeration of 4 would yield an enumeration of B. Since B is
uncountable, no enumeration of 4 can exist.

In general, infinite sets can be compared sizewise: 4 and
B are the same size, or equinumerous, if there is a bijection
between them. We can also define that 4 is no larger than B
(4 < B) if there is an injective function from 4 to B. By the
Schroder-Bernstein Theorem, this in fact provides a sizewise or-
der of infinite sets. Finally, Cantor’s theorem says that for any



A, A < p(A4). This is a generalization of our result that p(Z*) is
uncountable, and shows that there are not just two, but infinitely
many levels of infinity.

Problems

Problem 4.1. Define an enumeration of the positive squares 1,
4,9, 16, ...

Problem 4.2. Show that if 4 and B are countable, so is 4 U B.
To do this, suppose there are surjective functions f: Z* — 4
and g: Z* — B, and define a surjective function 4: Z* - AU B
and prove that it is surjective. Also consider the cases where 4
or B=0.

Problem 4.3. Show that if B C 4 and 4 is countable, so is B. To
do this, suppose there is a surjective function f: Z* — A. Define

a surjective function g: Z* — B and prove that it is surjective.
What happens if B = 0?

Problem 4.4. Show by induction on =z that if 4;, Ay, ..., 4, are
all countable, so is 41 U---U 4,. You may assume the fact that if
two sets 4 and B are countable, so is 4 U B.

Problem 4.5. According to Definition 4.4, a set 4 is enumerable
iff A =0 or there is a surjective f: Z* — A. It is also possible to
define “countable set” precisely by: a set is enumerable iff there
is an injective function g: 4 — Z*. Show that the definitions are
equivalent, i.e., show that there is an injective function g: 4 — Z*
iff either 4 = 0 or there is a surjective f: Z* — A.

Problem 4.6. Show that (Z*)" is countable, for every n € N.

Problem 4.7. Show that (Z*)* is countable. You may assume
problem 4.6.



Problem 4.8. Give an enumeration of the set of all non-negative
rational numbers.

Problem 4.9. Show that Q is countable. Recall that any rational
number can be written as a fraction z/m with z € Z, m € N*,

Problem 4.10. Define an enumeration of B*.

Problem 4.11. Recall from your introductory logic course that
each possible truth table expresses a truth function. In other
words, the truth functions are all functions from B¥ — B for
some k. Prove that the set of all truth functions is enumerable.

Problem 4.12. Show that the set of all finite subsets of an arbi-
trary infinite countable set is countable.

Problem 4.13. A subset of N is said to be cofinite iff it is the
complement of a finite set N; that is, 4 C N is cofinite iff N \ 4 is
finite. Let I be the set whose elements are exactly the finite and
cofinite subsets of N. Show that 7 is countable.

Problem 4.14. Show that the countable union of countable sets
is countable. That is, whenever A1, Ao, ... are sets, and each A4; is
countable, then the union J;2; 4; of all of them is also countable.
[NB: this is hard!]

Problem 4.15. Let f: AX B — N be an arbitrary pairing func-
tion. Show that the inverse of f is an enumeration of 4 X B.

Problem 4.16. Specify a function that encodes N°.

Problem 4.17. Show that p(N) is uncountable by a diagonal ar-
gument.

Problem 4.18. Show that the set of functions f: Z* — Z* is
uncountable by an explicit diagonal argument. That is, show
that if f1, fo, ..., is a list of functions and each f;: Z* — Z*, then

there is some f: Z* — Z" not on this list.



Problem 4.19. Show that if there is an injective function g: B —
4, and B is uncountable, then so is 4. Do this by showing how
you can use g to turn an enumeration of 4 into one of B.

Problem 4.20. Show that the set of all sets of pairs of positive
integers is uncountable by a reduction argument.

Problem 4.21. Show that the set X of all functions f: N — N
is uncountable by a reduction argument (Hint: give a surjective
function from X to B“.)

Problem 4.22. Show that N“, the set of infinite sequences of nat-
ural numbers, is uncountable by a reduction argument.

Problem 4.23. Let P be the set of functions from the set of posi-
tive integers to the set {0}, and let Q be the set of partial functions
from the set of positive integers to the set {0}. Show that P is
countable and Q is not. (Hint: reduce the problem of enumerat-
ing B“ to enumerating Q).

Problem 4.24. Let S be the set of all surjective functions from
the set of positive integers to the set {0,1}, i.e., § consists of all
surjective f: Z* — B. Show that S is uncountable.

Problem 4.25. Show that the set R of all real numbers is un-
countable.

Problem 4.26. Show that if 4 ~ C and B ~ D, and AN B =
CNnD=0,then AUB ~ CUD.

Problem 4.27. Show that if 4 is infinite and countable, then 4 ~
N.

Problem 4.28. Show that there cannot be an injection
g: 9(4A) — A, for any set A. Hint: Suppose g: p(4) — 4
is injective. Consider D = {g(B) : B € A and g(B) ¢ B}. Let
x = g(D). Use the fact that g is injective to derive a contradiction.
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PART I

First-order
Logic



CHAPTER 5

5.1 First-Order Logic

You are probably familiar with first-order logic from your first in-
troduction to formal logic." You may know it as “quantificational
logic” or “predicate logic.” First-order logic, first of all, is a for-
mal language. That means, it has a certain vocabulary, and its
expressions are strings from this vocabulary. But not every string
is permitted. There are different kinds of permitted expressions:
terms, formulas, and sentences. We are mainly interested in sen-
tences of first-order logic: they provide us with a formal analogue
of sentences of English, and about them we can ask the questions
a logician typically is interested in. For instance:

* Does B follow from A4 logically?

o Is A logically true, logically false, or contingent?

In fact, we more or less assume you are! If youre not, you could review a
more elementary textbook, such as forall x (Magnus et al., 2021).
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* Are 4 and B equivalent?

These questions are primarily questions about the “meaning”
of sentences of first-order logic. For instance, a philosopher would
analyze the question of whether B follows logically from 4 as ask-
ing: is there a case where 4 is true but B is false (B doesn’t follow
from A), or does every case that makes 4 true also make B true (B
does follow from 4)? But we haven’t been told yet what a “case”
is—that is the job of semantics. The semantics of first-order logic
provides a mathematically precise model of the philosopher’s in-
tuitive idea of “case,” and also—and this is important—of what
it is for a sentence A to be true in a case. We call the mathemati-
cally precise model that we will develop a structure. The relation
which makes “true in” precise, is called the relation of satisfac-
tion. So what we will define is “4 is satisfied in M” (in symbols:
M E A) for sentences 4 and structures M. Once this is done,
we can also give precise definitions of the other semantical terms
such as “follows from” or “is logically true.” These definitions
will make it possible to settle, again with mathematical precision,
whether, e.g., Vx (4A(x) — B(x)),3x A(x) £ 3x B(x). The answer
will, of course, be “yes.” If you’ve already been trained to sym-
bolize sentences of English in first-order logic, you will recognize
this as, e.g., the symbolizations of, say, “All ants are insects, there
are ants, therefore there are insects.” That is obviously a valid
argument, and so our mathematical model of “follows from” for
our formal language should give the same answer.

Another topic you probably remember from your first intro-
duction to formal logic is that there are derivations. If you have
taken a first formal logic course, your instructor will have made
you practice finding such derivations, perhaps even a derivation
that shows that the above entailment holds. There are many dif-
ferent ways to give derivations: you may have done something
called “natural deduction” or “truth trees,” but there are many
others. The purpose of derivation systems is to provide tools us-
ing which the logicians’ questions above can be answered: e.g.,
a natural deduction derivation in which Vx (4(x) — B(x)) and



Jx A(x) are premises and 3x B(x) is the conclusion (last line)
verifies that 3x B(x)] logically follows from Vx (4(x) — B(x)) and
dx A(x).

But why is that? On the face of it, derivation systems have
nothing to do with semantics: giving a formal derivation merely
involves arranging symbols in certain rule-governed ways; they
don’t mention “cases” or “true in” at all. The connection between
derivation systems and semantics has to be established by a meta-
logical investigation. What’s needed is a mathematical proof, e.g.,
that a formal derivation of 3x B(x) from premises Vx (4A(x) —
B(x)) and 3x A(x) is possible, if, and only if, Vx (4A(x) — B(x))
and Jx A(x) together entails 3x B(x). Before this can be done,
however, a lot of painstaking work has to be carried out to get
the definitions of syntax and semantics correct.

5.2 Syntax

We first must make precise what strings of symbols count as
sentences of first-order logic. We’ll do this later; for now
we’ll just proceed by example. The basic building blocks—the
vocabulary—of first-order logic divides into two parts. The first
part is the symbols we use to say specific things or to pick out spe-
cific things. We pick out things using constant symbols, and we
say stuff about the things we pick out using predicate symbols.
E.g, we might use a as a constant symbol to pick out a single
thing, and then say something about it using the sentence P(a).
If you have meanings for “a” and “P” in mind, you can read P(a)
as a sentence of English (and you probably have done so when
you first learned formal logic). Once you have such simple sen-
tences of first-order logic, you can build more complex ones using
the second part of the vocabulary: the logical symbols (connec-
tives and quantifiers). So, for instance, we can form expressions
like (P(a) A Q(b)) or Ix P(x).

In order to provide the precise definitions of semantics and
the rules of our derivation systems required for rigorous meta-



logical study, we first of all have to give a precise definition of
what counts as a sentence of first-order logic. The basic idea
is easy enough to understand: there are some simple sentences
we can form from just predicate symbols and constant symbols,
such as P(a). And then from these we form more complex ones
using the connectives and quantifiers. But what exactly are the
rules by which we are allowed to form more complex sentences?
These must be specified, otherwise we have not defined “sentence
of first-order logic” precisely enough. There are a few issues.
The first one is to get the right strings to count as sentences.
The second one is to do this in such a way that we can give
mathematical proofs about all sentences. Finally, we’ll have to
also give precise definitions of some rudimentary operations with
sentences, such as “replace every x in 4 by b.” The trouble is that
the quantifiers and variables we have in first-order logic make
it not entirely obvious how this should be done. E.g., should
dx P(a) count as a sentence? What about Ix 3x P(x)? What
should the result of “replace x by b in (P(x) A 3x P(x))” be?

5.3 Formulas

Here is the approach we will use to rigorously specify sentences
of first-order logic and to deal with the issues arising from the use
of variables. We first define a different set of expressions: formu-
las. Once we’ve done that, we can consider the role variables play
in them—and on the basis of some other ideas, namely those of
“free” and “bound” variables, we can define what a sentence is
(namely, a formula without free variables). We do this not just be-
cause it makes the definition of “sentence” more manageable, but
also because it will be crucial to the way we define the semantic
notion of satisfaction.

Let’s define “formula” for a simple first-order language, one
containing only a single predicate symbol P and a single con-
stant symbol a, and only the logical symbols =, A, and 3. Our
full definitions will be much more general: we’ll allow infinitely



many predicate symbols and constant symbols. In fact, we will
also consider function symbols which can be combined with con-
stant symbols and variables to form “terms.” For now, a and
the variables will be our only terms. We do need infinitely many
variables. We’ll officially use the symbols vy, v1, ..., as variables.

Definition 5.1. The set of formulas Frm is defined as follows:

-

. P(a) and P(v;) are formulas (i € N).

2. If A4 is a formula, then =4 is formula.

3. If 4 and B are formulas, then (4 A B) is a formula.

4. If Ais a formula and x is a variable, then 3x 4 is a formula.

5. Nothing else is a formula.

(1) tell us that P(a) and P(v;) are formulas, for any i € N.
These are the so-called atomic formulas. They give us something
to start from. The other clauses give us ways of forming new
formulas from ones we have already formed. So for instance, we
get that =P (vy) is a formula, since P(vy) is already a formula by
(1), and then we get that 3vy = (vy) is another formula, and so
on. (5) tells us that only strings we can form in this way count
as formulas. In particular, vy P(a) and vy vy P(a) do count as
formulas, and (=P(a)) does not.

This way of defining formulas is called an inductive definition,
and it allows us to prove things about formulas using a version of
proof by induction called structural induction. These are discussed
in a general way in appendix B.4 and appendix B.5, which you
should review before delving into the proofs later on. Basically,
the idea is that if you want to give a proof that something is
true for all formulas you show first that it is true for the atomic
formulas, and then that if it’s true for any formula 4 (and B),
it’s also true for -4, (4 A B), and 3x 4. For instance, this proves
that it’s true for v, =P(vy): from the first part you know that



it’s true for the atomic formula P(v2). Then you get that it’s true
for =P(vy) by the second part, and then again that it’s true for
Jvg =P (vy) itself. Since all formulas are inductively generated
from atomic formulas, this works for any of them.

5.4 Satisfaction

We can already skip ahead to the semantics of first-order logic
once we know what formulas are: here, the basic definition is that
of a structure. For our simple language, a structure M has just
three components: a non-empty set |[M| called the domain, what
a picks out in M, and what P is true of in M. The object picked
out by a is denoted a¥ and the set of things P is true of by PM.
A structure M consists of just these three things: |M]|, aM e M|
and PM C |M|. The general case will be more complicated, since
there will be many predicate symbols and constant symbols, the
constant symbols can have more than one place, and there will
also be function symbols.

This is enough to give a definition of satisfaction for formulas
that don’t contain variables. The idea is to give an inductive
definition that mirrors the way we have defined formulas. We
specify when an atomic formula is satisfied in M, and then when,
e.g., =4 is satisfied in M on the basis of whether or not 4 is
satisfied in M. E.g., we could define:

1. P(a) is satisfied in M iff M € PM,
2. =4 is satisfied in M iff 4 is not satisfied in M.

3. (4 A B) is satisfied in M iff 4 is satisfied in M, and B is
satisfied in M as well.

Let’s say that [M| = {0,1,2}, a¥ = 1, and PM = {1,2}. This
definition would tell us that P(a) is satisfied in M (since a¥ =
1 € {1,2} = PM). 1t tells us further that =P(a) is not satisfied
in M, and that in turn that =—=P(a) is and (=P(a) A P(a)) is not
satisfied, and so on.



The trouble comes when we want to give a definition for the
quantifiers: wed like to say something like, “Jvy P(v) is satisfied
iff P(vy) is satisfied.” But the structure M doesn’t tell us what to
do about variables. What we actually want to say is that P(v)
is satisfied for some value of vp. To make this precise we need a
way to assign elements of [M| not just to a but also to v. To this
end, we introduce variable assignments. A variable assignment is
simply a function s that maps variables to elements of |[M| (in our
example, to one of 1, 2, or 3). Since we don’t know beforehand
which variables might appear in a formula we can’t limit which
variables s assigns values to. The simple solution is to require
that s assigns values to all variables v, v, ... We’ll just use only
the ones we need.

Instead of defining satisfaction of formulas just relative to
a structure, we’ll define it relative to a structure M and a vari-
able assignment s, and write M,s £ A4 for short. Our definition
will now include an additional clause to deal with atomic formu-
las containing variables:

1. M,s e P(a) iff 3™ € PM.

2. M,s e P(v;) iff s(v;) € PM.

3. M,s £ =4 iff not M,s £ A.

4. M,sE (AAB)if M,s £ Aand M,s £ B.

Ok, this solves one problem: we can now say when M satis-
fies P(v) for the value s(vp). To get the definition right for
3vy P(vp) we have to do one more thing: We want to have that
M,s £ vy P(w) iff M,s” £ P(v) for some way s’ of assigning
a value to vy. But the value assigned to vy does not necessarily
have to be the value that s(vy) picks out. We’ll introduce a nota-
tion for that: if m € [M|, then we let s[m/v] be the assignment
that is just like s (for all variables other than v), except to v it
assigns m. Now our definition can be:

5 M,sE3v; Aiff M,s[m/v;] £ A for some m € |M]|.



Does it work out? Let’s say we let s(v;) = 0 for all i € N. M,s
vy P(vp) iff there is an m € |M]| so that M,s[m/w] £ P(v).
And there is: we can choose m = 1 or m = 2. Note that this
is true even if the value s(vy) assigned to vy by s itself—in this
case, 0—doesn’t do the job. We have M,s[1/v] £ P(v) but not
M,s e P(v).

If this looks confusing and cumbersome: it is. But the added
complexity is required to give a precise, inductive definition of
satisfaction for all formulas, and we need something like it to
precisely define the semantic notions. There are other ways of
doing it, but they are all equally (in)elegant.

5.5 Sentences

Ok, now we have a (sketch of a) definition of satisfaction (“true
in”) for structures and formulas. But it needs this additional bit—
a variable assignment—and what we wanted is a definition of
sentences. How do we get rid of assignments, and what are sen-
tences?

You probably remember a discussion in your first introduction
to formal logic about the relation between variables and quanti-
fiers. A quantifier is always followed by a variable, and then in the
part of the sentence to which that quantifier applies (its “scope”),
we understand that the variable is “bound” by that quantifier. In
formulas it was not required that every variable has a matching
quantifier, and variables without matching quantifiers are “free”
or “unbound.” We will take sentences to be all those formulas
that have no free variables.

Again, the intuitive idea of when an occurrence of a variable
in a formula A is bound, which quantifier binds it, and when it
is free, is not difficult to get. You may have learned a method for
testing this, perhaps involving counting parentheses. We have to
insist on a precise definition—and because we have defined for-
mulas by induction, we can give a definition of the free and bound



occurrences of a variable x in a formula 4 also by induction. E.g.,
it might look like this for our simplified language:

1. If 4 is atomic, all occurrences of x in it are free (that is, the
occurrence of x in P(x) is free).

2. If A is of the form —B, then an occurrence of x in =B is
free iff the corresponding occurrence of x is free in B (that
is, the free occurrences of variables in B are exactly the
corresponding occurrences in —B).

3. If Ais of the form (BAC), then an occurrence of x in (BAC)
is free iff the corresponding occurrence of x is free in B or
in C.

4. If Ais of the form 3x B, then no occurrence of x in 4 is free;
if it is of the form 3y B where y is a different variable than x,
then an occurrence of x in 3y B is free iff the corresponding
occurrence of x is free in B.

Once we have a precise definition of free and bound occur-
rences of variables, we can simply say: a sentence is any formula
without free occurrences of variables.

5.6 Semantic Notions

We mentioned above that when we consider whether M,s £ A4
holds, we (for convenience) let s assign values to all variable,
but only the values it assigns to variables in 4 are used. In fact,
it’s only the values of free variables in 4 that matter. Of course,
because we'’re careful, we are going to prove this fact. Since sen-
tences have no free variables, s doesn’t matter at all when it comes
to whether or not they are satisfied in a structure. So, when 4
is a sentence we can define M £ A4 to mean “M,s £ A for all s,”
which as it happens is true iff M,s £ 4 for at least one 5. We
need to introduce variable assignments to get a working defini-
tion of satisfaction for formulas, but for sentences, satisfaction is
independent of the variable assignments.



Once we have a definition of “M £ A4,” we know what “case”
and “true in” mean as far as sentences of first-order logic are con-
cerned. On the basis of the definition of M ¥ A for sentences we
can then define the basic semantic notions of validity, entailment,
and satisfiability. A sentence is valid, £ 4, if every structure satis-
fies it. It is entailed by a set of sentences, I" £ 4, if every structure
that satisfies all the sentences in I" also satisfies 4. And a set of
sentences is satisfiable if some structure satisfies all sentences in
it at the same time.

Because formulas are inductively defined, and satisfaction is
in turn defined by induction on the structure of formulas, we can
use induction to prove properties of our semantics and to relate
the semantic notions defined. We’ll collect and prove some of
these properties, partly because they are individually interesting,
but mainly because many of them will come in handy when we go
on to investigate the relation between semantics and derivation
systems. In order to do so, we’ll also have to define (precisely, i.e.,
by induction) some syntactic notions and operations we haven’t
mentioned yet.

5.7 Substitution

We'll discuss an example to illustrate how things hang together,
and how the development of syntax and semantics lays the foun-
dation for our more advanced investigations later. Our derivation
systems should let us derive P(a) from Vv, P(v). Maybe we even
want to state this as a rule of inference. However, to do so, we
must be able to state it in the most general terms: not just for P,
a, and vy, but for any formula 4, and term ¢, and variable x. (Re-
call that constant symbols are terms, but we’ll consider also more
complicated terms built from constant symbols and function sym-
bols.) So we want to be able to say something like, “whenever
you have derived Vx 4(x) you are justified in inferring A(¢)—the
result of removing Vx and replacing x by ¢.” But what exactly



does “replacing x by ¢t” mean? What is the relation between 4(x)
and A(¢)? Does this always work?

To make this precise, we define the operation of substitution.
Substitution is actually tricky, because we can’t just replace all x’s
in 4 by ¢, and not every ¢ can be substituted for any x. We’ll
deal with this, again, using inductive definitions. But once this is
done, specifying an inference rule as “infer 4(¢) from Vx A(x)”
becomes a precise definition. Moreover, we’ll be able to show that
this is a good inference rule in the sense that Vx 4(x) entails 4(¢).
But to prove this, we have to again prove something that may at
first glance prompt you to ask “why are we doing this?” That
Vx A(x) entails A(#) relies on the fact that whether or not M &
A(¢) holds depends only on the value of the term ¢, i.e., if we let
m be whatever element of |M]| is picked out by ¢, then M, s £ A(¢)
iff M,s[m/x] £ A(x). This holds even when ¢ contains variables,
but we’ll have to be careful with how exactly we state the result.

5.8 Models and Theories

Once we’ve defined the syntax and semantics of first-order logic,
we can get to work investigating the properties of structures, of
the semantic notions, we can define derivation systems, and in-
vestigate those. For a set of sentences, we can ask: what structures
make all the sentences in that set true? Given a set of sentences I,
a structure M that satisfies them is called a model of I'. We might
start from I” and try find its models—what do they look like?
How big or small do they have to be? But we might also start
with a single structure or collection of structures and ask: what
sentences are true in them? Are there sentences that characterize
these structures in the sense that they, and only they, are true in
them? These kinds of questions are the domain of model theory.
They also underlie the axiomatic method: describing a collection
of structures by a set of sentences, the axioms of a theory. This
is made possible by the observation that exactly those sentences



entailed in first-order logic by the axioms are true in all models
of the axioms.

As a very simple example, consider preorders. A preorder is
a relation R on some set 4 which is both reflexive and transitive.
A set A with a two-place relation R C 4 X 4 on it is exactly what
we would need to give a structure for a first-order language with
a single two-place relation symbol P: we would set |M| = 4 and
PM = R. Since R is a preorder, it is reflexive and transitive, and
we can find a set I" of sentences of first-order logic that say this:

Yvo P(vo, vo)
Yvo Vv1 Vvo ((P(v,v1) A P(v1,v)) — P(v,v2))

These sentences are just the symbolizations of “for any x, Rxx”
(R is reflexive) and “whenever Rxy and Ryz then also Rxz” (R
is transitive). We see that a structure M is a model of these two
sentences I" iff R (i.e., PM), isa preorder on 4 (i.e., [M|). In other
words, the models of I" are exactly the preorders. Any property
of all preorders that can be expressed in the first-order language
with just P as predicate symbol (like reflexivity and transitivity
above), is entailed by the two sentences in /" and vice versa. So
anything we can prove about models of I we have proved about
all preorders.

For any particular theory and class of models (such as I" and
all preorders), there will be interesting questions about what can
be expressed in the corresponding first-order language, and what
cannot be expressed. There are some properties of structures that
are interesting for all languages and classes of models, namely
those concerning the size of the domain. One can always ex-
press, for instance, that the domain contains exactly n elements,
for any n € Z*. One can also express, using a set of infinitely
many sentences, that the domain is infinite. But one cannot ex-
press that the domain is finite, or that the domain is uncountable.
These results about the limitations of first-order languages are
consequences of the compactness and Léwenheim-Skolem theo-
rems.



5.9 Soundness and Completeness

We’ll also introduce derivation systems for first-order logic. There
are many derivation systems that logicians have developed, but
they all define the same derivability relation between sentences.
We say that I" derives A, I' + A, if there is a derivation of a certain
precisely defined sort. Derivations are always finite arrangements
of symbols—perhaps a list of sentences, or some more compli-
cated structure. The purpose of derivation systems is to provide
a tool to determine if a sentence is entailed by some set /". In
order to serve that purpose, it must be true that I" £ 4 if, and
only if, I' + 4.

If ' + A but not I' £ A, our derivation system would be
too strong, prove too much. The property that if /" + A then
I' £ A is called soundness, and it is a minimal requirement on
any good derivation system. On the other hand, if I" £ 4 but
not I + A, then our derivation system is too weak, it doesn’t
prove enough. The property that if I" £ 4 then I + A4 is called
completeness. Soundness is usually relatively easy to prove (by
induction on the structure of derivations, which are inductively
defined). Completeness is harder to prove.

Soundness and completeness have a number of important
consequences. If a set of sentences I" derives a contradiction
(such as A A =A) it is called inconsistent. Inconsistent I's cannot
have any models, they are unsatisfiable. From completeness the
converse follows: any /" that is not inconsistent—or, as we will
say, consistent—has a model. In fact, this is equivalent to com-
pleteness, and is the form of completeness we will actually prove.
It is a deep and perhaps surprising result: just because you can-
not prove A A —A from I" guarantees that there is a structure that
is as I" describes it. So completeness gives an answer to the ques-
tion: which sets of sentences have models? Answer: all and only
consistent sets do.

The soundness and completeness theorems have two impor-
tant consequences: the compactness and the Léwenheim-Skolem
theorem. These are important results in the theory of models,



and can be used to establish many interesting results. We’ve al-
ready mentioned two: first-order logic cannot express that the
domain of a structure is finite or that it is uncountable.

Historically, all of this—how to define syntax and semantics
of first-order logic, how to define good derivation systems, how
to prove that they are sound and complete, getting clear about
what can and cannot be expressed in first-order languages—took
a long time to figure out and get right. We now know how to
do it, but going through all the details can still be confusing and
tedious. But it’s also important, because the methods developed
here for the formal language of first-order logic are applied all
over the place in logic, computer science, and linguistics. So
working through the details pays off in the long run.



CHAPTER 6

6.1 Introduction

In order to develop the theory and metatheory of first-order
logic, we must first define the syntax and semantics of its expres-
sions. The expressions of first-order logic are terms and formulas.
Terms are formed from variables, constant symbols, and function
symbols. Formulas, in turn, are formed from predicate symbols
together with terms (these form the smallest, “atomic” formu-
las), and then from atomic formulas we can form more complex
ones using logical connectives and quantifiers. There are many
different ways to set down the formation rules; we give just one
possible one. Other systems will chose different symbols, will se-
lect different sets of connectives as primitive, will use parentheses
differently (or even not at all, as in the case of so-called Polish
notation). What all approaches have in common, though, is that
the formation rules define the set of terms and formulas induc-
tively. If done properly, every expression can result essentially
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in only one way according to the formation rules. The induc-
tive definition resulting in expressions that are uniguely readable
means we can give meanings to these expressions using the same
method—inductive definition.

6.2 First-Order Languages

Expressions of first-order logic are built up from a basic vocab-
ulary containing variables, constant symbols, predicate symbols and
sometimes function symbols. From them, together with logical con-
nectives, quantifiers, and punctuation symbols such as parenthe-
ses and commas, ferms and formulas are formed.

Informally, predicate symbols are names for properties and
relations, constant symbols are names for individual objects, and
function symbols are names for mappings. These, except for
the identity predicate =, are the non-logical symbols and together
make up a language. Any first-order language & is determined
by its non-logical symbols. In the most general case, &£ contains
infinitely many symbols of each kind.

In the general case, we make use of the following symbols in
first-order logic:

1. Logical symbols

a) Logical connectives: — (negation), A (conjunction),
V (disjunction), — (conditional), V (universal quanti-
fier), 3 (existential quantifier).

b) The propositional constant for falsity L.
c) The two-place identity predicate =.
d) A countably infinite set of variables: vy, vi, vo, ...

2. Non-logical symbols, making up the standard language of
first-order logic

a) A countably infinite set of n-place predicate symbols
for each n > 0: A(’)’, AL, Ags -



b) A countably infinite set of constant symbols: ¢, ci,
Gy vnnn

c) A countably infinite set of n-place function symbols
for each n > 0: 1", f", £, ...

3. Punctuation marks: (, ), and the comma.

Most of our definitions and results will be formulated for the
full standard language of first-order logic. However, depending
on the application, we may also restrict the language to only a
few predicate symbols, constant symbols, and function symbols.

Example 6.1. The language £, of arithmetic contains a single
two-place predicate symbol <, a single constant symbol o, one
one-place function symbol 7, and two two-place function sym-
bols + and X.

Example 6.2. The language of set theory &7 contains only the
single two-place predicate symbol €.

Example 6.3. The language of orders £ contains only the two-
place predicate symbol <.

Again, these are conventions: officially, these are just aliases,
e.g., <, €, and < are aliases for A%, o for ¢, 7 for ﬁ)l, + for 1%2, X
for 2.

In addition to the primitive connectives and quantifiers in-
troduced above, we also use the following defined symbols: <
(biconditional), truth T

A defined symbol is not officially part of the language, but
is introduced as an informal abbreviation: it allows us to abbre-
viate formulas which would, if we only used primitive symbols,
get quite long. This is obviously an advantage. The bigger ad-
vantage, however, is that proofs become shorter. If a symbol is
primitive, it has to be treated separately in proofs. The more
primitive symbols, therefore, the longer our proofs.



You may be familiar with different terminology and symbols
than the ones we use above. Logic texts (and teachers) commonly
use either ~, =, and ! for “negation”, A, -, and & for “conjunction”.
Commonly used symbols for the “conditional” or “implication”
are —, =, and D. Symbols for “biconditional,” “bi-implication,”
or “(material) equivalence” are <>, <, and =. The L symbol
is variously called “falsity,” “falsum,”, “absurdity,”, or “bottom.”
The T symbol is variously called “truth,” “verum,”, or “top.”

It is conventional to use lower case letters (e.g., a, b, ¢) from
the beginning of the Latin alphabet for constant symbols (some-
times called names), and lower case letters from the end (e.g., x,
9, z) for variables. Quantifiers combine with variables, e.g., x;
notational variations include Vx, (Vx), (x), Ix, A\, for the uni-
versal quantifier and 3x, (3x), (Ex), Zx, \/, for the existential
quantifier.

We might treat all the propositional operators and both quan-
tifiers as primitive symbols of the language. We might instead
choose a smaller stock of primitive symbols and treat the other
logical operators as defined. “Truth functionally complete” sets
of Boolean operators include {-,V}, {-,A}, and {-, —}—these
can be combined with either quantifier for an expressively com-
plete first-order language.

You may be familiar with two other logical operators: the
Sheffer stroke | (named after Henry Sheffer), and Peirce’s ar-
row |, also known as Quine’s dagger. When given their usual
readings of “nand” and “nor” (respectively), these operators are
truth functionally complete by themselves.

6.3 Terms and Formulas

Once a first-order language & is given, we can define expressions
built up from the basic vocabulary of &£. These include in partic-
ular terms and formulas.



Definition 6.4 (Terms). The set of terms Trm(¥) of & is de-
fined inductively by:

1

2.

3.

4.

Every variable is a term.
Every constant symbol of & is a term.

If f is an n-place function symbol and 4, ..., ¢, are terms,
then f(¢,...,¢,) is a term.

Nothing else is a term.

A term containing no variables is a closed term.

The constant symbols appear in our specification of the lan-
guage and the terms as a separate category of symbols, but they
could instead have been included as zero-place function symbols.
We could then do without the second clause in the definition of
terms. We just have to understand f(¢,...,Z,) as just f by itself
if n=0.

Definition 6.5 (Formula). The set of formulas Frm(<Z) of the
language & is defined inductively as follows:

1.

2.

L is an atomic formula.

If R is an n-place predicate symbol of & and ¢, ..., ¢, are
terms of &, then R(#,...,t,) is an atomic formula.

If #; and & are terms of &, then =(#1, ) is an atomic for-
mula.

If A is a formula, then -4 is formula.
If A and B are formulas, then (4 A B) is a formula.
If A and B are formulas, then (4 V B) is a formula.

If A and B are formulas, then (4 — B) is a formula.



8. If Ais a formula and x is a variable, then Vx 4 is a formula.
9. If 4is a formula and x is a variable, then 3x 4 is a formula.

10. Nothing else is a formula.

The definitions of the set of terms and that of formulas are
inductive definitions. Essentially, we construct the set of formu-
las in infinitely many stages. In the initial stage, we pronounce
all atomic formulas to be formulas; this corresponds to the first
few cases of the definition, i.e., the cases for 1, R(#,...,#,) and
=(t1,t2). “Atomic formula” thus means any formula of this form.

The other cases of the definition give rules for constructing
new formulas out of formulas already constructed. At the second
stage, we can use them to construct formulas out of atomic for-
mulas. At the third stage, we construct new formulas from the
atomic formulas and those obtained in the second stage, and so
on. A formula is anything that is eventually constructed at such
a stage, and nothing else.

By convention, we write = between its arguments and leave
out the parentheses: #; = fy is an abbreviation for =(#;,%). More-
over, 7=(t1, %) is abbreviated as #; # . When writing a formula
(B C) constructed from B, C using a two-place connective *, we
will often leave out the outermost pair of parentheses and write
simply B * C.

Some logic texts require that the variable x must occur in 4
in order for 3x 4 and Vx A4 to count as formulas. Nothing bad
happens if you don’t require this, and it makes things easier.

Definition 6.6. Formulas constructed using the defined opera-
tors are to be understood as follows:

1. T abbreviates —L.

2. A <> B abbreviates (4 — B) A (B — A).



If we work in a language for a specific application, we will
often write two-place predicate symbols and function symbols
between the respective terms, e.g., #i < & and (¢ + f3) in the
language of arithmetic and #; € # in the language of set the-
ory. The successor function in the language of arithmetic is even
written conventionally after its argument: ¢’. Officially, however,
these are just conventional abbreviations for A%(tl,tg), 7‘02(t1,t2),
A%(tl,tg) and fol(t), respectively.

Definition 6.7 (Syntactic identity). The symbol = expresses
syntactic identity between strings of symbols, i.e., 4 = B iff 4
and B are strings of symbols of the same length and which con-
tain the same symbol in each place.

The = symbol may be flanked by strings obtained by con-
catenation, e.g., 4 = (B V C) means: the string of symbols 4 is
the same string as the one obtained by concatenating an opening
parenthesis, the string B, the V symbol, the string €, and a clos-
ing parenthesis, in this order. If this is the case, then we know
that the first symbol of A4 is an opening parenthesis, 4 contains
B as a substring (starting at the second symbol), that substring
is followed by V, etc.

6.4 Unique Readability

The way we defined formulas guarantees that every formula has
a unique reading, i.e., there is essentially only one way of con-
structing it according to our formation rules for formulas and
only one way of “interpreting” it. If this were not so, we would
have ambiguous formulas, i.e., formulas that have more than one
reading or intepretation—and that is clearly something we want
to avoid. But more importantly, without this property, most of the
definitions and proofs we are going to give will not go through.
Perhaps the best way to make this clear is to see what would
happen if we had given bad rules for forming formulas that would



not guarantee unique readability. For instance, we could have
forgotten the parentheses in the formation rules for connectives,
e.g., we might have allowed this:

If A and B are formulas, then so is A — B.

Starting from an atomic formula D, this would allow us to form
D — D. From this, together with D, we would get D — D — D.
But there are two ways to do this:

1. We take D to be 4 and D — D to be B.

2. We take 4 tobe D — D and B is D.

Correspondingly, there are two ways to “read” the formula D —
D — D. 1t is of the form B— C where B is D and C is D — D, but
it is also of the form B — C with B being D — D and C being D.

If this happens, our definitions will not always work. For in-
stance, when we define the main operator of a formula, we say: in
a formula of the form B — C, the main operator is the indicated
occurrence of —. But if we can match the formula D — D — D
with B — C in the two different ways mentioned above, then in
one case we get the first occurrence of — as the main operator,
and in the second case the second occurrence. But we intend the
main operator to be a function of the formula, i.e., every formula
must have exactly one main operator occurrence.

Lemma 6.8. The number of left and right parentheses in a formula A
are equal.

Proof- We prove this by induction on the way 4 is constructed.
This requires two things: (a) We have to prove first that all atomic
formulas have the property in question (the induction basis). (b)
Then we have to prove that when we construct new formulas out
of given formulas, the new formulas have the property provided
the old ones do.



Let /(A4) be the number of left parentheses, and r(4) the num-
ber of right parentheses in 4, and /(¢) and r(¢) similarly the num-
ber of left and right parentheses in a term ¢. We leave the proof
that for any term ¢, [(¢) = r(¢) as an exercise.

1. A= 1: Ahas o left and o right parentheses.

2. A= R(t,....ty): L(A) =1+1(t1)++1(t,) =1+7(t) +
-+ +7(t,) = r(A). Here we make use of the fact, left as an
exercise, that /() = r(¢) for any term ¢.

3. A=t =t 1(A)=1(k)+ () =r(th) + (k) =r(4).

4. A = =B: By induction hypothesis, /(B) = r(B). Thus
[(A) =1(B) =r(B) =r(4).

5. 4 = (B * C): By induction hypothesis, /(B) = r(B) and
[(C)=7r(C). Thus [(4) =1+{(B)+I(C) =1+r(B)+r(C) =
r(A).

6. 4 = VxB: By induction hypothesis, /(B) = r(B). Thus,
[(A) =1(B) =r(B) =r(4).

7. A =3x B: Similarly. o
Definition 6.9 (Proper prefix). A string of symbols B is a

proper prefix of a string of symbols 4 if concatenating B and a
non-empty string of symbols yields 4.

Lemma 6.10. If 4 is a formula, and B is a proper prefix of A, then
B is not a formula.

Proof. Exercise. o



Proposition 6.11. If A is an atomic formula, then it satisfes one,
and only one of the following conditions.

7. A= 1.

2. A=R(t,...,t,) where R is an n-place predicate symbol, t,, ...,
t, are terms, and each of R, 41, ..., t, is uniquely determined.

3 A=t =ty wheretqy and ty are uniquely determined terms.

Proof. Exercise. o

Proposition 6.12 (Unique Readability). Every formula satisfies
one, and only one of the following conditions.

1. A is atomic.

2. A is of the form —B.

3. A is of the form (B A C).
4- A is of the form (B V C).
5. A is of the form (B — C).
6. A is of the form Vx B.

7. A is of the form 3x B.

Moreover, in each case B, or B and C, are uniquely determined. This
means that, e.g., there are no different pairs B, C and B’, C’ so that A
is both of the form (B — C) and (B’ — C’).

Proof. The formation rules require that if a formula is not atomic,
it must start with an opening parenthesis (, =, or with a quanti-
fier. On the other hand, every formula that start with one of the
following symbols must be atomic: a predicate symbol, a function
symbol, a constant symbol, L.



So we really only have to show that if 4 is of the form (B * C)
and also of the form (B’ ' C’), then B=B’, C = C’, and * = %/,

So suppose both 4 = (B * C) and 4 = (B’ C’). Then either
B = B’ or not. If it is, clearly * = +" and C = C’, since they then
are substrings of A that begin in the same place and are of the
same length. The other case is B # B’. Since B and B’ are both
substrings of 4 that begin at the same place, one must be a proper
prefix of the other. But this is impossible by Lemma 6.10. o

6.5 Main operator of a Formula

It is often useful to talk about the last operator used in construct-
ing a formula 4. This operator is called the main operator of A.
Intuitively, it is the “outermost” operator of 4. For example, the
main operator of -4 is -, the main operator of (4V B) is V, etc.

Definition 6.13 (Main operator). The main operator of a for
mula 4 is defined as follows:

1. 4 is atomic: A has no main operator.
2. A = -B: the main operator of 4 is .
A= (BAC): the main operator of 4 is A.
A= (BVC): the main operator of 4 is V.

A= (B — C): the main operator of 4 is —.

S o @

A =Vx B: the main operator of 4 is V.

7. A =3x B: the main operator of 4 is 3.

In each case, we intend the specific indicated occurrence of the
main operator in the formula. For instance, since the formula
((D—E)—(E—-D)) is of the form (B—C) where Bis (D—E) and
C is (E — D), the second occurrence of — is the main operator.



This is a recursive definition of a function which maps all non-
atomic formulas to their main operator occurrence. Because of
the way formulas are defined inductively, every formula A satis-
fies one of the cases in Definition 6.13. This guarantees that for
each non-atomic formula 4 a main operator exists. Because each
formula satisfies only one of these conditions, and because the
smaller formulas from which 4 is constructed are uniquely deter-
mined in each case, the main operator occurrence of 4 is unique,
and so we have defined a function.

We call formulas by the following names depending on which
symbol their main operator is:

Main operator Type of formula Example
none atomic (formula) L, R(t,....ty), 1 =1
- negation -4
A conjunction (A A B)
\% disjunction (AV B)
— conditional (A— B)
v universal (formula) Vx A
3 existential (formula) dx A

6.6 Subformulas

It is often useful to talk about the formulas that “make up” a
given formula. We call these its subformulas. Any formula counts
as a subformula of itself; a subformula of 4 other than A4 itself is
a proper subformula.

Definition 6.14 (Immediate Subformula). If 4 is a formula,
the immediate subformulas of A are defined inductively as follows:

1. Atomic formulas have no immediate subformulas.

2. A =-B: The only immediate subformula of 4 is B.



3. A= (B (): The immediate subformulas of 4 are B and
C (* is any one of the two-place connectives).

4. A=Vx B: The only immediate subformula of 4 is B.

5. A =3x B: The only immediate subformula of 4 is B.

Definition 6.15 (Proper Subformula). If 4 is a formula, the
proper subformulas of A are recursively as follows:

1. Atomic formulas have no proper subformulas.

2. A = -B: The proper subformulas of 4 are B together with
all proper subformulas of B.

3. 4 = (B C(C): The proper subformulas of 4 are B, C,
together with all proper subformulas of B and those of C.

4. A = VxB: The proper subformulas of 4 are B together
with all proper subformulas of B.

5. A = 3x B: The proper subformulas of 4 are B together
with all proper subformulas of B.

Definition 6.16 (Subformula). The subformulas of 4 are A4 it-
self together with all its proper subformulas.

Note the subtle difference in how we have defined immediate
subformulas and proper subformulas. In the first case, we have
directly defined the immediate subformulas of a formula 4 for
each possible form of 4. It is an explicit definition by cases, and
the cases mirror the inductive definition of the set of formulas.
In the second case, we have also mirrored the way the set of all
formulas is defined, but in each case we have also included the
proper subformulas of the smaller formulas B, C in addition to
these formulas themselves. This makes the definition recursive. In



general, a definition of a function on an inductively defined set
(in our case, formulas) is recursive if the cases in the definition of
the function make use of the function itself. To be well defined,
we must make sure, however, that we only ever use the values
of the function for arguments that come “before” the one we are
defining—in our case, when defining “proper subformula” for (Bx*

C) we only use the proper subformulas of the “earlier” formulas
B and C.

6.7 Free Variables and Sentences

Definition 6.17 (Free occurrences of a variable). The  free
occurrences of a variable in a formula are defined inductively as
follows:

1. A is atomic: all variable occurrences in A4 are free.

2. A = =B: the free variable occurrences of 4 are exactly
those of B.

3. A = (B C(C): the free variable occurrences of 4 are those
in B together with those in C.

4. A = Vx B: the free variable occurrences in 4 are all of
those in B except for occurrences of x.

5. A = 3x B: the free variable occurrences in 4 are all of
those in B except for occurrences of x.

Definition 6.18 (Bound Variables). An occurrence of a vari-
able in a formula A4 is bound if it is not free.

Definition 6.19 (Scope). If Vx B is an occurrence of a subfor-
mula in a formula 4, then the corresponding occurrence of B



in A4 is called the scope of the corresponding occurrence of Vx.
Similarly for 3x.

If B is the scope of a quantifier occurrence Yx or 3x in 4, then
the free occurrences of x in B are bound in Vx B and 3x B. We
say that these occurrences are bound by the mentioned quantifier
occurrence.

Example 6.20. Consider the following formula:

vy Ag(vo, 1)
[ —
B

B represents the scope of 3vy. The quantifier binds the occurence
of vy in B, but does not bind the occurence of v;. So v; is a free
variable in this case.

We can now see how this might work in a more complicated
formula A4:

D
—_——

Y (Aj(v) = Aj(vo,v1)) =3 (Af (v, v1) V ¥ ~AL(w))

B C

B is the scope of the first Vg, C is the scope of vq, and D is the
scope of the second Vv,. The first Vv binds the occurrences of v
in B, 3v; the occurrence of v; in C, and the second Vv binds the
occurrence of vy in D. The first occurrence of v; and the fourth

occurrence of vy are free in A. The last occurrence of v is free
in D, but bound in C and A.

Definition 6.21 (Sentence). A formula A4 is a sentence iff it con-
tains no free occurrences of variables.

6.8 Substitution



Definition 6.22 (Substitution in a term). We define s[¢/x],
the result of substituting ¢ for every occurrence of x in s, recur
sively:

1. s =c¢: s[t/x] isjust s.

2. s =y s[t/x] is also just s, provided y is a variable and
) # x.

3. s=x: s[t/x]is ¢t

4. s = f(tr,....tn): s[t/x]is f(ta[t/x],... . ta[t/x]).

Definition 6.23. A term ¢ is free for x in A if none of the free
occurrences of x in 4 occur in the scope of a quantifier that binds
a variable in ¢.

Example 6.24.
1. vg is free for v; in EIV3A§(V3, V1)

9. 7‘12(\/1, Vvy) is not free for v in VVQAE(VO’ v2)

Definition 6.25 (Substitution in a formula). If 4 is a formula,
x is a variable, and ¢ is a term free for x in 4, then A[¢/x] is the
result of substituting ¢ for all free occurrences of x in 4.

1. A= 1: A[t/x]is L.

9. A= P(tr,...,tn): Alt/x]is P(t1[t/x],... ta[t/x]).
3. A=t =ty Alt/x]is t1[t/x] = ta[t/x].

A=-B: Alt/x]is ~B[t/x].

b

. A= (BAC): A[t/x]is (B[t/x] AC[t/x]).

(&1



6. A= (BVCC): A[t/x]is (B[t/x]V C[t/x]).
7. A= (B— C): A[t/x] is (B[t/x] — C[t/x]).

8. 4 =VyB: A[t/x] is Vy B[t/x], provided y is a variable
other than x; otherwise A[¢/x] is just 4.

9. A = 3yB: A[t/x] is Iy B[t/x], provided y is a variable
other than x; otherwise A[¢/x] is just 4.

Note that substitution may be vacuous: If x does not occur in
4 at all, then A[t/x] is just A.

The restriction that ¢ must be free for x in 4 is necessary
to exclude cases like the following. If A = 3yx < y and ¢ = y,
then A[¢/x] would be 3yy < y. In this case the free variable y
is “captured” by the quantifier 3y upon substitution, and that is
undesirable. For instance, we would like it to be the case that
whenever Vx B holds, so does B[¢/x]. But consider Vx3yx < y
(here B is dyx < y). It is sentence that is true about, e.g., the
natural numbers: for every number x there is a number y greater
than it. If we allowed y as a possible substitution for x, we would
end up with B[y/x] = 3y y < y, which is false. We prevent this by
requiring that none of the free variables in ¢ would end up being
bound by a quantifier in 4.

We often use the following convention to avoid cumbersome
notation: If 4 is a formula which may contain the variable x free,
we also write A(x) to indicate this. When it is clear which 4
and x we have in mind, and ¢ is a term (assumed to be free for x
in A(x)), then we write A(¢) as short for A[#/x]. So for instance,
we might say, “we call A(¢) an instance of Vx 4(x).” By this we
mean that if 4 is any formula, x a variable, and ¢ a term that’s
free for x in A4, then A[#/x] is an instance of Vx 4.



Summary

A first-order language consists of constant, function, and
predicate symbols. Function and constant symbols take a speci-
fied number of arguments. In the language of arithmetic, e.g.,
we have a single constant symbol 0, one 1-place function sym-
bol 7, two 2-place function symbols + and X, and one 2-place
predicate symbol <. From variables and constant and function
symbols we form the terms of a language. From the terms of
a language together with its predicate symbols, as well as the
identity symbol =, we form the atomic formulas. And in turn
from them, using the logical connectives -, V, A, —, < and the
quantifiers V and 3 we form its formulas. Since we are careful to
always include necessary parentheses in the process of forming
terms and formulas, there is always exactly one way of reading a
formula. This makes it possible to define things by induction on
the structure of formulas.

Occurrences of variables in formulas are sometimes governed
by a corresponding quantifier: if a variable occurs in the scope
of a quantifier it is considered bound, otherwise free. These
concepts all have inductive definitions, and we also inductively
define the operation of substitution of a term for a variable in
a formula. Formulas without free variable occurrences are called
sentences.

Problems
Problem 6.1. Prove Lemma 6.10.

Problem 6.2. Prove Proposition 6.11 (Hint: Formulate and
prove a version of Lemma 6.10 for terms.)

Problem 6.3. Give an inductive definition of the bound variable
occurrences along the lines of Definition 6.17.



CHAPTER 7

7.1 Introduction

Giving the meaning of expressions is the domain of semantics.
The central concept in semantics is that of satisfaction in a struc-
ture. A structure gives meaning to the building blocks of the
language: a domain is a non-empty set of objects. The quanti-
fiers are interpreted as ranging over this domain, constant sym-
bols are assigned elements in the domain, function symbols are
assigned functions from the domain to itself, and predicate sym-
bols are assigned relations on the domain. The domain together
with assignments to the basic vocabulary constitutes a structure.
Variables may appear in formulas, and in order to give a seman-
tics, we also have to assign elements of the domain to them—this
is a variable assignment. The satisfaction relation, finally, brings
these together. A formula may be satisfied in a structure M rela-
tive to a variable assignment s, written as M, s £ A. This relation
is also defined by induction on the structure of 4, using the truth
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tables for the logical connectives to define, say, satisfaction of
(A A B) in terms of satisfaction (or not) of 4 and B. It then turns
out that the variable assignment is irrelevant if the formula 4
is a sentence, i.e., has no free variables, and so we can talk of
sentences being simply satisfied (or not) in structures.

On the basis of the satisfaction relation M £ A4 for sentences
we can then define the basic semantic notions of validity, entail-
ment, and satisfiability. A sentence is valid, £ 4, if every struc-
ture satisfies it. It is entailed by a set of sentences, I £ 4, if every
structure that satisfies all the sentences in I" also satisfies 4. And
a set of sentences is satisfiable if some structure satisfies all sen-
tences in it at the same time. Because formulas are inductively
defined, and satisfaction is in turn defined by induction on the
structure of formulas, we can use induction to prove properties
of our semantics and to relate the semantic notions defined.

7.2  Structures for First-order Languages

First-order languages are, by themselves, uninterpreted: the con-
stant symbols, function symbols, and predicate symbols have no
specific meaning attached to them. Meanings are given by spec-
ifying a structure. It specifies the domain, i.e., the objects which
the constant symbols pick out, the function symbols operate on,
and the quantifiers range over. In addition, it specifies which
constant symbols pick out which objects, how a function symbol
maps objects to objects, and which objects the predicate symbols
apply to. Structures are the basis for semantic notions in logic,
e.g., the notion of consequence, validity, satisfiablity. They are
variously called “structures,” “interpretations,” or “models” in
the literature.

Definition 7.1 (Structures). A structure M, for a language & of
first-order logic consists of the following elements:

1. Domain: a non-empty set, |[M|



2. Interpretation of constant symbols: for each constant symbol ¢
of £, an element ¢M € |M|

3. Interpretation of predicate symbols: for each n-place predicate
symbol R of & (other than =), an n-place relation RM c
M|

4. Interpretation of function symbols: for each n-place function
symbol f of &, an n-place function fM: |M|" — |M|

Example 7.2. A structure M for the language of arithmetic con-
sists of a set, an element of |M|, oM, as interpretation of the
constant symbol 0, a one-place function M. M| — |M|, two
two-place functions +¥ and xM, both |M > - M|, and a two-
place relation <M ¢ IM|?.

An obvious example of such a structure is the following:

1. [IN|=N

2. oV =0

3. N(n)=n+1forallneN

4. *N(n,m) = n+mfor all n,m € N
5. XN(n,m) =n-mfor all n,m € N

6. <N={(n,m):n€N,m€N,n<m}

The structure N for £, so defined is called the standard model of
arithmetic, because it interprets the non-logical constants of &4
exactly how you would expect.

However, there are many other possible structures for 4. For
instance, we might take as the domain the set Z of integers instead
of N, and define the interpretations of o, 7, +, X, < accordingly.
But we can also define structures for &4 which have nothing even
remotely to do with numbers.



Example 7.3. A structure M for the language £z of set theory
requires just a set and a single-two place relation. So technically,
e.g., the set of people plus the relation “x is older than y»” could
be used as a structure for £z, as well as N together with n > m
for n,m € N.

A particularly interesting structure for &£z in which the ele-
ments of the domain are actually sets, and the interpretation of
€ actually is the relation “x is an element of »” is the structure
HF of hereditarily finite sets:

1. [HF| =0 U p(0) U p(p(0)) U p(p(p(0))U...;

2. €flF = {(x,y) : x,y € |HF| ,x € y}.

The stipulations we make as to what counts as a structure
impact our logic. For example, the choice to prevent empty do-
mains ensures, given the usual account of satisfaction (or truth)
for quantified sentences, that 3x (4(x) vV —A4(x)) is valid—that
is, a logical truth. And the stipulation that all constant symbols
must refer to an object in the domain ensures that the existential
generalization is a sound pattern of inference: A(a), therefore
dx A(x). If we allowed names to refer outside the domain, or to
not refer, then we would be on our way to a free logic, in which ex-
istential generalization requires an additional premise: A(a) and
dx x = a, therefore Ax A(x).

7.3 Covered Structures for First-order
Languages
Recall that a term is closed if it contains no variables.

Definition 7.4 (Value of closed terms). If ¢ is a closed term of
the language £ and M is a structure for &£, the value Val™(z) is
defined as follows:

1. If # is just the constant symbol ¢, then Val™ (¢) = ¢M.



2. If ¢ is of the form f(4,...,¢,), then

ValM(2) = fM(valM(1y),. .., Val™(z,)).

Definition 7.5 (Covered structure). A structure is covered if ev-
ery element of the domain is the value of some closed term.

Example 7.6. Let < be the language with constant symbols
zero, one, two, ..., the binary predicate symbol <, and the bi-
nary function symbols + and X. Then a structure M for & is the
one with domain [M| = {0,1,2,...} and assignments zeroM = 0,
oneM = 1, twoM = 2, and so forth. For the binary relation
symbol <, the set <M s the set of all pairs (c1,c9) € |M|?
such that ¢; is less than ¢y: for example, (1,3) € <M but
(2,2) ¢ <M. For the binary function symbol +, define +M in
the usual way—for example, +(2,3) maps to 5, and similarly
for the binary function symbol X. Hence, the value of four is
just 4, and the value of X(two,+(three,zero)) (or in infix nota-
tion, two X (three + zero)) is

ValM (x(two,+(three,zero)) =
= xMValM (two), ValM (+(three, zero)))
= xMValM (two),+M(ValM (three), ValM (zero)))
=xM(twoM,+M(threeM, zeroM))
= xM(2,+M(3,0))
=xM(2,3)
=6

7.4 Satisfaction of a Formula in a Structure

The basic notion that relates expressions such as terms and for-
mulas, on the one hand, and structures on the other, are those
of value of a term and satisfaction of a formula. Informally, the



value of a term is an element of a structure—if the term is just a
constant, its value is the object assigned to the constant by the
structure, and if it is built up using function symbols, the value is
computed from the values of constants and the functions assigned
to the functions in the term. A formula is satisfied in a structure
if the interpretation given to the predicates makes the formula
true in the domain of the structure. This notion of satisfaction
is specified inductively: the specification of the structure directly
states when atomic formulas are satisfied, and we define when a
complex formula is satisfied depending on the main connective
or quantifier and whether or not the immediate subformulas are
satisfied.

The case of the quantifiers here is a bit tricky, as the imme-
diate subformula of a quantified formula has a free variable, and
structures don’t specify the values of variables. In order to deal
with this difficulty, we also introduce variable assignments and de-
fine satisfaction not with respect to a structure alone, but with
respect to a structure plus a variable assignment.

Definition 7.7 (Variable Assignment). A  variable assign-
ment s for a structure M is a function which maps each variable
to an element of |[M|, i.e., s: Var — |M]|.

A structure assigns a value to each constant symbol, and a
variable assignment to each variable. But we want to use terms
built up from them to also name elements of the domain. For
this we define the value of terms inductively. For constant sym-
bols and variables the value is just as the structure or the variable
assignment specifies it; for more complex terms it is computed re-
cursively using the functions the structure assigns to the function
symbols.

Definition 7.8 (Value of Terms). If ¢ is a term of the lan-
guage &, M is a structure for £, and s is a variable assignment
for M, the value Valiw (¢) is defined as follows:



1. t=c: Valzsw(t) =M,
2. t=x: Valzsw(t) =s5(x).
3. t=f(t,....tn):

Val(z) = fM(valM (1)),. .., Val™(z,)).

Definition 7.9 (x-Variant). If s is a variable assignment for
a structure M, then any variable assignment s’ for M which dif-
fers from s at most in what it assigns to x is called an x-variant
of s. If s’ is an x-variant of s we write s’ ~, s.

Note that an x-variant of an assignment s does not Aave to
assign something different to x. In fact, every assignment counts
as an x-variant of itself.

Definition 7.10. If s is a variable assignment for a structure M
and m € |[M], then the assignment s[m/x] is the variable assign-
ment defined by

m if y=x
slm/y] = -
s(y) otherwise.
In other words, s[m/x] is the particular x-variant of s which

assigns the domain element m to x, and assigns the same things
to variables other than x that s does.

Definition 7.11 (Satisfaction). Satisfaction of a formula 4 in
a structure M relative to a variable assignment s, in symbols:
M,s £ A, is defined recursively as follows. (We write M,s ¥ 4 to
mean “not M,s £ A.”)

1. A=1: M,s¢ A.



2. A = R(ty,....t,): M,s e Aiff (ValM(s),...,Val™(s,)) €
RM,

3. A=t =ty M,se Aiff ValM (1) = ValM (g).

4. A=-B: M,se Aiff M,s ¢ B.

5 A=(BAC): M,scAiff M,skBand M,sk C.

6. A=(BVC): M,se Aiff M,s £ A or M,s £ B (or both).
7. A= (B—>C): M,se Aiff M,s ¥ B or M,s £ C (or both).

8. 4 =VxB: M.,s £ A iff for every element m € |M]|,
M,s[m/x] e B.

9. A=3xB: M,s r Aiff for at least one element m € |[M|,
M,s[m/x] E B.

The variable assignments are important in the last two
clauses. We cannot define satisfaction of Vx B(x) by “for all
m € M|, M £ B(m).” We cannot define satisfaction of Jx B(x)
by “for at least one m € |M|, M & B(m).” The reason is that if
m € |M]|, it is not symbol of the language, and so B(a) is not
a formula (that is, B[m/x] is undefined). We also cannot assume
that we have constant symbols or terms available that name every
element of M, since there is nothing in the definition of structures
that requires it. In the standard language, the set of constant sym-
bols is countably infinite, so if [M]| is not countable there aren’t
even enough constant symbols to name every object.

We solve this problem by introducing variable assignments,
which allow us to link variables directly with elements of the do-
main. Then instead of saying that, e.g., 3x B(x) is satisfied in M
iff for at least one m € |M|, we say it is satisfied in M relative to s
iff B(x) is satisfied relative to s[m/x] for at least one m € |[M|.

Example 7.12. Let &£ = {a,b, f,R} where a and b are constant
symbols, f is a two-place function symbol, and R is a two-place
predicate symbol. Consider the structure M defined by:



1. M| = {1,2,3,4}
2. M =1
3. M =2

4. fM(x,y) =x+yif x +y < 3 and = 3 otherwise.
5 RM ={(1,1),(1,2),(2,3),(2,4)}

The function s(x) = 1 that assigns 1 € [M]| to every variable is a
variable assignment for M.
Then

ValM (£ (a,8)) = fM(ValY (a), Val¥ (3)).

Since @ and b are constant symbols, Val¥(a) = ¢ = 1 and
Val™(5) = M = 2. So

Val(f (a.b)) = fM(1,2) =1+2=3.
To compute the value of f(f(a,b),a) we have to consider
Val (£ (f(a.b),a)) = fM(ValM (f (a,b)), Val¥ (a)) = fM(3,1) = 3,
since 3+1 > 3. Since s(x) = 1 and ValM (x) = s(x), we also have

Val (£ (f(a.b),x)) = fM(Val™(f (a,b)), ValM (x)) = fM(3,1) = 3,

An atomic formula R(#y, tp) is satisfied if the tuple of values of
its arguments, i.e., (ValjsVI(tl),ValjsVI(tg)), is an element of RM. So,
e.g.,wehave M,s £ R(b, f (a,b)) since (Val™ (), Val™ (£ (a,b))) =
(2,3) € RM but M,s ¥ R(x, f (a,b)) since (1,3) ¢ RM[s].

To determine if a non-atomic formula A4 is satisfied, you apply
the clauses in the inductive definition that applies to the main con-
nective. For instance, the main connective in R(a,a) — (R(b,x)V
R(x,b) is the —, and

M,s e R(a,a) > (R(b,x) V R(x,b)) iff
M,s ¢ R(a,a) or M,s £ R(b,x) V R(x,b)



Since M, s £ R(a,a) (because (1,1) € RM) we can’t yet determine
the answer and must first figure out if M,s £ R(b,x) V R(x,b):

M,s e R(b,x) vV R(x,b) iff
M,s E R(b,x) or M,s £ R(x,b)

And this is the case, since M,s £ R(x,b) (because (1,2) € RM).

Recall that an x-variant of s is a variable assignment that
differs from s at most in what it assigns to x. For every element
of |[M|, there is an x-variant of s:

s1=s[1/x], 5o = s[2/x],
s3=s[3/x], sy = s[4/x].

So, e.g., s9(x) = 2 and s9(y) = s(y) = 1 for all variables y other
than x. These are all the x-variants of s for the structure M, since
M| = {1,2,3,4}. Note, in particular, that s; = s (s is always an
x-variant of itself).

To determine if an existentially quantified formula 3x A(x) is
satisfied, we have to determine if M,s[m/x] £ A(x) for at least
one m € |M]|. So,

M,s EAx (R(b,x) V R(x,b)),

since M,s[1/x] £ R(b,x)V R(x,b) (s[3/x] would also fit the bill).
But,
M,s ¥ Ax (R(b,x) A R(x,b))

since, whichever m € |M| we pick, M,s[m/x] £ R(b,x) A R(x,b).
To determine if a universally quantified formula Vx 4(x) is
satisfied, we have to determine if M,s[m/x] £ A(x) for all m €
M|. So,
M,s EVx (R(x,a) > R(a,x)),

since M,s[m/x] £ R(x,a) — R(a,x) for all m € |M|. For m =1,
we have M, s[1/x] £ R(a,x) so the consequent is true; for m = 2,



3, and 4, we have M,s[m/x] ¥ R(x,a), so the antecedent is false).
But,
M,s £Vx (R(a,x) = R(x,a))

since M,s[2/x] ¥ R(a,x) — R(x,a) (because M,s[2/x] E R(a,x)
and M,s[2/x] £ R(x,a)).

For a more complicated case, consider
Vx (R(a,x) — 3y R(x,y)).

Since M,s[3/x] ¥ R(a,x) and M,s[4/x] ¥ R(a,x), the inter
esting cases where we have to worry about the consequent of
the conditional are only m = 1 and = 2. Does M,s[1/x] E
Jy R(x,y) hold? It does if there is at least one n € |[M]| so
that M,s[1/x][n/y] £ R(x,y). In fact, if we take n = 1, we
have s[1/x][n/y] = s[1/y] = s. Since s(x) =1, s(y) = 1, and
(1,1) € RM, the answer is yes.

To determine if M,s[2/x] £ Ty R(x,y), we have to look
at the variable assignments s[2/x][n/y]. Here, for n = 1,
this assignment is so = s[2/x], which does not satisfy R(x,y)
(s2(x) = 2, s9(y) = 1, and (2,1) ¢ RM). However, consider
s[2/x1(3/y] = s2[3/y]. M,s2[3/y] & R(x,y) since (2,3) € RM,
and so M, sy E 3y R(x,9).

So, for all n € |M|, either M,s[m/x] ¥ R(a,x) (if m =3, 4) or
M,s[m/x] £ 3y R(x,y) (if m =1, 2), and so

M,s £ Vx (R(a,x) = 3y R(x,y)).
On the other hand,
M,s ¥ 3x (R(a,x) AVy R(x,y)).

We have M,s[m/x] £ R(a,x) only for m =1 and m = 2. But for
both of these values of m, there is in turn an n € |[M|, namely n =
4, so that M,s[m/x][n/y] ¥ R(x,y) and so M,s[m/x] ¥ Vy R(x,y)
for m = 1 and m = 2. In sum, there is no m € |M]| such that
M,s[m/x] £ R(a,x) AVy R(x,y).



7.5 Variable Assignments

A variable assignment s provides a value for every variable—and
there are infinitely many of them. This is of course not neces-
sary. We require variable assignments to assign values to all vari-
ables simply because it makes things a lot easier. The value of a
term ¢, and whether or not a formula 4 is satisfied in a structure
with respect to s, only depend on the assignments s makes to
the variables in ¢ and the free variables of 4. This is the content
of the next two propositions. To make the idea of “depends on”
precise, we show that any two variable assignments that agree on
all the variables in ¢ give the same value, and that 4 is satisfied
relative to one iff it is satisfied relative to the other if two variable
assignments agree on all free variables of 4.

Proposition 7.13. If the variables in a term t are among x1, ..., Xy,
and s1(x;) = so(x;) fori =1, ..., n, then Vali\f(t) = Val?;l(t).

Proof. By induction on the complexity of ¢. For the base case, ¢
can be a constant symbol or one of the variables x1, ..., x,. If
t = ¢, then ValM(t) =M= ValM(t) If t = x;, s1(x;) = s9(x;)
by the hypothe51s of the proposition, and so Vals1 () = s1(x;) =
s2(x;) = Valy (2).

For the 1nduct1ve step, assume that ¢ = f(¢,...,%) and that
the claim holds for #, ..., . Then

M(t) = ValM (f(t1,.... 1)) =
—fM(Val (t1),....Vall (1))

For j =1, ..., k, the variables of ¢; are among x1, ..., x,. So by
induction hypothesis, ValM (¢) = ValM (7). So,

Val (¢) = Valdl (f (41,.... 1)) =
= M Vald(n),....Vald (1)) =
= fM(Vall (1),....Vall (1)) =
= Vall(f(11,.. ,tk)) = Val)/ (2). O



Proposition 7.14. If the free variables in A are among x1, ..., Xy,
and s1(x;) = so(x;) fori =1, ..., n, then M,s1 £ A iff M, 59 E A.

Proof- We use induction on the complexity of 4. For the base
case, where 4 is atomic, 4 can be: L1, R(¢1,...,%) for a k-place
predicate R and terms ¢, ..., &, or {1 = ¢ for terms #; and .

1. A= 1: bothM,s; £ A and M, sy £ A.
2. A= R(t1,...,4): let M,s; £ A. Then
(ValM(11),...,ValM(4;)) € RM.

Fori=1,..., k, Val L () = Valsz (¢;) by Proposition 7.13.
So we also have (Va.ls2 (t;),. Val L (k) € RM,

3. A =1t =ty: suppose M,s1 £ A. Then Val?l/[(tl) ValM(tg).

So,
Val?f(tl) ValM(tl) (by Proposition 7.13)
= Val?f(tg) (since M, s1 E t = &)

= Val?g(tg) (by Proposition 7.13),
so M,so E 11 = Io.

Now assume M, 51 £ Biff M, sy £ B for all formulas B less com-
plex than A. The induction step proceeds by cases determined by
the main operator of 4. In each case, we only demonstrate the
forward direction of the biconditional; the proof of the reverse
direction is symmetrical. In all cases except those for the quanti-
fiers, we apply the induction hypothesis to sub-formulas B of 4.
The free variables of B are among those of 4. Thus, if s; and 5o
agree on the free variables of A, they also agree on those of B,
and the induction hypothesis applies to B.

1. A=-B: if M,s; £ A, then M,s; ¥ B, so by the induction
hypothesis, M, sy ¥ B, hence M, sy £ A.



2. A= B A C: exercise.

3. A=BvVv (C: it M,s1 £ A, then M,s; £ Bor M,s; £ C. By
induction hypothesis, M,s3 £ B or M, s9 & C, so M, sy E A.

4. A= B — (C: exercise.

5. A = 3xB: if M,s; £ A, there is an m € |M| so that
M, s1[m/x] £ B. Letlet 5] = s1[m/x] and s; = so[m/x]. The
free variables of B are among x1, ..., x,, and x. s{(x;) =

sQ’(xi), since s; and s; are x-variants of s; and sy, respec-

tively, and by hypothesis s1(x;) = so(x;). s{(x) = s;(x) = m

by the way we have defined 5] and s;. Then the induction hy-

pothesis applies to B and sj, s;, so M,s, £ B. Hence, since
sy = sa[m/x], there is an m € |[M| such that M £ Bsy[m/x],

and so M, so E A.

6. A =VxB: exercise.

By induction, we get that M, s; £ A iff M, sy £ A whenever the free
variables in 4 are among x, ..., x, and s1(x;) = so(x;) for i =1,
e, M. O

Sentences have no free variables, so any two variable assign-
ments assign the same things to all the (zero) free variables of any
sentence. The proposition just proved then means that whether
or not a sentence is satisfied in a structure relative to a variable
assignment is completely independent of the assignment. We’ll
record this fact. It justifies the definition of satisfaction of a sen-
tence in a structure (without mentioning a variable assignment)
that follows.

Corollary 7.15. If A is a sentence and s a variable assignment, then
M.,s e AiffM,s" £ A for every variable assignment s’.

Proof. Let s’ be any variable assignment. Since 4 is a sentence, it
has no free variables, and so every variable assignment s’ trivially
assigns the same things to all free variables of 4 as does s. So the



condition of Proposition 7.14 is satisfied, and we have M,s £ 4
iff M,s” £ A. O

Definition 7.16. If 4 is a sentence, we say that a structure M
satisfies A, M £ A, iff M, s & A for all variable assignments s.

If M £ A, we also simply say that A4 is true in M.

Proposition 7.17. Let M be a structure, A be a sentence, and s a
variable assignment. M £ A iff M,s £ A.

Proof. Exercise. o

Proposition 7.18. Suppose A(x) only contains x free, and M is
a structure. Then:

7. Mk dx A(x) iff M,s £ A(x) for at least one variable assign-
ment s.

2. M eVx A(x) iff M,s £ A(x) for all variable assignments s.

Proof. Exercise. o

7.6 Extensionality

Extensionality, sometimes called relevance, can be expressed in-
formally as follows: the only factors that bears upon the satisfac-
tion of formula A4 in a structure M relative to a variable assign-
ment s, are the size of the domain and the assignments made
by M and s to the elements of the language that actually appear
in 4.

One immediate consequence of extensionality is that where
two structures M and M’ agree on all the elements of the lan-
guage appearing in a sentence 4 and have the same domain, M
and M’ must also agree on whether or not 4 itself is true.



Proposition 7.19 (Extensionality). Let A be a formula, and M;
and My be structures with |Mi| = |My|, and s a variable assignment
on M| = [My|. If M = M2, RMy = RM2 qnd M = M2 for every
constant symbol ¢, relation symbol R, and function symbol f occurring
in A, then My,s £ A iff My, s £ A.

Proof. First prove (by induction on ¢) that for every term,
Va1 (¢) = Val™2(z). Then prove the proposition by induction
on 4, making use of the claim just proved for the induction basis
(where A is atomic). O

Corollary 7.20 (Extensionality for Sentences). Let A be a sen-
tence and My, My as in Proposition 7.179. Then My £ A iff Mg E A.

Proof. Follows from Proposition 7.19 by Corollary 7.15. O

Moreover, the value of a term, and whether or not a structure
satisfies a formula, only depends on the values of its subterms.

Proposition 7.21. Let M be a structure, t and t’ terms, and s a

variable assignment. Then Valiw (t[¢'/x]) = Val?/[IValy (#)/3] (2).

Proof. By induction on ¢.

1. If ¢ is a constant, say, ¢ = ¢, then £[¢"/x] = ¢, and Valﬂw(c) =
M _ M
M= Vals [Val™ () x] (¢).

2. If ¢ is a variable other than x, say, ¢ = y, then ¢[¢'/x] = y,

and Val(y) = ValZsV[IValM(t')/xj (y) since s ~, s[ValM (¢")/x].

3. If t = x, then ¢[#//x] = ¢’. But Val??Vallxw ROE Val (1)
by definition of s[ValZSVI(t') /x].



4. Ift = f(44,...,t,) then we have:
ValY (¢[¢//x]) =

= ValM (f ([t [x],. ... t[t'/]))
by definition of #[¢’/x]

= MVaM (4 [t /x]),. .., ValM (tn[t’/xm
by definition of ValM (f(..
M M
=f (Val VM () 5] (tl), ., Val [Vl () x ](tn))

by induction hypothesis

= ValMValM(t Nx ](t) by definition of ValMValM(t Nx ](f( )

Proposition 7.22. Let M be a structure, A a formula, t’ a term, and
s a variable assignment. Then M,s £ A[t’/x] i]fM,s[ValstI(t')/x] E
A.

Proof. Exercise. o

The point of Propositions 7.21 and 7.22 is the following. Sup-
pose we have a term ¢ or a formula 4 and some term ¢’, and we
want to know the value of ¢#[#’/x] or whether or not A[¢'/x] is sat-
isfied in a structure M relative to a variable assignment s. Then
we can either perform the substitution first and then consider the
value or satisfaction relative to M and s, or we can first deter-
mine the value m = Val¥ (¢') of ¢’ in M relative to s, change the
variable assignment to s[m/x] and then consider the value of ¢
in M and s[m/x], or whether M,s[m/x] £ A. Propositions 7.21
and 7.22 guarantee that the answer will be the same, whichever
way we do it.

7.7 Semantic Notions

Give the definition of structures for first-order languages, we can
define some basic semantic properties of and relationships be-
tween sentences. The simplest of these is the notion of validity



of a sentence. A sentence is valid if it is satisfied in every struc-
ture. Valid sentences are those that are satisfied regardless of how
the non-logical symbols in it are interpreted. Valid sentences are
therefore also called logical truths—they are true, i.e., satisfied, in
any structure and hence their truth depends only on the logical
symbols occurring in them and their syntactic structure, but not
on the non-logical symbols or their interpretation.

Definition 7.23 (Validity). A sentence A4 is valid, r A, iff M £ A
for every structure M.

Definition 7.24 (Entailment). A set of sentences I entails a
sentence 4, I" k 4, iff for every structure M with M £ I, M E A.

Definition 7.25 (Satisfiability). A set of sentences I is satisfi-
able if M £ I" for some structure M. If I" is not satisfiable it is
called unsatisfiable.

Proposition 7.26. A sentence A is valid iff I' £ A for every set of
sentences I'.

Proof. For the forward direction, let 4 be valid, and let I" be a
set of sentences. Let M be a structure so that M £ I". Since 4 is
valid, M £ A, hence I" £ A.

For the contrapositive of the reverse direction, let 4 be in-
valid, so there is a structure M with M ¢ A. When I = {T}, since
T is valid, M £ I'. Hence, there is a structure M so that M £ I”
but M £ A, hence I" does not entail A. O



Proposition 7.27. I' £ A iff I’ U {—A4} is unsatisfiable.

Proof. For the forward direction, suppose I" £ 4 and suppose to
the contrary that there is a structure M so that M £ " U {—4}.
Since MET and I' £ A, M £ A. Also, since M e I' U {—=A}, M E
-4, so we have both M £ A and M ¥ A, a contradiction. Hence,
there can be no such structure M, so I U {4} is unsatisfiable.
For the reverse direction, suppose I" U {—A4} is unsatisfiable.
So for every structure M, either M ¥ I or M £ A. Hence, for
every structure M with M e I', M e 4, so I £ A. O

Proposition 7.28. IfI" CI'" and I' £ A, then "' £ A.

Proof. Suppose that I' € I'" and I' £ A. Let M be such that
M ET’;then Mk I', and since I" £ 4, we get that M £ 4. Hence,
whenever M eI’ M A,so I’ £ A. O

Theorem 7.29 (Semantic Deduction Theorem). I"U {4} - B
iff( = A— B.

Proof. For the forward direction, let I" U {4} £ B and let M be a
structure so that M £ I'. If M £ A, then M = I U {A}, so since
I' U {4} entails B, we get M £ B. Therefore, M £ 4 — B, so
I' e A— B.

For the reverse direction, let I' F A— B and M be a structure
sothat M £ ' U {A4}. Then M £ I', so M £ A — B, and since
M = A, M = B. Hence, whenever M £ I' U {4}, M £ B, so
I' U{A4} e B. O

Proposition 7.30. Let M be a structure, and A(x) a formula with
one free variable x, and t a closed term. Then:

7. A(¢) F Ix A(x)



2. Vx A(x) E A(2)

Proof. 1. Suppose M k A(¢). Let s be a variable assignment
with s(x) = Val™(¢). Then M,s £ A(t) since A(¢) is
a sentence. By Proposition 7.22, M,s £ A(x). By Propo-
sition 7.18, M £ Jx A(x).

2. Exercise. |

Summary

The semantics for a first-order language is given by a structure
for that language. It consists of a domain and elements of that
domain are assigned to each constant symbol. Function symbols
are interpreted by functions and relation symbols by relation on
the domain. A function from the set of variables to the domain
is a variable assignment. The relation of satisfaction relates
structures, variable assignments and formulas; M, s £ A4 is defined
by induction on the structure of 4. M,s £ A4 only depends on
the interpretation of the symbols actually occurring in 4, and in
particular does not depend on s if 4 contains no free variables.
So if 4 is a sentence, M £ A if M, s £ A for any (or all) s.

The satisfaction relation is the basis for all semantic notions.
A sentence is valid, E 4, if it is satisfied in every structure. A
sentence 4 is entailed by set of sentences I', I' £ 4, iff M £ A for
all M which satisfy every sentence in I". A set I” is satisfiable iff
there is some structure that satisfies every sentence in I, other-
wise unsatisfiable. These notions are interrelated, e.g., I" & A4 iff
I' U {=A4} is unsatisfiable.

Problems

Problem 7.1. Is N, the standard model of arithmetic, covered?
Explain.



Problem 7.2. Let £ = {¢, f,A} with one constant symbol, one
one-place function symbol and one two-place predicate symbol,
and let the structure M be given by

1. M| ={1,2,3}

2. M=3

3. M) =2,M(@2)=3,fM(3) =2
4. AM = {(1,2),(2,3),(3,3)}

(a) Let s(v) =1 for all variables v. Find out whether

M,s e Ix (A(f(2),¢c) > Vy (A(p,x) V A(f (9),%)))

Explain why or why not.
(b) Give a different structure and variable assignment in
which the formula is not satisfied.

Problem 7.3. Complete the proof of Proposition 7.14.
Problem 7.4. Prove Proposition 7.17
Problem 7.5. Prove Proposition 7.18.

Problem 7.6. Suppose & is a language without function sym-
bols. Given a structure M, ¢ a constant symbol and a € |M]|,
define M[a/c] to be the structure that is just like M, except that
¢Mle/cl = 4 Define M |= 4 for sentences A by:

1. A=1: notM |E A.

2. A= R(dy,....d,): M |E Aiff (dM,...,dM) e RM.
3. A=d =dy: M||:Aiﬂ'df4:dé".

4. A=-B: M |E A iff not M | B.

5 A=(BAC): M|AiIf M |EBandM |E C.



6. A= (BVC): M|Aif M |E B or M |E C (or both).
7. A= (B—C): M| Aiff notM | Bor M |E C (or both).
8. A=VxB: M |EAiffforall ac |M|, Mla/c] |E Blc/x], if

¢ does not occur in B.

9.4 =3xB: M | A iff there is an a € |[M]| such that
Mila/c] |E Blc/x], if ¢ does not occur in B.

Let x1, ..., x, be all free variables in 4, ci, ..., ¢, constant sym-
bols not in 4, a1, ..., a, € |[M|, and s(x;) = a;.

Show that M,s £ A iff Mlai/c1,....an/cnl 1=
Aler/x1] ... [en/xn].

(This problem shows that it is possible to give a semantics for
first-order logic that makes do without variable assignments.)

Problem 7.7. Suppose that f is a function symbol not in 4(x, y).
Show that there is a structure M such that M £ Vx 3y A(x,y) iff
there is an M’ such that M’ £ Vx A(x, f (x)).

(This problem is a special case of what’s known as Skolem’s
Theorem; VxA(x,f(x)) is called a Skolem normal form of
Vx 3y A(x,y).)

Problem 7.8. Carry out the proof of Proposition 7.19 in detail.
Problem 7.9. Prove Proposition 7.22

Problem 7.10. 1. Show that I" £ L iff I is unsatisfiable.
2. Show that I' U {4} £ L iff I £ = A.

3. Suppose ¢ does not occur in 4 or I". Show that I" £ Vx 4 iff
e Alc/x].

Problem 7.11. Complete the proof of Proposition 7.30.



CHAPTER 8

8.1 Introduction

The development of the axiomatic method is a significant
achievement in the history of science, and is of special impor-
tance in the history of mathematics. An axiomatic development
of a field involves the clarification of many questions: What is the
field about? What are the most fundamental concepts? How are
they related? Can all the concepts of the field be defined in terms
of these fundamental concepts? What laws do, and must, these
concepts obey?

The axiomatic method and logic were made for each other.
Formal logic provides the tools for formulating axiomatic theo-
ries, for proving theorems from the axioms of the theory in a
precisely specified way, for studying the properties of all systems
satisfying the axioms in a systematic way.

Definition 8.1. A set of sentences I is closed iff, whenever I' £ A
then A € I'. The closure of a set of sentences I' is {A: ' £ A}.

We say that I" is axiomatized by a set of sentences 4 if I is the
closure of 4.
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We can think of an axiomatic theory as the set of sentences
that is axiomatized by its set of axioms 4. In other words, when
we have a first-order language which contains non-logical sym-
bols for the primitives of the axiomatically developed science we
wish to study, together with a set of sentences that express the
fundamental laws of the science, we can think of the theory as
represented by all the sentences in this language that are entailed
by the axioms. This ranges from simple examples with only a
single primitive and simple axioms, such as the theory of partial
orders, to complex theories such as Newtonian mechanics.

The important logical facts that make this formal approach
to the axiomatic method so important are the following. Suppose
I" is an axiom system for a theory, i.e., a set of sentences.

1. We can state precisely when an axiom system captures an
intended class of structures. That is, if we are interested
in a certain class of structures, we will successfully capture
that class by an axiom system /" iff the structures are exactly
those M such that M e I'.

2. We may fail in this respect because there are M such that
M e I', but M is not one of the structures we intend. This
may lead us to add axioms which are not true in M.

3. If we are successful at least in the respect that I is true
in all the intended structures, then a sentence A4 is true in
all intended structures whenever I £ 4. Thus we can use
logical tools (such as derivation methods) to show that sen-
tences are true in all intended structures simply by showing
that they are entailed by the axioms.

4. Sometimes we don’t have intended structures in mind, but
instead start from the axioms themselves: we begin with
some primitives that we want to satisfy certain laws which
we codify in an axiom system. One thing that we would
like to verify right away is that the axioms do not contradict
each other: if they do, there can be no concepts that obey



these laws, and we have tried to set up an incoherent theory.
We can verify that this doesn’t happen by finding a model
of I'. And if there are models of our theory, we can use
logical methods to investigate them, and we can also use
logical methods to construct models.

5. The independence of the axioms is likewise an important
question. It may happen that one of the axioms is actu-
ally a consequence of the others, and so is redundant. We
can prove that an axiom 4 in I" is redundant by proving
I'\ {4} £ A. We can also prove that an axiom is not redun-
dant by showing that (I" \ {4}) U {—4} is satisfiable. For
instance, this is how it was shown that the parallel postulate
is independent of the other axioms of geometry.

6. Another important question is that of definability of con-
cepts in a theory: The choice of the language determines
what the models of a theory consists of. But not every
aspect of a theory must be represented separately in its
models. For instance, every ordering < determines a corre-
sponding strict ordering <—given one, we can define the
other. So it is not necessary that a model of a theory in-
volving such an order must also contain the corresponding
strict ordering. When is it the case, in general, that one
relation can be defined in terms of others? When is it im-
possible to define a relation in terms of other (and hence
must add it to the primitives of the language)?

8.2 [Expressing Properties of Structures

It is often useful and important to express conditions on func-
tions and relations, or more generally, that the functions and re-
lations in a structure satisfy these conditions. For instance, we
would like to have ways of distinguishing those structures for a
language which “capture” what we want the predicate symbols
to “mean” from those that do not. Of course we’re completely



free to specify which structures we “intend,” e.g., we can specify
that the interpretation of the predicate symbol < must be an or-
dering, or that we are only interested in interpretations of & in
which the domain consists of sets and € is interpreted by the “is
an element of” relation. But can we do this with sentences of the
language? In other words, which conditions on a structure M can
we express by a sentence (or perhaps a set of sentences) in the
language of M? There are some conditions that we will not be
able to express. For instance, there is no sentence of &, which is
only true in a structure M if |[M| = N. We cannot express “the do-
main contains only natural numbers.” But there are “structural
properties” of structures that we perhaps can express. Which
properties of structures can we express by sentences? Or, to put
it another way, which collections of structures can we describe as
those making a sentence (or set of sentences) true?

Definition 8.2 (Model of a set). Let I" be a set of sentences in
a language &. We say that a structure M is a model of I' if M £ A
forall A er.

Example 8.3. The sentence Yxx < x is true in M iff <M is a
reflexive relation. The sentence VxVy ((x < yAy < x) = x =y) is
true in M iff <M is anti-symmetric. The sentence VxVyVz ((x <
YAy < 2z)—x < z)is true in M iff <M is transitive. Thus, the
models of

{ Vxx<ux,
VaVy((x <yAy<x)—>x=9),
VaVyVz((x <yAy<2z)—>x<2z) }
are exactly those structures in which <M is reflexive, anti-

symmetric, and transitive, i.e., a partial order. Hence, we can
take them as axioms for the first-order theory of partial orders.



8.3 Examples of First-Order Theories

Example 8.4. The theory of strict linear orders in the lan-
guage £ is axiomatized by the set

Vx—x < x,
VaVy((x <yVy<x)Vx=y),
VaVyVz ((x <y Ay <2z)—>x<2)

It completely captures the intended structures: every strict linear
order is a model of this axiom system, and vice versa, if R is a
linear order on a set X, then the structure M with |M| = X and
<M = R is a model of this theory.

Example 8.5. The theory of groups in the language 1 (constant
symbol), - (two-place function symbol) is axiomatized by

Vax(x-1)=x
VEVyVz (x- (p-2) = ((x-3) - 2)
Vxdy(x-y)=1

Example 8.6. The theory of Peano arithmetic is axiomatized by
the following sentences in the language of arithmetic Z4.

VxVy(x' =y > x=y)

Vxo # x’

Vx(x+0)=x

VaVy (x+)') = (x+y)
Vx(xxX0)=0

VaVy (¥ 3') = ((x X 9) + %)
VaVy (x <y 3z (2" +x) =9y))

plus all sentences of the form

(A(0) AVx (A(x) = A(x"))) — Vx A(x)



Since there are infinitely many sentences of the latter form, this
axiom system is infinite. The latter form is called the induction
schema. (Actually, the induction schema is a bit more complicated
than we let on here.)

The last axiom is an explicit definition of <.

Example 8.7. The theory of pure sets plays an important role
in the foundations (and in the philosophy) of mathematics. A set
is pure if all its elements are also pure sets. The empty set counts
therefore as pure, but a set that has something as an element that
is not a set would not be pure. So the pure sets are those that are
formed just from the empty set and no “urelements,” i.e., objects
that are not themselves sets.

The following might be considered as an axiom system for a
theory of pure sets:

dx-dyyex
VaVy(Vz(z ex e z€y) 5 x=y)
VxVy3dzVu(uezeo (u=xVu=y))
VxdpVz(z ey Ju(zeunuex))

plus all sentences of the form

JxVy (y € x & A(y))

The first axiom says that there is a set with no elements (i.e., 0
exists); the second says that sets are extensional; the third that
for any sets X and Y, the set {X,Y} exists; the fourth that for
any set X, the set UX exists, where UX is the union of all the
elements of X.

The sentences mentioned last are collectively called the naive
comprehension scheme. It essentially says that for every A(x), the
set {x : A(x)} exists—so at first glance a true, useful, and perhaps
even necessary axiom. It is called “naive” because, as it turns out,
it makes this theory unsatisfiable: if you take A(y) to be -y € y,
you get the sentence

JxVy(yex o yey)



and this sentence is not satisfied in any structure.

Example 8.8. In the area of mereology, the relation of parthood is
a fundamental relation. Just like theories of sets, there are theo-
ries of parthood that axiomatize various conceptions (sometimes
conflicting) of this relation.

The language of mereology contains a single two-place pred-
icate symbol P, and P(x,y) “means” that x is a part of y. When
we have this interpretation in mind, a structure for this language
is called a parthood structure. Of course, not every structure for a
single two-place predicate will really deserve this name. To have
a chance of capturing “parthood,” PM must satisfy some condi-
tions, which we can lay down as axioms for a theory of parthood.
For instance, parthood is a partial order on objects: every object
is a part (albeit an improper part) of itself; no two different objects
can be parts of each other; a part of a part of an object is itself
part of that object. Note that in this sense “is a part of” resembles
“is a subset of,” but does not resemble “is an element of” which
is neither reflexive nor transitive.

Vx P(x,x),

VaVy (P(x.9) A P(3,x)) = x =),
VaVyVz ((P(x,9) A P(y,2)) — P(x,2)),

Moreover, any two objects have a mereological sum (an object
that has these two objects as parts, and is minimal in this respect).

VxVy3zVu (P(z,u) & (P(x,u) A P(y,u)))

These are only some of the basic principles of parthood consid-
ered by metaphysicians. Further principles, however, quickly be-
come hard to formulate or write down without first introducting
some defined relations. For instance, most metaphysicians inter-
ested in mereology also view the following as a valid principle:
whenever an object x has a proper part y, it also has a part z that
has no parts in common with y, and so that the fusion of y and
z is x.



8.4 Expressing Relations in a Structure

One main use formulas can be put to is to express properties and
relations in a structure M in terms of the primitives of the lan-
guage & of M. By this we mean the following: the domain of M
is a set of objects. The constant symbols, function symbols, and
predicate symbols are interpreted in M by some objects in|M|,
functions on |M|, and relations on |[M|. For instance, if A% is in

%, then M assigns to it a relation R = AZ". Then the formula
A(Q)(vl, Vo) expresses that very relation, in the following sense: if a
variable assignment s maps v; to a € |[M| and v, to b € [M|, then

Rab iff M,sk Al(vi, ).

Note that we have to involve variable assignments here: we can’t
just say “Rab iff M A%(a,b)” because a and b are not symbols
of our language: they are elements of |M|.

Since we don’t just have atomic formulas, but can combine
them using the logical connectives and the quantifiers, more com-
plex formulas can define other relations which aren’t directly built
into M. We're interested in how to do that, and specifically, which
relations we can define in a structure.

Definition 8.9. Let A(v1,...,v,) be aformula of £ in which only
Vi,..., Vu occur free, and let M be a structure for &£. A(vy,...,Vv,)
expresses the relation R C [M|" iff

Raj...a, iff M,se A(wn,...,V,)

for any variable assignment s with s(v;) =a; (i =1,...,n).

Example 8.10. In the standard model of arithmetic N, the for-
mula v < v V v = vy expresses the < relation on N. The
formula vy = v{ expresses the successor relation, i.e., the relation
R C N? where Rum holds if m is the successor of n. The for-
mula v; = v, expresses the predecessor relation. The formulas
Jvg (v3 #0 A vg = (v1 +v3)) and 3vz (v1 + v3’) = vy both express



the < relation. This means that the predicate symbol < is actually
superfluous in the language of arithmetic; it can be defined.

This idea is not just interesting in specific structures, but gen-
erally whenever we use a language to describe an intended model
or models, i.e., when we consider theories. These theories often
only contain a few predicate symbols as basic symbols, but in the
domain they are used to describe often many other relations play
an important role. If these other relations can be systematically
expressed by the relations that interpret the basic predicate sym-
bols of the language, we say we can define them in the language.

8.5 The Theory of Sets

Almost all of mathematics can be developed in the theory of
sets. Developing mathematics in this theory involves a number
of things. First, it requires a set of axioms for the relation €. A
number of different axiom systems have been developed, some-
times with conflicting properties of €. The axiom system known
as ZFC, Zermelo-Fraenkel set theory with the axiom of choice
stands out: it is by far the most widely used and studied, because
it turns out that its axioms suffice to prove almost all the things
mathematicians expect to be able to prove. But before that can
be established, it first is necessary to make clear how we can even
express all the things mathematicians would like to express. For
starters, the language contains no constant symbols or function
symbols, so it seems at first glance unclear that we can talk about
particular sets (such as @ or N), can talk about operations on sets
(such as X UY and (X)), let alone other constructions which
involve things other than sets, such as relations and functions.
To begin with, “is an element of” is not the only relation we
are interested in: “is a subset of” seems almost as important. But
we can define “is a subset of” in terms of “is an element of.” To
do this, we have to find a formula 4(x,y) in the language of set
theory which is satisfied by a pair of sets (X,Y) iff X C Y. But X



is a subset of Y just in case all elements of X are also elements
of Y. So we can define C by the formula

Vz(zex—>z€y)

Now, whenever we want to use the relation C in a formula, we
could instead use that formula (with x and y suitably replaced,
and the bound variable z renamed if necessary). For instance,
extensionality of sets means that if any sets x and y are contained
in each other, then x and y must be the same set. This can be
expressed by Vx Vy ((x C y Ay C x) = x =), or, if we replace C
by the above definition, by

VaVy ((Vz(zex—>zey) AVz(z ey > z€ex)) D> x=y).

This is in fact one of the axioms of ZFC, the “axiom of exten-
sionality.”

There is no constant symbol for (), but we can express “x
is empty” by =3yy € x. Then “0 exists” becomes the sen-
tence 3x -3Jy y € x. This is another axiom of ZFC. (Note that
the axiom of extensionality implies that there is only one empty
set.) Whenever we want to talk about 0 in the language of set
theory, we would write this as “there is a set that’s empty and
...” As an example, to express the fact that 0 is a subset of every
set, we could write

Jx(-Tyy e x AVzx C 2)

where, of course, x C z would in turn have to be replaced by its
definition.

To talk about operations on sets, such has X UY and p(X),
we have to use a similar trick. There are no function symbols
in the language of set theory, but we can express the functional
relations X UY = Z and p(X) =Y by

Vu((uexVuey) oucz)

Vu(u Cx e ucy)



since the elements of X U Y are exactly the sets that are either
elements of X or elements of Y, and the elements of p(X) are
exactly the subsets of X. However, this doesn’t allow us to use
x Uy or p(x) as if they were terms: we can only use the entire
formulas that define the relations X UY = Z and p(X) =Y. In
fact, we do not know that these relations are ever satisfied, i.e.,
we do not know that unions and power sets always exist. For
instance, the sentence Vx dy p(x) = y is another axiom of ZFC
(the power set axiom).

Now what about talk of ordered pairs or functions? Here we
have to explain how we can think of ordered pairs and functions
as special kinds of sets. One way to define the ordered pair (x, y)
is as the set {{x},{x,y}}. But like before, we cannot introduce
a function symbol that names this set; we can only define the

relation (x,y) = z, i.e.,, {{x},{x.y}} = =
Vu(uezeo Vo(veuov=x)VVo(veueo (v=xVo=y))))

This says that the elements u of z are exactly those sets which
either have x as its only element or have x and y as its only
elements (in other words, those sets that are either identical to
{x} or identical to {x,y}). Once we have this, we can say further
things, e.g., that X X Y = Z:

Vz(zeZeoTxdy(xe X AyeY Ax,y) =2))

Afunction f: X — Y canbe thought of as the relation f(x) =
9, i.e., as the set of pairs {(x,y) : f(x) = y}. We can then say that
a set f is a function from X to Y if (a) it is a relation C X X Y,
(b) it is total, i.e., for all x € X there is some y € ¥ such that
(x,9) € f and (c) it is functional, i.e., whenever (x, y),(x,y") € f,
y =y (because values of functions must be unique). So “f is a
function from X to Y” can be written as:

Vu(ue f—-IxTy(xe X AyeY Ax,y)=u)) A
Vx(x € X = (3y(y € Y Amaps(f,x,9)) A
(Vy Yy’ ((maps(f.x.y) A maps(f.x.y')) =y =)



where maps(f,x,y) abbreviates v (v € f A (x,y) = v) (this for-
mula expresses “f(x) = y”).

It is now also not hard to express that f: X — Y is injective,
for instance:

[ X oY AVaVx' (xeXAx' € X A
Jy (maps(f,x,y) Amaps(f,x",y))) — x = x")

A function f: X — Y is injective iff, whenever f maps x,x" € X
to a single y, x = x". If we abbreviate this formula as inj(f, X,Y),
we’re already in a position to state in the language of set theory
something as non-trivial as Cantor’s theorem: there is no injective
function from p(X) to X:

VX VY (9(X) = ¥ — ~3f inj(f.Y. X))

One might think that set theory requires another axiom that
guarantees the existence of a set for every defining property. If
A(x) is a formula of set theory with the variable x free, we can
consider the sentence

JyVx (x € y & A(x)).

This sentence states that there is a set y whose elements are all
and only those x that satisfy A(x). This schema is called the
“comprehension principle.” It looks very useful; unfortunately it
is inconsistent. Take 4(x) = —x € x, then the comprehension
principle states

dyVx(x €y o x ¢ x),

i.e., it states the existence of a set of all sets that are not elements
of themselves. No such set can exist—this is Russell’s Paradox.
ZFC, in fact, contains a restricted—and consistent—version of
this principle, the separation principle:

Vz3yVx (x €y & (x € 2 A A(x)).



8.6 Expressing the Size of Structures

There are some properties of structures we can express even with-
out using the non-logical symbols of a language. For instance,
there are sentences which are true in a structure iff the domain of
the structure has at least, at most, or exactly a certain number z
of elements.

Proposition 8.11. The sentence
AZn = 3x1 3x2 ce Hx”

(X1 # X9 AX]T FX3AXLF XL N AXLF Xy A
X9 F X3 AN X9 F X4 N+ NXgF Xy N

Xp-1 # xn)

is true in a structure M iff M| contains at least n elements. Conse-
quently, M £ = A1 iff M| contains at most n elements.

Proposition 8.12. The sentence

A_p = 3dxq Axg ... Ax,
(X1 # X9 AX]T FX3AXLF XL N AXL# Xy A
X9 F X3 NAXg F X4 N+ ANXgF Xy N

Xn—1 F Xp N\
Yy =xV---Vy=ax))

is true in a structure M iff M| contains exactly n elements.



Proposition 8.13. A structure is infinite iff it is a model of

{AZI’AZQ,AZ3,. oo }.

There is no single purely logical sentence which is true in M iff
|M| is infinite. However, one can give sentences with non-logical
predicate symbols which only have infinite models (although not
every infinite structure is a model of them). The property of being
a finite structure, and the property of being a uncountable struc-
ture cannot even be expressed with an infinite set of sentences.
These facts follow from the compactness and Léwenheim-Skolem
theorems.

Summary

Sets of sentences in a sense describe the structures in which they
are jointly true; these structures are their models. Conversely, if
we start with a structure or set of structures, we might be inter-
ested in the set of sentences they are models of, this is the theory
of the structure or set of structures. Any such set of sentences has
the property that every sentence entailed by them is already in
the set; they are closed. More generally, we call a set I" a theory
if it is closed under entailment, and say I" is axiomatized by 4
is I' consists of all sentences entailed by 4.

Mathematics yields many examples of theories, e.g., the the-
ories of linear orders, of groups, or theories of arithmetic, e.g.,
the theory axiomatized by Peano’s axioms. But there are many
examples of important theories in other disciplines as well, e.g.,
relational databases may be thought of as theories, and meta-
physics concerns itself with theories of parthood which can be
axiomatized.

One significant question when setting up a theory for study is
whether its language is expressive enough to allow us to formu-
late everything we want the theory to talk about, and another is
whether it is strong enough to prove what we want it to prove. To
express a relation we need a formula with the requisite number



of free variables. In set theory, we only have € as a relation sym-
bol, but it allows us to express x C y using Vu (z € x = u € y).
Zermelo-Fraenkel set theory ZFC, in fact, is strong enough to
both express (almost) every mathematical claim and to (almost)
prove every mathematical theorem using a handful of axioms and
a chain of increasingly complicated definitions such as that of C.

Problems

Problem 8.1. Find formulas in &4 which define the following
relations:

1. n is between 7 and j;
2. n evenly divides m (i.e., m is a multiple of n);

3. m is a prime number (i.e., no number other than 1 and =
evenly divides z).

Problem 8.2. Suppose the formula A(vq,vy) expresses the rela-
tion R C |[M|? in a structure M. Find formulas that express the
following relations:

1. the inverse R7! of R;
2. the relative product R | R;

Can you find a way to express R*, the transitive closure of R?

Problem 8.3. Let & be the language containing a 2-place predi-
cate symbol < only (no other constant symbols, function symbols
or predicate symbols— except of course =). Let N be the struc-
ture such that [N| = N, and <N = {(n,m) : n < m}. Prove the
following:

1. {0} is definable in N;
2. {1} is definable in N;



3. {2} is definable in N;
4. for each n € N, the set {n} is definable in N;
5. every finite subset of |[N| is definable in N

6. every co-finite subset of |[N| is definable in N (where X C N
is co-finite iff N \ X is finite).

Problem 8.4. Show that the comprehension principle is incon-
sistent by giving a derivation that shows

JyVx(x ey x¢x)k L.

It may help to first show (4 — —A4) A (=4 — A4) + L.



CHAPTER 9

9.1 Introduction

Logics commonly have both a semantics and a derivation system.
The semantics concerns concepts such as truth, satisfiability, va-
lidity, and entailment. The purpose of derivation systems is to
provide a purely syntactic method of establishing entailment and
validity. They are purely syntactic in the sense that a derivation
in such a system is a finite syntactic object, usually a sequence
(or other finite arrangement) of sentences or formulas. Good
derivation systems have the property that any given sequence or
arrangement of sentences or formulas can be verified mechani-
cally to be “correct.”

The simplest (and historically first) derivation systems for
first-order logic were axiomatic. A sequence of formulas counts
as a derivation in such a system if each individual formula in it
is either among a fixed set of “axioms” or follows from formulas
coming before it in the sequence by one of a fixed number of “in-
ference rules”—and it can be mechanically verified if a formula
is an axiom and whether it follows correctly from other formulas
by one of the inference rules. Axiomatic derivation systems are
easy to describe—and also easy to handle meta-theoretically—
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but derivations in them are hard to read and understand, and
are also hard to produce.

Other derivation systems have been developed with the aim
of making it easier to construct derivations or easier to under-
stand derivations once they are complete. Examples are natural
deduction, truth trees, also known as tableaux proofs, and the se-
quent calculus. Some derivation systems are designed especially
with mechanization in mind, e.g., the resolution method is easy
to implement in software (but its derivations are essentially im-
possible to understand). Most of these other derivation systems
represent derivations as trees of formulas rather than sequences.
This makes it easier to see which parts of a derivation depend on
which other parts.

So for a given logic, such as first-order logic, the different
derivation systems will give different explications of what it is for
a sentence to be a theorem and what it means for a sentence to be
derivable from some others. However that is done (via axiomatic
derivations, natural deductions, sequent derivations, truth trees,
resolution refutations), we want these relations to match the se-
mantic notions of validity and entailment. Let’s write - A4 for “4 is
a theorem” and “I" + A” for “4 is derivable from I".” However
+ is defined, we want it to match up with , that is:

1. - 4if and only if F 4
o. 't Aifandonly if I' £ 4

The “only if” direction of the above is called soundness. A deriva-
tion system is sound if derivability guarantees entailment (or va-
lidity). Every decent derivation system has to be sound; unsound
derivation systems are not useful at all. After all, the entire pur-
pose of a derivation is to provide a syntactic guarantee of validity
or entailment. We’ll prove soundness for the derivation systems
we present.

The converse “if” direction is also important: it is called com-
pleteness. A complete derivation system is strong enough to show



that A is a theorem whenever 4 is valid, and that I" + 4 when-
ever I' £ A. Completeness is harder to establish, and some logics
have no complete derivation systems. First-order logic does. Kurt
Godel was the first one to prove completeness for a derivation
system of first-order logic in his 1929 dissertation.

Another concept that is connected to derivation systems is
that of consistency. A set of sentences is called inconsistent if any-
thing whatsoever can be derived from it, and consistent other-
wise. Inconsistency is the syntactic counterpart to unsatisfiablity:
like unsatisfiable sets, inconsistent sets of sentences do not make
good theories, they are defective in a fundamental way. Consis-
tent sets of sentences may not be true or useful, but at least they
pass that minimal threshold of logical usefulness. For different
derivation systems the specific definition of consistency of sets of
sentences might differ, but like -, we want consistency to coincide
with its semantic counterpart, satisfiability. We want it to always
be the case that I" is consistent if and only if it is satisfiable. Here,
the “if” direction amounts to completeness (consistency guaran-
tees satisfiability), and the “only if” direction amounts to sound-
ness (satisfiability guarantees consistency). In fact, for classical
first-order logic, the two versions of soundness and completeness
are equivalent.

9.2 The Sequent Calculus

While many derivation systems operate with arrangements of sen-
tences, the sequent calculus operates with sequents. A sequent is
an expression of the form

Al,...,Am :>Bl,...,Bm,

that is a pair of sequences of sentences, separated by the sequent
symbol =. Either sequence may be empty. A derivation in the se-
quent calculus is a tree of sequents, where the topmost sequents
are of a special form (they are called “initial sequents” or “ax-
ioms”) and every other sequent follows from the sequents imme-



diately above it by one of the rules of inference. The rules of in-
ference either manipulate the sentences in the sequents (adding,
removing, or rearranging them on either the left or the right), or
they introduce a complex formula in the conclusion of the rule.
For instance, the AL rule allows the inference from A,I" = 4 to
AAB,I' = 4, and the —R allows the inference from A,I" = 4,B
tol’ = A4,A— B, forany I', 4, A, and B. (In particular, I" and 4
may be empty.)

The + relation based on the sequent calculus is defined as
follows: I'" + A iff there is some sequence I such that every 4 in
Ip isin I" and there is a derivation with the sequent Iy = 4 at its
root. A is a theorem in the sequent calculus if the sequent = 4
has a derivation. For instance, here is a derivation that shows
that - (A A B) — A4:

A=A
ANB = 4 "
— (AAB) = 4

—R

A set I' is inconsistent in the sequent calculus if there is
a derivation of Iy = (where every 4 € Iy is in I and the right
side of the sequent is empty). Using the rule WR, any sentence
can be derived from an inconsistent set.

The sequent calculus was invented in the 1930s by Gerhard
Gentzen. Because of its systematic and symmetric design, it is
a very useful formalism for developing a theory of derivations.
It is relatively easy to find derivations in the sequent calculus,
but these derivations are often hard to read and their connection
to proofs are sometimes not easy to see. It has proved to be a
very elegant approach to derivation systems, however, and many
logics have sequent calculus systems.

9.3 Natural Deduction

Natural deduction is a derivation system intended to mirror ac-
tual reasoning (especially the kind of regimented reasoning em-



ployed by mathematicians). Actual reasoning proceeds by a num-
ber of “natural” patterns. For instance, proof by cases allows us
to establish a conclusion on the basis of a disjunctive premise,
by establishing that the conclusion follows from either of the dis-
juncts. Indirect proof allows us to establish a conclusion by show-
ing that its negation leads to a contradiction. Conditional proof
establishes a conditional claim “if ...then ...” by showing that
the consequent follows from the antecedent. Natural deduction
is a formalization of some of these natural inferences. Each of
the logical connectives and quantifiers comes with two rules, an
introduction and an elimination rule, and they each correspond
to one such natural inference pattern. For instance, —Intro cor-
responds to conditional proof, and VElim to proof by cases. A
particularly simple rule is AElim which allows the inference from
AANBto A (or B).

One feature that distinguishes natural deduction from other
derivation systems is its use of assumptions. A derivation in nat-
ural deduction is a tree of formulas. A single formula stands
at the root of the tree of formulas, and the “leaves” of the tree
are formulas from which the conclusion is derived. In natural
deduction, some leaf formulas play a role inside the derivation
but are “used up” by the time the derivation reaches the conclu-
sion. This corresponds to the practice, in actual reasoning, of
introducing hypotheses which only remain in effect for a short
while. For instance, in a proof by cases, we assume the truth of
each of the disjuncts; in conditional proof, we assume the truth
of the antecedent; in indirect proof, we assume the truth of the
negation of the conclusion. This way of introducing hypotheti-
cal assumptions and then doing away with them in the service of
establishing an intermediate step is a hallmark of natural deduc-
tion. The formulas at the leaves of a natural deduction derivation
are called assumptions, and some of the rules of inference may
“discharge” them. For instance, if we have a derivation of B from
some assumptions which include 4, then the —Intro rule allows
us to infer 4 — B and discharge any assumption of the form 4.
(To keep track of which assumptions are discharged at which in-



ferences, we label the inference and the assumptions it discharges
with a number.) The assumptions that remain undischarged at
the end of the derivation are together sufficient for the truth of the
conclusion, and so a derivation establishes that its undischarged
assumptions entail its conclusion.

The relation I" + A based on natural deduction holds iff there
is a derivation in which 4 is the last sentence in the tree, and every
leaf which is undischarged is in I". A4 is a theorem in natural de-
duction iff there is a derivation in which 4 is the last sentence and
all assumptions are discharged. For instance, here is a derivation
that shows that v (4 A B) — A4:

[4 A B]t

P B
(ANB)— 4

AElim
—Intro

The label 1 indicates that the assumption 4 A B is discharged at
the —Intro inference.

A set I' is inconsistent iff I” + L in natural deduction. The
rule L7 makes it so that from an inconsistent set, any sentence
can be derived.

Natural deduction systems were developed by Gerhard
Gentzen and Stanistaw Jaskowski in the 1g30s, and later devel-
oped by Dag Prawitz and Frederic Fitch. Because its inferences
mirror natural methods of proof, it is favored by philosophers.
The versions developed by Fitch are often used in introductory
logic textbooks. In the philosophy of logic, the rules of natural
deduction have sometimes been taken to give the meanings of
the logical operators (“proof-theoretic semantics”).

9.4 Tableaux

While many derivation systems operate with arrangements of sen-
tences, tableaux operate with signed formulas. A signed formula
is a pair consisting of a truth value sign (T or F) and a sentence

TAorFA.



A tableau consists of signed formulas arranged in a downward-
branching tree. It begins with a number of assumptions and con-
tinues with signed formulas which result from one of the signed
formulas above it by applying one of the rules of inference. Each
rule allows us to add one or more signed formulas to the end
of a branch, or two signed formulas side by side—in this case a
branch splits into two, with the two added signed formulas form-
ing the ends of the two branches.

A rule applied to a complex signed formula results in the
addition of signed formulas which are immediate sub-formulas.
They come in pairs, one rule for each of the two signs. For in-
stance, the AT rule applies to T A A B, and allows the addition
of both the two signed formulas T 4 and T B to the end of any
branch containing T 4 A B, and the rule A A BF allows a branch
to be split by adding F 4 and F B side-by-side. A tableau is closed
if every one of its branches contains a matching pair of signed
formulas T 4 and F 4.

The + relation based on tableaux is defined as follows: I" - 4
iff there is some finite set Iy = {B1,...,B,} C I such that there
is a closed tableau for the assumptions

{FATB,...,TB,}

For instance, here is a closed tableau that shows that + (AAB)—A:

1. F(AAB)— A Assumption
2. TAAB —-F1
3. FA —F1
4. TA -T2
5. TB —T2
®

A set I' is inconsistent in the tableau calculus if there is a
closed tableau for assumptions

(TBi,...,TB,}



for some B; € I'.

Tableaux were invented in the 1950s independently by Ev-
ert Beth and Jaakko Hintikka, and simplified and popularized
by Raymond Smullyan. They are very easy to use, since con-
structing a tableau is a very systematic procedure. Because of
the systematic nature of tableaux, they also lend themselves to
implementation by computer. However, a tableau is often hard
to read and their connection to proofs are sometimes not easy to
see. The approach is also quite general, and many different logics
have tableau systems. Tableaux also help us to find structures that
satisfy given (sets of) sentences: if the set is satisfiable, it won’t
have a closed tableau, i.e., any tableau will have an open branch.
The satisfying structure can be “read off” an open branch, pro-
vided every rule it is possible to apply has been applied on that
branch. There is also a very close connection to the sequent cal-
culus: essentially, a closed tableau is a condensed derivation in
the sequent calculus, written upside-down.

9.5 Axiomatic Derivations

Axiomatic derivations are the oldest and simplest logical deriva-
tion systems. Its derivations are simply sequences of sentences.
A sequence of sentences counts as a correct derivation if every
sentence 4 in it satisfies one of the following conditions:

1. A is an axiom, or
2. A is an element of a given set I" of sentences, or
3. A is justified by a rule of inference.

To be an axiom, 4 has to have the form of one of a number of fixed
sentence schemas. There are many sets of axiom schemas that
provide a satisfactory (sound and complete) derivation system for
first-order logic. Some are organized according to the connectives
they govern, e.g., the schemas

A— (B— A) B— (BV () (BAC)— B



are common axioms that govern —, V and A. Some axiom sys-
tems aim at a minimal number of axioms. Depending on the
connectives that are taken as primitives, it is even possible to
find axiom systems that consist of a single axiom.

A rule of inference is a conditional statement that gives a
sufficient condition for a sentence in a derivation to be justified.
Modus ponens is one very common such rule: it says that if 4
and 4 — B are already justified, then B is justified. This means
that a line in a derivation containing the sentence B is justified,
provided that both 4 and 4 — B (for some sentence A) appear
in the derivation before B.

The + relation based on axiomatic derivations is defined as
follows: I + A iff there is a derivation with the sentence A4 as
its last formula (and I" is taken as the set of sentences in that
derivation which are justified by (2) above). 4 is a theorem if 4
has a derivation where I" is empty, i.e., every sentence in the
derivation is justfied either by (1) or (3). For instance, here is
a derivation that shows that + 4 — (B — (B V A)):

1. B—> (BVA)
2. (B> (BVA)—(A— (B— (BVA))
3. A— (B— (BVA)

The sentence on line 1 is of the form of the axiom 4 — (4 V B)
(with the roles of 4 and B reversed). The sentence on line 2 is of
the form of the axiom 4 — (B— A). Thus, both lines are justified.
Line 3 is justified by modus ponens: if we abbreviate it as D, then
line 2 has the form C — D, where C is B — (B V A), i.e., line 1.

A set I' is inconsistent if I" + L. A complete axiom system
will also prove that L — A for any 4, and so if I" is inconsistent,
then I" +- 4 for any A.

Systems of axiomatic derivations for logic were first given by
Gottlob Frege in his 1879 Begriffsschrift, which for this reason is
often considered the first work of modern logic. They were per-
fected in Alfred North Whitehead and Bertrand Russell’s Prin-
cipia Mathematica and by David Hilbert and his students in the



1920s. They are thus often called “Frege systems” or “Hilbert
systems.” They are very versatile in that it is often easy to find
an axiomatic system for a logic. Because derivations have a very
simple structure and only one or two inference rules, it is also rel-
atively easy to prove things about them. However, they are very
hard to use in practice, i.e., it is difficult to find and write proofs.



CHAPTER 10

10.1 Rules and Derivations

For the following, let I', 4,11, A represent finite sequences of sen-
tences.

Definition 10.1 (Sequent). A sequent is an expression of the
form
=4

where I" and 4 are finite (possibly empty) sequences of sentences
of the language &£. I is called the antecedent, while A is the succe-
dent.

The intuitive idea behind a sequent is: if all of the sen-
tences in the antecedent hold, then at least one of the sen-
tences in the succedent holds. That is, if I' = (41,...,4,) and
A={(B1,...,By,), then I' = A holds iff

(AL AN---NAp) > (B1V---VB,)

holds. There are two special cases: where I" is empty and when
A is empty. When I is empty, i.e., m =0, = Aholdsiff Bjv---v
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B, holds. When 4 is empty, i.e., n =0, I’ = holds iff =(4; A
-+ AN Ay) does. We say a sequent is valid iff the corresponding
sentence is valid.

If I" is a sequence of sentences, we write I, 4 for the result
of appending A to the right end of I" (and 4,1 for the result of
appending A to the left end of I"). If 4 is a sequence of sentences
also, then I, 4 is the concatenation of the two sequences.

Definition 10.2 (Initial Sequent). An initial sequent is a se-
quent of one of the following forms:

1. A= A
2. 1 =

for any sentence 4 in the language.

Derivations in the sequent calculus are certain trees of se-
quents, where the topmost sequents are initial sequents, and if a
sequent stands below one or two other sequents, it must follow
correctly by a rule of inference. The rules for LK are divided
into two main types: logical rules and structural rules. The log-
ical rules are named for the main operator of the sentence con-
taining 4 and/or B in the lower sequent. Each one comes in two
versions, one for inferring a sequent with the sentence containing
the logical operator on the left, and one with the sentence on the
right.

10.2 Propositional Rules

Rules for —

I = 4,4 L AT = 4 R
—lA,I_':>A o FﬁA,—'A o

Rules for A



AT = 4

AL
ANB, I = 4 I =44 T = A,B R
B.I = I = AANB A
ANBT = 4 "L
Rules for v
I = 4,4
VR
Al =4 BI=4 I = A, AV B
AVB.I = 4 v I = AB
r = 44ve 'R
Rules for —
=44 Bl =A AT = A,B R
ASBILI = A4.A I = AA>B
10.3 Quantifier Rules
Rules for V
A(t), I = 4 VL I' = 4,A(a) VR
Vx A(x), I = 4 I' = 4,VYxA(x)

In VL, ¢ is a closed term (i.e., one without variables). In VR,
a is a constant symbol which must not occur anywhere in the
lower sequent of the VR rule. We call a the eigenvariable of the
VR inference.

Rules for 3

A(a),I’ = 4 oL I = A,A(¢) R
Ax A(x), = 4 I' = 4,3x A(x)




Again, ¢t is a closed term, and « is a constant symbol which
does not occur in the lower sequent of the 3L rule. We call a the
eigenvariable of the 3L inference.

The condition that an eigenvariable not occur in the lower
sequent of the VR or 3L inference is called the eigenvariable con-
dition.

We use the term “eigenvariable” even though « in the above
rules is a constant symbol. This has historical reasons.

In 3R and VL there are no restrictions on the term ¢. On
the other hand, in the 3L and VR rules, the eigenvariable condi-
tion requires that the constant symbol a does not occur anywhere
outside of A(a) in the upper sequent. It is necessary to ensure
that the system is sound, i.e., only derives sequents that are valid.
Without this condition, the following would be allowed:

A(a) = A(a) | A(a) = A(a) .
T A(x) = A(a) L A(a) = Vad(x) 'R
TxA(x) = Vad(x) 'R TxA(x) = VxA(x)

However, 3x A(x) = Vx A(x) is not valid.

10.4 Structural Rules

We also need a few rules that allow us to rearrange sentences in
the left and right side of a sequent. Since the logical rules require
that the sentences in the premise which the rule acts upon stand
either to the far left or to the far right, we need an “exchange”
rule that allows us to move sentences to the right position. It’s
also important sometimes to be able to combine two identical
sentences into one, and to add a sentence on either side.

Weakening
I' = 4 I' = 4
AT = 4 WV r= a4 "R



Contraction

A AT = 4 I' = 4,4,4A
AT = 4 CL I = 4,4 CR
Exchange
I' A B,JI = 4 XL I' = 4,A,B,A XR
I'B,A,IT = 4 I' = A4,B,A4,A

A series of weakening, contraction, and exchange inferences
will often be indicated by double inference lines.

The following rule, called “cut,” is not strictly speaking nec-
essary, but makes it a lot easier to reuse and combine deriva-
tions.

I = 4,4 Al = A
il = 4,A

Cut

10.5 Derivations

We’ve said what an initial sequent looks like, and we’ve given
the rules of inference. Derivations in the sequent calculus are
inductively generated from these: each derivation either is an
initial sequent on its own, or consists of one or two derivations
followed by an inference.

Definition 10.3 (LK derivation). An LK-derivation of a se-
quent S is a tree of sequents satisfying the following conditions:

1. The topmost sequents of the tree are initial sequents.

2. The bottommost sequent of the tree is S.



3. Every sequent in the tree except §' is a premise of a correct
application of an inference rule whose conclusion stands
directly below that sequent in the tree.

We then say that §' is the end-sequent of the derivation and that .§
is derivable in LK (or LK-derivable).

Example 10.4. Every initial sequent, e.g., C = C is a deriva-
tion. We can obtain a new derivation from this by applying, say,
the WL rule,

I = 4

AT = 4 WL

The rule, however, is meant to be general: we can replace the 4
in the rule with any sentence, e.g., also with D. If the premise
matches our initial sequent C = C, that means that both /" and
4 are just C, and the conclusion would then be D,C = C. So,
the following is a derivation:

Cc =0

D,C = C WL

We can now apply another rule, say XL, which allows us to switch
two sentences on the left. So, the following is also a correct
derivation:

Cc =>C
D.C = C
C.D=~C

WL
XL

In this application of the rule, which was given as

IA,B,Il = 4
I''B,A,1l = 4,

XL

both I" and /7 were empty, 4 is C, and the roles of 4 and B are
played by D and C, respectively. In much the same way, we also
see that



D = D

C.D =D WL

is a derivation. Now we can take these two derivations, and com-
bine them using AR. That rule was

I = 4,4 I = 4,B
I' = 4AANB

AR

In our case, the premises must match the last sequents of the
derivations ending in the premises. That means that I" is C,D, 4
is empty, 4 is C and B is D. So the conclusion, if the inference
should be correct, is C,D = C A D.

C = C
DC=Cy" D=D ..
cC,.D=C C,.D = D R
CD=CAD A

Of course, we can also reverse the premises, then 4 would be D
and B would be C.

C = C
D=D D,c=>c¥LL
C,D = D C,D = C R
CD=DAC A

10.6 Examples of Derivations

Example 10.5. Give an LK-derivation for the sequent AA B =
A.

We begin by writing the desired end-sequent at the bottom of
the derivation.

ANB = A

Next, we need to figure out what kind of inference could have
a lower sequent of this form. This could be a structural rule,
but it is a good idea to start by looking for a logical rule. The



only logical connective occurring in the lower sequent is A, so
we’re looking for an A rule, and since the A symbol occurs in the
antecedent, we’re looking at the AL rule.

ANB = 4 "L

There are two options for what could have been the upper sequent
of the AL inference: we could have an upper sequent of 4 = 4,
or of B = A. Clearly, A = A is an initial sequent (which is a

good thing), while B = A4 is not derivable in general. We fill in
the upper sequent:

A= A

ANB = 4 L

We now have a correct LK-derivation of the sequent AA B = A.

Example 10.6. Give an LK-derivation for the sequent ~4AVB =
A— B.

Begin by writing the desired end-sequent at the bottom of the
derivation.

-AVB = A— B

To find a logical rule that could give us this end-sequent, we look
at the logical connectives in the end-sequent: -, v, and —. We
only care at the moment about V and — because they are main
operators of sentences in the end-sequent, while - is inside the
scope of another connective, so we will take care of it later. Our
options for logical rules for the final inference are therefore the
VL rule and the —R rule. We could pick either rule, really, but
let’s pick the —R rule (if for no reason other than it allows us
to put off splitting into two branches). According to the form of
—R inferences which can yield the lower sequent, this must look
like:

A,-AvVB = B
-AVB = A— B

—-R



If we move =4 VvV B to the outside of the antecedent, we can
apply the VL rule. According to the schema, this must split into
two upper sequents as follows:

-A4,A = B B, A = B
-AVB,A = B
4-AvB = B R

-AVB = A— B

VL

—R

Remember that we are trying to wind our way up to initial se-
quents; we seem to be pretty close! The right branch is just one
weakening and one exchange away from an initial sequent and
then it is done:
B = B
A,B = B
-A,A = B B,A = B
-AV B,A = B
A,-AVB = B XR
-AVB = A— B

WL
XL
VL

—R

Now looking at the left branch, the only logical connective
in any sentence is the = symbol in the antecedent sentences, so
we’re looking at an instance of the —L rule.

o _B=>8B

A= B,A L A,B = B
-A4,A =B B,A > B
-AVB,A= B
A-AVB = B XR

-AVB = A— B

WL
XL
VL

—R

Similarly to how we finished off the right branch, we are just
one weakening and one exchange away from finishing off this
left branch as well.



A=A

A:>A,BWR B = B
A= BAR 4ppg Wb
Ad=>B Y B4a=p XL
"AVB.A = B VL
A4-AVB = B R

-AVB = A— B

—R

Example 10.7. Give an LK-derivation of the sequent —4 V
-B = =(4 A B)

Using the techniques from above, we start by writing the de-
sired end-sequent at the bottom.

-AV-B = =(AAB)

The available main connectives of sentences in the end-sequent
are the V symbol and the — symbol. It would work to apply either
the VL or the =R rule here, but we start with the =R rule because
it avoids splitting up into two branches for a moment:

ANB,-AV -B = R
-AV-B = —=(AAB)

Now we have a choice of whether to look at the AL or the VL
rule. Let’s see what happens when we apply the AL rule: we have
a choice to start with either the sequent 4,-4V B =  or the
sequent B,-4V B = . Since the derivation is symmetric with
regards to 4 and B, let’s go with the former:

4-Av-B=
ANB,-AV -B = A R
AV -B = =(AAB)

Continuing to fill in the derivation, we see that we run into a
problem:



2
A= A A= B’

-4,4 = -L -B,A > VEL
-AV -B,A = XL
A,-~AV -B =

ANB-Av-B = r
-AV-B = —=(AAB)

The top of the right branch cannot be reduced any further, and
it cannot be brought by way of structural inferences to an initial
sequent, so this is not the right path to take. So clearly, it was a
mistake to apply the AL rule above. Going back to what we had
before and carrying out the VL rule instead, we get

-A,ANB = -BAANB =
-AV-B,ANB =
AANB,-AV -B =

-AV =B = —(AAB) B

VL

XL
R

Completing each branch as we’ve done before, we get

A= A B = B
A/\B:;»A/\E A/\B:)B/\E
-A,ANB = -B,ANB = V;

-AV-B,ANB = XL
AANB,-AV -B =
-AV -B = —(AAB) -

R

(We could have carried out the A rules lower than the — rules in
these steps and still obtained a correct derivation).

Example 10.8. So far we haven’t used the contraction rule, but
it is sometimes required. Here’s an example where that happens.
Suppose we want to prove = A4V -A4. Applying VR backwards
would give us one of these two derivations:

A=
= A =>—|A_|R

= Av-4 VR — av-a 'R




Neither of these of course ends in an initial sequent. The trick
is to realize that the contraction rule allows us to combine two
copies of a sentence into one—and when we’re searching for a
proof, i.e., going from bottom to top, we can keep a copy of
AV -4 in the premise, e.g.,

= AV A4 N
= AV -A.Av A éR
= AV -4

Now we can apply VR a second time, and also get —4, which
leads to a complete derivation.

A= A
— 4-4 R
= A4dv-a 'R
= Avdd R
= AV -A4A,AV -4
= AV -4

VR
CR

10.7 Derivations with Quantifiers

Example 10.9. Give an LK-derivation of the sequent
Ax —A(x) = —Vx A(x).

When dealing with quantifiers, we have to make sure not to
violate the eigenvariable condition, and sometimes this requires
us to play around with the order of carrying out certain infer-
ences. In general, it helps to try and take care of rules subject
to the eigenvariable condition first (they will be lower down in
the finished proof). Also, it is a good idea to try and look ahead
and try to guess what the initial sequent might look like. In our
case, it will have to be something like A(a) = A(a). That means
that when we are “reversing” the quantifier rules, we will have to
pick the same term—what we will call a—for both the V and the
3 rule. If we picked different terms for each rule, we would end
up with something like 4(a) = A(b), which, of course, is not
derivable.



Starting as usual, we write

dx —A(x) = —Vx A(x)

We could either carry out the 3L rule or the =R rule. Since the
3L rule is subject to the eigenvariable condition, it’s a good idea
to take care of it sooner rather than later, so we’ll do that one
first.

-A(a) = —VxA(x)
dx —A(x) = —VxA(x)

dL

Applying the —L and —R rules backwards, we get

Vx A(x) = A(a)
-A(a),Yx A(x) =

Vx A(x),—A(a) = R

-A(a) = —VxA(x) ;L
dx-A(x) = —VYxA(x)

—_

XL

At this point, our only option is to carry out the VL rule. Since
this rule is not subject to the eigenvariable restriction, we’re in the
clear. Remember, we want to try and obtain an initial sequent (of
the form A(a) = A(a)), so we should choose a as our argument
for A when we apply the rule.

A(a) = A(a)
Vx A(x) = A(a)
-A(a),Vx A(x) =
Vx A(x),—A(a) = .
-A(a) = ~VxA(x) _
dx —A(x) = —VxA(x) L

VL

—_

XL

It is important, especially when dealing with quantifiers, to dou-
ble check at this point that the eigenvariable condition has not
been violated. Since the only rule we applied that is subject to
the eigenvariable condition was 3L, and the eigenvariable a does
not occur in its lower sequent (the end-sequent), this is a correct
derivation.



10.8 Proof-Theoretic Notions

Just as we’ve defined a number of important semantic notions
(validity, entailment, satisfiabilty), we now define corresponding
proof-theoretic notions. These are not defined by appeal to satisfac-
tion of sentences in structures, but by appeal to the derivability
or non-derivability of certain sequents. It was an important dis-
covery that these notions coincide. That they do is the content
of the soundness and completeness theorem.

Definition 10.10 (Theorems). A sentence 4 is a theorem if there
is a derivation in LK of the sequent = A. We write - 4 if 4 is
a theorem and ¥ 4 if it is not.

Definition 10.11 (Derivability). A sentence A4 is derivable from
a set of sentences I', I' + A, iff there is a finite subset Iy C I
and a sequence I] of the sentences in I such that LK derives
I'; = A. If Ais not derivable from I" we write I" ¥ 4.

Because of the contraction, weakening, and exchange rules,
the order and number of sentences in /] does not matter: if a
sequent I\ = A is derivable, then so is I\[" = A4 for any I}/’
that contains the same sentences as I 6. For instance, if Iy =
{B,C} then both I'; = (B,B,C) and '’ = (C, C, B) are sequences
containing just the sentences in /. If a sequent containing one
is derivable, so is the other, e.g.:

B,B,.C = 4
B,C = 4
C,B= A

C,C,B = 4

CL
XL
WL

From now on we’ll say that if /9 is a finite set of sentences then
Iy = A is any sequent where the antecedent is a sequence of



sentences in [ and tacitly include contractions, exchanges, and
weakenings if necessary.

Definition 10.12 (Consistency). A set of sentences I is incon-
sistent iff there is a finite subset /) C I" such that LK derives
I'n = . If I' is not inconsistent, i.e., if for every finite Iy C I,
LK does not derive Iy = , we say it is consistent.

Proposition 10.13 (Reflexivity). I[fA e ', then I + A.

Proof. The initial sequent 4 = 4 is derivable, and {4} CI". O

Proposition 10.14 (Monotony). IfI" C AandI v A, then 4 + A.

Proof Suppose I' + A, i.e., there is a finite Iy, € I" such that
I'y = A is derivable. Since I' C 4, then [ is also a finite subset
of 4. The derivation of I') = A thus also shows 4 + A. O

Proposition 10.15 (Transitivity). If I" + A and {A} U 4 + B,
then I’ U A+ B.

Proof. If I' + A, there is a finite [) € I and a derivation mp of
Iy > A. If {A} U 4 + B, then for some finite subset 49 C 4,

there is a derivation m; of 4,49 = B. Consider the following

derivation:
57T0 57T1
Ih=>A4 A4y = B o
r(),Ao = B ut
Since Iy U 49 € I" U 4, this shows " U 4 + B. O

Note that this means that in particular if " + 4 and 4 + B,
then I' + B. It follows also that if A1,...,4, + B and I + A; for
each i, then I' + B.



Proposition 10.16. I" is inconsistent iff I + A for every sentence A.

Proof. Exercise. o

Proposition 10.17 (Compactness). 1. If I v A then there is
a finite subset I'y C I" such that Iy + A.

2. If every finite subset of I is consistent, then I is consistent.

Proof. 1. If I' + A, then there is a finite subset Iy C I" such
that the sequent Iy = A4 has a derivation. Consequently,
Io+ A.

o. If I' is inconsistent, there is a finite subset Iy C I" such that
LK derives Iy = . But then I is a finite subset of I" that
is inconsistent. a

10.9 Derivability and Consistency

We will now establish a number of properties of the derivability
relation. They are independently interesting, but each will play
a role in the proof of the completeness theorem.

Proposition 10.18. IfI" + A and I' U {4} is inconsistent, then I is
inconsistent.

Proof. There are finite /) and I'7 € I” such that LK derives I =
A and A,I7 = . Let the LK-derivation of I ) = A be my and
the LK-derivation of /7,4 = be m;. We can then derive

E7To 57T1

=>4 AN =
FO,F1 =

Cut



Since Iy C I"'and I'1 C I', [y UI7 C I', hence I' is inconsis-
tent. =

Proposition 10.19. I' + 4 iff I' U {=A4} is inconsistent.

Proof. First suppose I + 4, i.e., there is a derivation 7y of I’ = A.
By adding a —L rule, we obtain a derivation of -4,I" = , i.e,,
I' U {=A4} is inconsistent.

If TU{=A} is inconsistent, there is a derivation m; of —=4,I" =
. The following is a derivation of I' = 4:

E7T1
A= A R :
= A,-A4 -AT = Cut
I = A u O

Proposition 10.20. IfI' + A and —A € ', then I is inconsistent.

Proof Suppose I' + A and =4 € I'. Then there is a derivation 7
of a sequent /') = A. The sequent —4,I) = is also derivable:

L A:>A_|L
. MXL
=4 A-d= °
F,-u‘lﬁ u

Since =4 € I' and Iy C I, this shows that I" is inconsistent. O

Proposition 10.21. IfI"U{A} and I" U {—A} are both inconsistent,
then I is inconsistent.

Proof. There are finite sets [y € ' and I7 € I and LK-

derivations my and 1 of 4,/ = and -4,/7 = , respectively.
We can then derive



$ 700
. :71'1
ATy =
Iy = -4 “R -A,17 =
Iy, I7 =

Cut

Since Iy C I'and 7 C I', [(UI7 C I'. Hence I is inconsistent.O0

10.10 Derivability and the Propositional
Connectives

We establish that the derivability relation + of the sequent calcu-
lus is strong enough to establish some basic facts involving the
propositional connectives, such as that ANB + Aand A,A—B + B
(modus ponens). These facts are needed for the proof of the com-
pleteness theorem.

Proposition 10.22. 7. Both ANBv+ A and AN B¢ B.

2. ALB+ AN B.

Proof 1. Both sequents AA B = A and A A B = B are deriv-
able:

A= A B = B
ANB = 4 "L ArB = B

2. Here is a derivation of the sequent 4,B = A A B:

A=A B=B
4B > 4,8 /R o

Proposition 10.23. 1. AV B,—A,—B is inconsistent.
2. BothAvr AV B and B+ AV B.

Proof. 1. We give a derivation of the sequent AV B,-4,-B =:



A=A B =B
—|A,A = L -B,B = -L
A,—|A,—|B = B,—|A,—|B =

AV B,-A4,-B =

VL

(Recall that double inference lines indicate several weaken-
ing, contraction, and exchange inferences.)

2. Both sequents A = AV B and B = AV B have derivations:

A= A B = B
A= AV B VR B = AVvB VR O

Proposition 10.24. 1. A, A— B+ B.
2. Both—-A+ A— B and B+ A— B.

Proof. 1. The sequent A — B,4 = B is derivable:

A= A B = B

A>BA =B L

2. Both sequents -4 = 4 — B and B = A — B are derivable:

A= A

AAd > XEL

4,-4 = B =B

4-4= 8 "R R 48— 5 VL R
A= A—>B B=A—-B O

10.11 Derivability and the Quantifiers

The completeness theorem also requires that the sequent calculus
rules rules yield the facts about + established in this section.



Theorem 10.25. If ¢ is a constant not occurring in I’ or A(x) and
I+ A(c), then I’ + Vx A(x).

Proof. Let mp be an LK-derivation of Iy = A(c¢) for some finite
Iy € I'. By adding a VR inference, we obtain a derivation of
I'y = Vx A(x), since ¢ does not occur in I" or A(x) and thus the
eigenvariable condition is satisfied. o

Proposition 10.26. 7. A(t) F 3x A(x).
2. Vx A(x) - A(2).
Proof 1. The sequent A(¢) = 3x A(x) is derivable:

A(t) = A(t)
A(t) = Fx A(x)

IR

2. The sequent Vx A(x) = A(t) is derivable:

A(t) = A1)
Vad(x) = A(1) "¢ o

10.12 Soundness

A derivation system, such as the sequent calculus, is sound if
it cannot derive things that do not actually hold. Soundness is
thus a kind of guaranteed safety property for derivation systems.
Depending on which proof theoretic property is in question, we
would like to know for instance, that

1. every derivable 4 is valid;

2. if a sentence is derivable from some others, it is also a
consequence of them;

3. if a set of sentences is inconsistent, it is unsatisfiable.



These are important properties of a derivation system. If any of
them do not hold, the derivation system is deficient—it would
derive too much. Consequently, establishing the soundness of a
derivation system is of the utmost importance.

Because all these proof-theoretic properties are defined via
derivability in the sequent calculus of certain sequents, prov-
ing (1)—(3) above requires proving something about the seman-
tic properties of derivable sequents. We will first define what it
means for a sequent to be valid, and then show that every deriv-
able sequent is valid. (1)—(3) then follow as corollaries from this
result.

Definition 10.27. A structure M satisfies a sequent ' = A iff
either M ¥ A for some 4 € I or M £ A for some 4 € 4.
A sequent is valid iff every structure M satisfies it.

Theorem 10.28 (Soundness). IfLK derives @ = =, then O =

E is valid.
Proof. Let m be a derivation of ® = =. We proceed by induction
on the number of inferences z in 7.

If the number of inferences is 0, then 7 consists only of an
initial sequent. Every initial sequent 4 = A4 is obviously valid,
since for every M, either M ¥ A or M k A.

If the number of inferences is greater than o, we distinguish
cases according to the type of the lowermost inference. By induc-
tion hypothesis, we can assume that the premises of that inference
are valid, since the number of inferences in the derivation of any
premise is smaller than ».

First, we consider the possible inferences with only one
premise.

1. The last inference is a weakening. Then @ = Z is either
A,I’ = 4 (if the last inference is WL) or I' = 4,4 (if it’s
WR), and the derivation ends in one of



r = A r = A
Al = 4 WL I = 44 WR

By induction hypothesis, I = 4 is valid, i.e., for every
structure M, either there is some C € I" such that M ¢ C
or there is some C € 4 such that M £ C.

If M # C for some C € I', then C € @ as well since @ = A4,
and so M ¥ C for some C € @. Similarly, if M £ C for some
Ced,as C € 5, Mk C for some C € 5. Consequently,
O = F is valid.

. The last inference is —=L: Then the premise of the last in-
ference is I' = 4,4 and the conclusion is =4,I" = 4, i.e.,
the derivation ends in

and @ = -4, while & = 4.

The induction hypothesis tells us that I" = 4,4 is valid,
i.e., for every M, either (a) for some C € I'y M ¥ C, or (b)
for some C € 4, M £ C, or (c) M £ A. We want to show
that ® = £ is also valid. Let M be a structure. If (a) holds,
then there is C € I' so that M ¥ C, but C € O as well. If
(b) holds, there is C € 4 such that M £ C, but C € & as
well. Finally, if M £ A, then M ¥ —A. Since -4 € O, there
is C € O such that M ¥ C. Consequently, ® = = is valid.

. The last inference is =R: Exercise.

. The last inference is AL: There are two variants: 4 A B may
be inferred on the left from 4 or from B on the left side of
the premise. In the first case, the 7 ends in



AT = 4
ANB.T = A

AL

and ©® = A A B,I" while & = 4. Consider a structure M.
Since by induction hypothesis, 4, = A4isvalid, (a) M ¥ 4,
(b) M # C for some C € I', or (c) M £ C for some C € 4. In
case (a), M ¥ AA B, so there is C € © (namely, 4 A B) such
that M ¢ C. In case (b), there is C € I such that M ¥ C,
and C € O as well. In case (c), there is C € 4 such that
M e C, and C € = as well since & = 4. So in each case,
M satisfies AA B,I' = A. Since M was arbitrary, I' = A4 is
valid. The case where 4 A B is inferred from B is handled
the same, changing 4 to B.

5. The last inference is VR: There are two variants: 4V B may
be inferred on the right from 4 or from B on the right side
of the premise. In the first case, 7 ends in

I = 4.4
I' = 4,AVv B

VR

Now @ = I’ and & = 4,4V B. Consider a structure M.
Since I' = 4,4 is valid, (a) M £ A, (b) M ¥ C for some
Cerl,or(c) Mk C forsome C € 4. In case (a), M £ AVB.
In case (b), there is C € I' such that M # C. In case (c),
there is C € 4 such that M k C. So in each case, M satisfies
I' = 4,AV B, ie., ©® = Z. Since M was arbitrary, ® = &
is valid. The case where AV B is inferred from B is handled
the same, changing 4 to B.

6. The last inference is —R: Then 7 ends in



AT = A.B
I > 4A— B

—R

Again, the induction hypothesis says that the premise is
valid; we want to show that the conclusion is valid as well.
Let M be arbitrary. Since 4,I" = A4, B is valid, at least one
of the following cases obtains: (a) M ¥ A, (b) M E B, (c)
M ¢ C for some C €', or (d) Mk C for some C € 4. In
cases (a) and (b), M E A— B and so thereisa C € 4,A— B
such that M £ C. In case (c), for some C € ', M ¢ C. In
case (d), for some C € 4, M £ C. In each case, M satisfies
I' = 4,A — B. Since M was arbitrary, I’ = 4,4 — B is
valid.

. The last inference is YL: Then there is a formula A(x) and
a closed term ¢ such that 7 ends in

A(t),T = 4
VxA(x),I = 4

VL

We want to show that the conclusion Vx A(x),I’ = 4 is
valid. Consider a structure M. Since the premise A(¢),I" =
A is valid, (a) M £ A(¢), (b) M ¥ C for some C € I', or
(c) M E C for some C € 4. In case (a), by Proposition 7.30,
if M £ VxA(x), then M £ A(t). Since M ¥ A(t), M ¥
Vx A(x) . In case (b) and (c), M also satisfies Vx A(x),[" =
4. Since M was arbitrary, Vx A(x),I” = 4 is valid.

. The last inference is IR: Exercise.

. The last inference is YR: Then there is a formula A(x) and
a constant symbol a such that 7 ends in



I = 4,4(a)
I' = 4,Yx A(x)

VR

where the eigenvariable condition is satisfied, i.e., a does
not occur in A(x), I', or 4. By induction hypothesis, the
premise of the last inference is valid. We have to show that
the conclusion is valid as well, i.e., that for any structure M,
(a) M £ Vx A(x), (b) M ¥ C for some C € I',or (c) Mk C
for some C € 4.

Suppose M is an arbitrary structure. If (b) or (c) holds, we
are done, so suppose neither holds: forall C € I', M ¢ C,
and for all C € 4, M ¥ C. We have to show that (a) holds,
i.e., M E Vx A(x). By Proposition 7.18, if suffices to show
that M, s £ A(x) for all variable assignments s. So let s be an
arbitrary variable assignment. Consider the structure M’
which is just like M except a™ = s(x). By Corollary 7.20,
for any C € I' M’ £ C since a does not occur in /", and
for any C € 4, M’ ¢ C. But the premise is valid, so M’ k
A(a). By Proposition 7.17, M’,s £ A(a), since A(a) is a
sentence. Now s ~, s with s(x) = Valzsw(a), since we’ve
defined M’ in just this way. So Proposition 7.22 applies,
and we get M’,s £ A(x). Since a does not occur in A(x),
by Proposition 7.19, M,s £ A(x). Since s was arbitrary,
we’ve completed the proof that M,s £ A(x) for all variable
assignments.

10. The last inference is 3L: Exercise.
Now let’s consider the possible inferences with two premises.

1. The last inference is a cut: then 7 ends in



I => A4 AIl = A

Tl = A.A Cut

Let M be a structure. By induction hypothesis, the premises
are valid, so M satisfies both premises. We distinguish two
cases: (a) M ¥ A and (b) M k A. In case (a), in order for M
to satisfy the left premise, it must satisfy I = 4. But then
it also satisfies the conclusion. In case (b), in order for M
to satisfy the right premise, it must satisfy /7 \ A. Again,
M satisfies the conclusion.

. The last inference is AR. Then 7 ends in

I > 44 T = AB
I => 4, ANB

AR

Consider a structure M. If M satisfies I' = 4, we are
done. So suppose it doesn’t. Since I' = 4,4 is valid by
induction hypothesis, M  A. Similarly, since I' = 4,B is
valid, M £ B. But then M £ A A B.

. The last inference is VL: Exercise.

. The last inference is —L. Then 7 ends in

I = A4 BIl = A

A>BII = 44 L

Again, consider a structure M and suppose M doesn’t sat-
isfy I,11 = 4,A. We have to show that M ¥ 4 - B. If M



doesn’t satisfy I',/1 = 4, A, it satisfies neither I" = 4 nor
Il = A. Since, I’ = 4,4 is valid, we have M £ A. Since
B,II = A is valid, we have M ¥ B. But then M ¥ A — B,
which is what we wanted to show. O

Corollary 10.29. If+ A then A is valid.

Corollary 10.30. IfI' + A then I = A.

Proof If I' + A then for some finite subset Iy C I, there is
a derivation of Iy = A. By Theorem 10.28, every structure M
either makes some B € [ false or makes 4 true. Hence, if M £ I”

then also M £ A. m|

Corollary 10.31. If T is satisfiable, then it is consistent.

Proof- We prove the contrapositive. Suppose that I is not consis-
tent. Then there is a finite /) C I" and a derivation of Iy = . By
Theorem 10.28, Iy =  is valid. In other words, for every struc-
ture M, there is C € Iy so that M ¥ C, and since I, C I, that C
is also in I'. Thus, no M satisfies I, and I" is not satisfiable. O

10.13 Derivations with Identity predicate

Derivations with identity predicate require additional initial se-
quents and inference rules.

Definition 10.32 (Initial sequents for =). If ¢ is a closed term,
then = ¢ =¢ is an initial sequent.

The rules for = are (#; and # are closed terms):



t1 =16, = A,A(tl) _ =t = A,A(tg) _
h=tl = 4,A4(t) =t = 4,A4(h)

Example 10.33. If s and ¢ are closed terms, then s = ¢,4(s) +
A(e):

A(s) = A(s)
s=0L,AGs) = 4(s) VE
s=1,4(s) = At)

This may be familiar as the principle of substitutability of iden-
ticals, or Leibniz’ Law.
LK proves that = is symmetric and transitive:

lhH=1t = =1

= h=h WL fo=13,l1 =1y = 1 =1 \_NL
=t =>H=t _ =13, =t = L =13 XL
t1=t2:>t2=t1_ Hh=l,lh=13 = L=13

In the derivation on the left, the formula x = # is our A(x). On
the right, we take A(x) to be ¢ = x.

10.14 Soundness with Identity predicate

Proposition 10.34. LK with initial sequents and rules for identity
is sound.

Proof. Initial sequents of the form = ¢ = ¢ are valid, since for
every structure M, M £ ¢ = ¢t. (Note that we assume the term ¢ to
be closed, i.e., it contains no variables, so variable assignments
are irrelevant).

Suppose the last inference in a derivation is =. Then the
premise is ¢; = t5,I" = 4,A(#1) and the conclusion is ¢; = &, =
A,A(ty). Consider a structure M. We need to show that the
conclusion is valid, i.e., if M £ #; = tp and M E I', then either
M E C for some C € 4 or M £ A(1y).



By induction hypothesis, the premise is valid. This means
that if M £ &1 = & and M & " either (a) for some C € 4, M t
C or (b) M £ A(#1). In case (a) we are done. Consider case
(b). Let s be a variable assignment with s(x) = ValM (4). By
Proposition 7.17, M,s £ A(#). Since s ~, s, by Proposition 7.22,
M,s £ A(x). since M & #; = &y, we have ValM (#) = ValM (), and
hence s(x) = Val™ (). By applying Proposition 7.22 again, we
also have M, s £ A(ty). By Proposition 7.17, M £ A(ty). O

Summary

Proof systems provide purely syntactic methods for characteriz-
ing consequence and compatibility between sentences. The se-
quent calculus is one such proof system. A derivation in it
consists of a tree of sequents (a sequent " = A consists of two
sequences of formulas separated by =). The topmost sequents
in a derivation are initial sequents of the form 4 = A. All other
sequents, for the derivation to be correct, must be correctly jus-
tified by one of a number of inference rules. These come in
pairs; a rule for operating on the left and on the right side of
a sequent for each connective and quantifier. For instance, if a
sequent I = 4,4 — B is justified by the —R rule, the preceding
sequent (the premise) must be 4, = 4,B. Some rules also
allow the order or number of sentences in a sequent to be manip-
ulated, e.g., the XR rule allows two formulas on the right side of
a sequent to be switched.

If there is a derivation of the sequent = A4, we say 4 is a
theorem and write + A. If there is a derivation of Iy = A where
every B in [ is in I', we say 4 is derivable from /" and write
I' + A. If there is a derivation of I) =  where every B in I
is in I', we say I" is inconsistent, otherwise consistent. These
notions are interrelated, e.g., I' + 4 iff I' U {—4} is inconsistent.
They are also related to the corresponding semantic notions, e.g.,
if I' + A then I' £ A. This property of proof systems—what can
be derived from /" is guaranteed to be entailed by I"'—is called



soundness. The soundness theorem is proved by induction on
the length of derivations, showing that each individual inference
preserves validity of the conclusion sequent provided the premise
sequents are valid.

Problems

Problem 10.1. Give derivations of the following sequents:
1. = -(4— B) > (AA-B)
2. (ANB)->C=(A—->C)Vv(B—C()

Problem 10.2. Give derivations of the following sequents:
1. Vx (A(x) = B) = (y A(y) — B)
2. dx (A(x) = Vy A(y))

Problem 10.3. Prove Proposition 10.16

Problem 10.4. Prove that I' + =A4 iff I U {4} is inconsistent.

Problem 10.5. Complete the proof of Theorem 10.28.

Problem 10.6. Give derivations of the following sequents:
1. = VaxVy ((x =y AA(x)) = A(p))

2. Ax A(x) AVyVz((A(p) N A(2z)) =y = z) = Tx(4A(x) A
Vy (A(y) =y =x))



CHAPTER 11

11.1 Rules and Derivations

Natural deduction systems are meant to closely parallel the infor-
mal reasoning used in mathematical proof (hence it is somewhat
“natural”). Natural deduction proofs begin with assumptions. In-
ference rules are then applied. Assumptions are “discharged” by
the —Intro, —Intro, VElIim and FElim inference rules, and the
label of the discharged assumption is placed beside the inference
for clarity.

Definition 11.1 (Assumption). An assumption is any sentence
in the topmost position of any branch.

Derivations in natural deduction are certain trees of sen-
tences, where the topmost sentences are assumptions, and if
a sentence stands below one, two, or three other sequents, it
must follow correctly by a rule of inference. The sentences at
the top of the inference are called the premises and the sentence
below the conclusion of the inference. The rules come in pairs, an
introduction and an elimination rule for each logical operator.
They introduce a logical operator in the conclusion or remove
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a logical operator from a premise of the rule. Some of the rules
allow an assumption of a certain type to be discharged. To indi-
cate which assumption is discharged by which inference, we also
assign labels to both the assumption and the inference. This is
indicated by writing the assumption as “[A4]".”

It is customary to consider rules for all the logical operators
A, V, =, =, and L, even if some of those are defined.

11.2 Propositional Rules

Rules for A
AAB AElim
A B A
—~————— Alntro
AANB
AANB .
B AElim
Rules for v
) (4] [B)"
AV B VIntro :
B VIntro AV B C C'
AV B n c VElim
Rules for —
[4]"
_ B
n 1B —Intro

Rules for —



% —Elim

n—t —Intro

-4

Rules for L
[-4]"
1
= 1
A4 7 :
n j lc¢

Note that —Intro and _L¢ are very similar: The difference is
that —Intro derives a negated sentence —A4 but ¢ a positive sen-
tence 4.

Whenever a rule indicates that some assumption may be dis-
charged, we take this to be a permission, but not a requirement.
E.g., in the —Intro rule, we may discharge any number of assump-
tions of the form 4 in the derivation of the premise B, including
zero.

11.3 Quantifier Rules

Rules for V
A(a) VI Vx A(x) VEL
7\7’xA(x) ntro 7A(t) 1m

In the rules for V, ¢ is a ground term (a term that does not
contain any variables), and a is a constant symbol which does
not occur in the conclusion Vx A(x), or in any assumption which
is undischarged in the derivation ending with the premise 4(a).
We call a the eigenvariable of the VIntro inference.



Rules for 3
[A(a)]"

A(t)

m dIntro

 3xA) C
C

JElim

Again, ¢ is a ground term, and «a is a constant which does
not occur in the premise 3x A(x), in the conclusion C, or any
assumption which is undischarged in the derivations ending with
the two premises (other than the assumptions 4(a)). We call a
the eigenvariable of the JElim inference.

The condition that an eigenvariable neither occur in the
premises nor in any assumption that is undischarged in the
derivations leading to the premises for the VIntro or JElim in-
ference is called the eigenvariable condition.

We use the term “eigenvariable” even though « in the above
rules is a constant. This has historical reasons.

In JIntro and VElim there are no restrictions, and the term ¢
can be anything, so we do not have to worry about any conditions.
On the other hand, in the JElim and VIntro rules, the eigenvari-
able condition requires that the constant symbol a does not occur
anywhere in the conclusion or in an undischarged assumption.
The condition is necessary to ensure that the system is sound,
i.e., only derives sentences from undischarged assumptions from
which they follow. Without this condition, the following would
be allowed:

[A(a)]! Int
IxA(x)  VxdA(x) _ - H°
Va A(x) JElim

However, 3x A(x) ¥ Vx A(x).



11.4 Derivations

We’ve said what an assumption is, and we’ve given the rules of
inference. Derivations in natural deduction are inductively gen-
erated from these: each derivation either is an assumption on its
own, or consists of one, two, or three derivations followed by a
correct inference.

Definition 11.2 (Derivation). A derivation of a sentence A
from assumptions I is a tree of sentences satisfying the following
conditions:

1. The topmost sentences of the tree are either in I" or are
discharged by an inference in the tree.

2. The bottommost sentence of the tree is A.

3. Every sentence in the tree except the sentence 4 at the bot-
tom is a premise of a correct application of an inference
rule whose conclusion stands directly below that sentence
in the tree.

We then say that A is the conclusion of the derivation and that 4
is derivable from I'.

Example 11.3. Every assumption on its own is a derivation. So,
e.g., C by itself is a derivation, and so is D by itself. We can
obtain a new derivation from these by applying, say, the Alntro
rule,

A B
ANB Alntro

These rules are meant to be general: we can replace the 4 and B

in it with any sentences, e.g., by C and D. Then the conclusion

would be C A D, and so

Cc

D
CAD Alntro



is a correct derivation. Of course, we can also switch the assump-
tions, so that D plays the role of 4 and C that of B. Thus,

D

W Alntro

is also a correct derivation.

We can now apply another rule, say, —Intro, which allows
us to conclude a conditional and allows us to discharge any as-
sumption that is identical to the antecedent of that conditional.
So both of the following would be correct derivations:

1 __CAD —I>1Ilr1(t)ro 1 __CAD —I>IIrr1(t)r0
C—(CAD) D — (CAD)

Remember that discharging of assumptions is a permission,
not a requirement: we don’t have to discharge the assumptions.
In particular, we can apply a rule even if the assumptions are
not present in the derivation. For instance, the following is legal,
even though there is no assumption 4 to be discharged:

_ B
1 1538 —Intro

11.5 Examples of Derivations

Example 11.4. Let’s give a derivation of the sentence (AAB) —
A.

We begin by writing the desired conclusion at the bottom of
the derivation.

(ANB)— A

Next, we need to figure out what kind of inference could result
in a sentence of this form. The main operator of the conclusion
is —, so we’ll try to arrive at the conclusion using the —Intro
rule. It is best to write down the assumptions involved and label



the inference rules as you progress, so it is easy to see whether
all assumptions have been discharged at the end of the proof.

[4 A B]t

4

1 m —Intro

We now need to fill in the steps from the assumption 4 A B
to A. Since we only have one connective to deal with, A, we must
use the A elim rule. This gives us the following proof:

[4 A B]t
L A
(AANB) — 4

AElim
—Intro

We now have a correct derivation of (4 A B) — A.

Example 11.5. Now let’s give a derivation of (-4VB)—(4—B).
We begin by writing the desired conclusion at the bottom of
the derivation.

(=AV B)—> (A— B)

To find a logical rule that could give us this conclusion, we look at
the logical connectives in the conclusion: -, V, and —. We only
care at the moment about the first occurence of — because it is
the main operator of the sentence in the end-sequent, while —, v
and the second occurence of — are inside the scope of another
connective, so we will take care of those later. We therefore start
with the —Intro rule. A correct application must look like this:

[-4vV B]l

) A— B
(m4Av B)—> (A— B)

—Intro



This leaves us with two possibilities to continue. Either we can
keep working from the bottom up and look for another applica-
tion of the —Intro rule, or we can work from the top down and
apply a VElim rule. Let us apply the latter. We will use the as-
sumption =4 V B as the leftmost premise of VElim. For a valid
application of VElim, the other two premises must be identical
to the conclusion 4 — B, but each may be derived in turn from
another assumption, namely the two disjuncts of =4V B. So our
derivation will look like this:

(4] [B]?

, [-AVB]! A—B A—B
1 A— B
(=AV B) > (A— B)

VElim
—Intro

In each of the two branches on the right, we want to derive
A — B, which is best done using —Intro.

[-4]2,[4]° [B]% [4]*
. B B
[-4vB]! 4 p oo 47 —lntro
2 1558 VElim
—Intro

'GAVB) = (4= B)

For the two missing parts of the derivation, we need deriva-
tions of B from -4 and 4 in the middle, and from 4 and B on the
left. Let’s take the former first. =4 and 4 are the two premises of
—Elim:

2 3
4] T 4] —Elim




By using L7, we can obtain B as a conclusion and complete the
branch.

[B]% [4]*
—A 2 A 3 :
[~4] T 4] 1Intro :
3 _B —Intro 4 _B —Intro
[-4 vV B]! A— B A— B
2 158 VElim
—Intro

' (~AVB) = (A= B)

Let’s now look at the rightmost branch. Here it’s important
to realize that the definition of derivation allows assumptions to be
discharged but does not require them to be. In other words, if we
can derive B from one of the assumptions 4 and B without using
the other, that’s ok. And to derive B from B is trivial: B by itself
is such a derivation, and no inferences are needed. So we can
simply delete the assumption 4.

-4]? A)®
[~4] T 4] -Elim
— 17 B2
3 _B —Intro L —Intro
[-4 Vv B! A— B A— B
2 1558 VElim

' CAVB) = (4> B) e
Note that in the finished derivation, the rightmost —Intro infer-
ence does not actually discharge any assumptions.

Example 11.6. So far we have not needed the L¢ rule. It is
special in that it allows us to discharge an assumption that isn’t a
sub-formula of the conclusion of the rule. It is closely related to
the L7 rule. In fact, the 1; rule is a special case of the L¢ rule—
there is a logic called “intuitionistic logic” in which only 17 is
allowed. The L rule is a last resort when nothing else works. For
instance, suppose we want to derive 4 V ~4. Our usual strategy
would be to attempt to derive 4V -4 using VIntro. But this would
require us to derive either 4 or =4 from no assumptions, and this
can’t be done. L. to the rescue!



[~(4Vv-4)]

L

_ 1
YV -4 ¢

Now we’re looking for a derivation of L from —(4 Vv —4). Since
L is the conclusion of —Elim we might try that:

[~(Av-H]'  [~(4v-]

-4

T A4 -Elim
11— 1¢
AV -4

Our strategy for finding a derivation of =4 calls for an application
of —Intro:

[—(4V -], [4]? )
: [-(4V -4)]

oL
27—|A —Intro y .
-Elim
1 # J—C
AV -4

Here, we can get L easily by applying —Elim to the assumption
=(AV =4) and 4 V =4 which follows from our new assumption
4 by VIntro:

[A]2 [—|(A \Y% —|A)]1
[~(4v =4 Av-d Vot :
T -Elim
2 —— =lntro
-4 A .
T N -Elim
Yav-a ¢

On the right side we use the same strategy, except we get Aby L¢:



2 3
1 7[14] VIntro 1 7[_|A]
[-(4V =4)] AV —A [-(4V =4)] AV —A

—|E1im
gL —Intro 3L Llc
-4 .
T -Elim
1—— 1¢
AV -4

11.6 Derivations with Quantifiers

Example 11.7. When dealing with quantifiers, we have to make
sure not to violate the eigenvariable condition, and sometimes
this requires us to play around with the order of carrying out
certain inferences. In general, it helps to try and take care of rules
subject to the eigenvariable condition first (they will be lower
down in the finished proof).

Let’s see how wed give a derivation of the formula 3x —A4(x)—
—Vx A(x). Starting as usual, we write

dAx —A(x) —> =Vx A(x)

We start by writing down what it would take to justify that last
step using the —Intro rule.

[3x ~A(x)]!

) —|\7’x:A(x)
dx —A(x) = ~Vx A(x)

—Intro

Since there is no obvious rule to apply to =Vx 4(x), we will pro-
ceed by setting up the derivation so we can use the JElim rule.
Here we must pay attention to the eigenvariable condition, and
choose a constant that does not appear in 3x 4(x) or any assump-
tions that it depends on. (Since no constant symbols appear,
however, any choice will do fine.)

VIntr
-Elin



[~4()]?

[3x —A4(x)]! —|\7’x:A(x)
-VYx A(x)
! Ax —A(x) — ~Vx A(x)

JElim
—Intro

In order to derive =Vx A(x), we will attempt to use the —Intro
rule: this requires that we derive a contradiction, possibly using
Vx A(x) as an additional assumption. Of course, this contradic-
tion may involve the assumption —A4(a) which will be discharged
by the JElim inference. We can set it up as follows:

[ﬁA(a)]Q,_[Vx A

[Tx =A(x)]! s —-VxA( y_ "lntro
2 JElim
-VYx A(x)
1 —Intro

Ax —A(x) — ~Vx A(x)

It looks like we are close to getting a contradiction. The easiest
rule to apply is the VElim, which has no eigenvariable conditions.
Since we can use any term we want to replace the universally
quantified x, it makes the most sense to continue using a so we
can reach a contradiction.

[Vx A(x)]® VEIi
[ﬂA<a>]2 A
—-Elim
MERYION : ﬂVxA( ) ;E“O
-Vx A(x) um
—Intro

! dx —A(x) - =Vx A(x)

It is important, especially when dealing with quantifiers, to
double check at this point that the eigenvariable condition has
not been violated. Since the only rule we applied that is subject
to the eigenvariable condition was JElim, and the eigenvariable a



does not occur in any assumptions it depends on, this is a correct
derivation.

Example 11.8. Sometimes we may derive a formula from other
formulas. In these cases, we may have undischarged assumptions.
It is important to keep track of our assumptions as well as the end
goal.

Let’s see how wed give a derivation of the formula 3x C(x,b)
from the assumptions 3x (4(x) A B(x)) and Vx (B(x) — C(x,b)).
Starting as usual, we write the conclusion at the bottom.

Ax C(x,b)

We have two premises to work with. To use the first, i.e., try
to find a derivation of 3x C(x,b) from Jx (A(x) A B(x)) we would
use the JElim rule. Since it has an eigenvariable condition, we
will apply that rule first. We get the following:

[4(a) A B(a)]*

) Ax (A(x) A B(x)) dx C:(x, b)

3 C(x.0) JElim

The two assumptions we are working with share B. It may be
useful at this point to apply AElim to separate out B(a).

[4(a) A B(a)]*
B(a)

AElim

Jx (A(x) A B(x)) dx C:(x,b) )
1 3 C(x.0) JElim

The second assumption we have to work with is Vx (B(x) —
C(x,b)). Since there is no eigenvariable condition we can instan-
tiate x with the constant symbol a using VElim to get B(a) —



C(a,b). We now have both B(a) — C(a,b) and B(a). Our next
move should be a straightforward application of the —Elim rule.

Vix (B(x) = C(x,5)) . [4(a) A B(a)]* .
B(a) > C(a.b) VElim B(a) _)EliﬁlEhm
C(a,b)
Ax (A(x) A B(x)) dx C:(x,b) )
1 3% C(x.5) JElim

We are so close! One application of JIntro and we have reached
our goal.
Vx (B(x) = C(x.0) . [4(a) A B(a)]!
VElim
B(a) — C(a,b) B(a)
C(a,b) o
| 35 (4 A BW) % C(x,b) EEI;_”O
Jx C(x,b) m

AElim
—Elim

Since we ensured at each step that the eigenvariable conditions
were not violated, we can be confident that this is a correct deriva-
tion.

Example 11.9. Give a derivation of the formula —Vx 4(x) from
the assumptions Vx A(x) — 3y B(y) and —~3y B(y). Starting as
usual, we write the target formula at the bottom.

—Vx A(x)

The last line of the derivation is a negation, so let’s try using
—Intro. This will require that we figure out how to derive a con-
tradiction.

[Vx A(x)]!

1

1 W =Intro



So far so good. We can use VElim but it’s not obvious if that will
help us get to our goal. Instead, let’s use one of our assumptions.
Vx A(x) — 3y B(y) together with Vx A(x) will allow us to use the
—Elim rule.

VxA(x) - 3y B(y)  [VxA(x)] .
5 B0) —Elim

L

1 W —Intro

We now have one final assumption to work with, and it looks like
this will help us reach a contradiction by using —Elim.

Vx A(x) — 3y B(y) [Vx A(x)]*

Eli
-3y B(y) HBO) T

1
1 “Vx A(x) =Intro

11.7 Proof-Theoretic Notions

Just as we’ve defined a number of important semantic notions
(validity, entailment, satisfiabilty), we now define corresponding
proof-theoretic notions. These are not defined by appeal to satisfac-
tion of sentences in structures, but by appeal to the derivability
or non-derivability of certain sentences from others. It was an
important discovery that these notions coincide. That they do is
the content of the soundness and completeness theorems.

Definition 11.10 (Theorems). A sentence A is a theorem if there
is a derivation of 4 in natural deduction in which all assumptions
are discharged. We write - 4 if 4 is a theorem and ¥ 4 if it is not.



Definition 11.11 (Derivability). A sentence 4 is derivable from
a set of sentences I', I' + A, if there is a derivation with conclu-
sion 4 and in which every assumption is either discharged or is
in I'. If 4 is not derivable from I" we write I" ¥ A.

Definition 11.12 (Consistency). A set of sentences I is incon-
sistent iff I' + L. If I is not inconsistent, i.e., if I" ¥ L, we say it is
consistent.

Proposition 11.13 (Reflexivity). I[fA €I, then I' + A.

Proof. The assumption 4 by itself is a derivation of 4 where every
undischarged assumption (i.e., 4) isin I". O

Proposition 11.14 (Monotony). IfI" C AandI + A, then A + A.

Proof: Any derivation of 4 from I is also a derivation of 4
from 4. o

Proposition 11.15 (Transitivity). If I' + A and {A} U 4 + B,
then I U A+ B.

Proof. If I' + A, there is a derivation § of 4 with all undischarged
assumptions in I". If {4} U 4 + B, then there is a derivation 61
of B with all undischarged assumptions in {4}U4. Now consider:

4,141
: A

$ 61 :
é 100
1 m —Intro

B

—Elim



The undischarged assumptions are now all among I" U 4, so this
shows I'U 4 + B. O

When I" = {41,4y,...,4;} is a finite set we may use the sim-
plified notation A1,Ay,...,A; + B for I' + B, in particular 4 + B
means that {4} + B.

Note that if I' + A and A + B, then I' + B. It follows also that
if A1,...,A, + Band I + A; for each i, then I" + B.

Proposition 11.16. The following are equivalent.
1. I is inconsistent.
2. I' + A for every sentence A.

3 I'tAand I v —A for some sentence A.

Proof. Exercise. o

Proposition 11.17 (Compactness). 1. If I v A then there is
a finite subset I'y C I' such that I'y + A.

2. If every finite subset of I is consistent, then I is consistent.

Proof 1. If I’ + A, then there is a derivation § of 4 from I
Let Iy be the set of undischarged assumptions of ¢. Since
any derivation is finite, /) can only contain finitely many
sentences. So, ¢ is a derivation of A4 from a finite Iy C I".

2. This is the contrapositive of (1) for the special case 4 = L.
O

11.8 Derivability and Consistency

We will now establish a number of properties of the derivability
relation. They are independently interesting, but each will play
a role in the proof of the completeness theorem.



Proposition 11.18. IfI" + A and I U {A} is inconsistent, then I is
inconsistent.

Proof. Let the derivation of 4 from I" be §; and the derivation
of L from I' U {4} be 9. We can then derive:

r,[4p
: r
) :
: 101
11—+ —Intro -
-4 Eli
T —LIIm

In the new derivation, the assumption 4 is discharged, so it is
a derivation from I". O

Proposition 11.19. I' + 4 iff I’ U {=A4} is inconsistent.

Proof. First suppose I + 4, i.e., there is a derivation dy of 4 from
undischarged assumptions /. We obtain a derivation of L from
I' U {—A4} as follows:
r
60
% —Elim

Now assume I U {—=A4} is inconsistent, and let §; be the
corresponding derivation of L from undischarged assumptions
in I' U {-4}. We obtain a derivation of 4 from I" alone by us-
ing 1¢:

-4



Proposition 11.20. IfI" + A and —A € I', then I is inconsistent.

Proof Suppose I' + A and =4 € I'. Then there is a derivation §
of 4 from I". Consider this simple application of the —Elim rule:
r

5
% —Elim

Since -4 € I', all undischarged assumptions are in /', this shows
that I" + L. o

Proposition 11.21. IfI"U{A} and I" U {—A} are both inconsistent,
then I is inconsistent.

Proof There are derivations 1 and 69 of L from I" U {4} and L
from I U {—A4}, respectively. We can then derive

r,[-4]? r,[4p
89 - 61
2 L —Intro 1 L =Intro
_|_|A _|A .
T =Elim

Since the assumptions 4 and -4 are discharged, this is a deriva-
tion of L from I" alone. Hence I is inconsistent. |

11.9 Derivability and the Propositional
Connectives

We establish that the derivability relation + of natural deduction
is strong enough to establish some basic facts involving the propo-
sitional connectives, such as that AAB + A and A,A— B+ B
(modus ponens). These facts are needed for the proof of the
completeness theorem.



Proposition 11.22. 7. BothANBv+Aand ANB+ B
2. A, B+ ANB.
Proof 1. We can derive both

AANB

A AElim B AElim
2. We can derive:
A B
ANB Alntro O
Proposition 11.23. 1. AV B,—A,—B is inconsistent.

2. BothAvr AV B and B+ AV B.

Proof. 1. Consider the following derivation:

-4 (4] . -B [B]! )
AvB ~—— 1  —Elim ——7———-Elim
1 T VElim

This is a derivation of L from undischarged assumptions
AV B, =4, and —B.

2. We can derive both

A B
AV B VIntro AV B VIntro -

Proposition 11.24. 7. A,A— B+ B.
2. Both-A+ A— B and B+ A— B.
Proof. 1. We can derive:

% —Elim



2. This is shown by the following two derivations:

-4 (4]} .
S — -Elim
_— LI
1 B —Intro _B —Intro
A— B A— B

Note that —Intro may, but does not have to, discharge the
assumption 4. |

11.10 Derivability and the Quantifiers

The completeness theorem also requires that the natural deduc-
tion rules yield the facts about  established in this section.

Theorem 11.25. If ¢ is a constant not occurring in I’ or A(x) and
I+ A(c), then T’ + VYx A(x).

Proof. Let 6 be a derivation of A(¢) from I". By adding a VIntro
inference, we obtain a derivation of Vx A(x). Since ¢ does not
occur in I" or A(x), the eigenvariable condition is satisfied. O

Proposition 11.26. 7. A(t) + Ix A(x).
2. Vx A(x) + A(¢).
Proof 1. The following is a derivation of 3x A(x) from A(¢):

_A@
IxA(x) O

2. The following is a derivation of A(¢) from Vx A(x):

Vx A(x) VEL
A() m O



11.11 Soundness

A derivation system, such as natural deduction, is sound if it
cannot derive things that do not actually follow. Soundness is
thus a kind of guaranteed safety property for derivation systems.
Depending on which proof theoretic property is in question, we
would like to know for instance, that

1. every derivable sentence is valid;

2. if a sentence is derivable from some others, it is also a
consequence of them;

3. if a set of sentences is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of
them do not hold, the derivation system is deficient—it would
derive too much. Consequently, establishing the soundness of a
derivation system is of the utmost importance.

Theorem 11.27 (Soundness). If A is derivable from the undis-
charged assumptions I', then I" & A.

Proof. Let 6 be a derivation of 4. We proceed by induction on
the number of inferences in ¢.

For the induction basis we show the claim if the number of
inferences is 0. In this case, 6 consists only of a single sentence 4,
i.e., an assumption. That assumption is undischarged, since as-
sumptions can only be discharged by inferences, and there are
no inferences. So, any structure M that satisfies all of the undis-
charged assumptions of the proof also satisfies 4.

Now for the inductive step. Suppose that § contains z in-
ferences. The premise(s) of the lowermost inference are derived
using sub-derivations, each of which contains fewer than z infer-
ences. We assume the induction hypothesis: The premises of the
lowermost inference follow from the undischarged assumptions
of the sub-derivations ending in those premises. We have to show



that the conclusion 4 follows from the undischarged assumptions
of the entire proof.

We distinguish cases according to the type of the lowermost
inference. First, we consider the possible inferences with only
one premise.

1. Suppose that the last inference is —Intro: The derivation
has the form

r,[A]"
- 61

n

—t‘l —Intro

By inductive hypothesis, L follows from the undischarged
assumptions I" U {4} of ;. Consider a structure M. We
need to show that, if M £ I', then M £ -A4. Suppose for
reductio that M £ I', but M ¥ —A, i.e., M £ A. This would
mean that M £ I" U {4}. This is contrary to our inductive
hypothesis. So, M £ —A4.

2. The last inference is AElim: There are two variants: 4 or
B may be inferred from the premise 4 A B. Consider the
first case. The derivation § looks like this:

I

- 61
AAB

A

AElim

By inductive hypothesis, 4 A B follows from the undis-
charged assumptions /" of 61. Consider a structure M. We
need to show that, if M £ I", then M £ A. Suppose M k I'.
By our inductive hypothesis (I" £ 4 A B), we know that
M £ A A B. By definition, M r ANBiff M+ Aand M ¢ B.



(The case where B is inferred from A A B is handled simi-
larly.)

. The last inference is VIntro: There are two variants: 4 V
B may be inferred from the premise A4 or the premise B.
Consider the first case. The derivation has the form

I
- 61

Aj\j B VIntro

By inductive hypothesis, 4 follows from the undischarged
assumptions I" of §;. Consider a structure M. We need to
show that, if M £ I', then M £ AV B. Suppose M & ['; then
M £ A since I' ¥ A (the inductive hypothesis). So it must
also be the case that M £ AV B. (The case where 4V B is
inferred from B is handled similarly.)

. The last inference is —Intro: 4 — B is inferred from a
subproof with assumption 4 and conclusion B, i.e.,

r,[4]"

161
B

" IS B —Intro

By inductive hypothesis, B follows from the undischarged

assumptions of 41, i.e., 'U{4} £ B. Consider a structure M.

The undischarged assumptions of ¢ are just I, since 4 is

discharged at the last inference. So we need to show that

I' £ A—B. For reductio, suppose that for some structure M,

MeTIbutMeg A— B. So,M = Aand M ¥ B. But by

hypothesis, B is a consequence of I" U {4}, i.e., M k£ B,
which is a contradiction. So, I' £ 4 — B.



5. The last inference is L;: Here, ¢ ends in
r
161
L
— 1L
1+
By induction hypothesis, I" £ 1. We have to show that
I' £ A. Suppose not; then for some M we have M £ I and

M ¢ A. But we always have M ¥ L, so this would mean that
I' ¥ 1, contrary to the induction hypothesis.

6. The last inference is L¢: Exercise.

7. The last inference is VIntro: Then ¢ has the form
r
£ 61

A(a)

Vx A(x) VIntro

The premise A(a) is a consequence of the undischarged
assumptions I" by induction hypothesis. Consider some
structure, M, such that M £ I'. We need to show that M F
Vx A(x). Since Yx A(x) is a sentence, this means we have
to show that for every variable assignment s, M,s £ A(x)
(Proposition 7.18). Since I" consists entirely of sentences,
M.,s £ B for all B € I' by Definition 7.11. Let M’ be like
M except that aM = s(x). Since a does not occur in I,
M’ = I' by Corollary 7.20. Since I' £ A(a), M’ & A(a).
Since A(a) is a sentence, M’,s £ A(a) by Proposition 7.17.
M’,s £ A(x) iff M" £ A(a) by Proposition 7.22 (recall that
A(a) is just A(x)[a/x]). So, M’,s £ A(x). Since a does not
occur in A(x), by Proposition 7.19, M,s £ A(x). But s was
an arbitrary variable assignment, so M k Vx A(x).



8. The last inference is JIntro: Exercise.

9. The last inference is VElim: Exercise.

Now let’s consider the possible inferences with several
premises: VElim, Alntro, —Elim, and JElim.

1. The last inference is Alntro. A4 A B is inferred from the
premises 4 and B and ¢ has the form

I Iy
161 69
4 B
ANB Alntro
By induction hypothesis, 4 follows from the undischarged
assumptions /7 of 61 and B follows from the undischarged
assumptions Iy of 9. The undischarged assumptions of ¢
are ['1Ul9, so we have to show that I'7Uls £ AAB. Consider
a structure M with M £ I7 U I'y. Since M E I, it must be

the case that M £ A as I'1 £ A, and since M £ [5, M £ B
since I'y £ B. Together, M £ A A B.

2. The last inference is VElim: Exercise.

3. The last inference is —Elim. B is inferred from the
premises A — B and 4. The derivation ¢ looks like this:

I3 Iy

" 61 D)
A>B A .
T—)Ellm

By induction hypothesis, 4 — B follows from the undis-
charged assumptions /7 of 61 and 4 follows from the undis-
charged assumptions I's of 69. Consider a structure M. We



need to show that, if M £ I7 U Iy, then M £ B. Suppose
MEI7Ul. Since 1 E A—»B, M A— B. Since Iy £ A, we
have M £ A. This means that M £ B (For if M ¥ B, since
M e A, wed have M ¥ A — B, contradicting M £ A — B).

4. The last inference is —Elim: Exercise.

5. The last inference is FElim: Exercise. O

Corollary 11.28. If+ A, then A is valid.

Corollary 11.29. IfI is satisfiable, then it is consistent.

Proof- We prove the contrapositive. Suppose that I" is not con-
sistent. Then I" + 1, i.e., there is a derivation of L from undis-
charged assumptions in I". By Theorem 11.27, any structure M
that satisfies I” must satisfy L. Since M ¥ L for every structure M,
no M can satisfy I', i.e., I is not satisfiable. O

11.12 Derivations with Identity predicate

Derivations with identity predicate require additional inference
rules.

h=1l A(ty)
A(tp)

h=1t A(t)
A(t)

=Elim

=Intro

=Elim

In the above rules, ¢, #1, and # are closed terms. The =Intro
rule allows us to derive any identity statement of the form ¢ = ¢
outright, from no assumptions.

Example 11.30. If s and ¢ are closed terms, then A(s),s = ¢ +
A(t):



s=1 A(s)
A(t)

=Elim

This may be familiar as the “principle of substitutability of iden-
ticals,” or Leibniz’ Law.

Example 11.31. We derive the sentence
VaVy ((A(x) AN A(y)) = x =)

from the sentence

JxVy (A(y) =y = x)
We develop the derivation backwards:

FxVy (A(p) =y =x)  [4(a) A AB)])!

1 a=bh
((4(a) A A(b)) = a = b)
vy ((4(e) A A(y)) — a =y)
VaVy ((A(x) A A(y)) — x = y)
We’ll now have to use the main assumption: since it is an existen-

tial formula, we use JElim to derive the intermediary conclusion

a=>b.

—Intro
VIntro
VIntro

[Vy (A(y) =y = ¢)]?
[A(a) A A(B)]!

Jx Vy (4 = -y
, X AG) =y f)b 4 3Elim
1 a= —Intro
((A(a) AN A(b)) — a=1d)
VIntro

Vy ((A(a) NA(y)) > a=Yy)
VxVy ((A(x) ANA(y) > x =)

VIntro



The sub-derivation on the top right is completed by using its
assumptions to show that ¢ = ¢ and b = ¢. This requires two
separate derivations. The derivation for a = ¢ is as follows:

Vy (A(y) =y =0)]* A(a) A AB)]

Yy (AQ) =y =0l" .~ [A@Ar4AB) o

A(a) > a=c¢ A(a) .
a=c —Elim

From a = ¢ and b = ¢ we derive a = b by =Elim.

11.13 Soundness with Identity predicate

Proposition 11.32. Natural deduction with rules for = is sound.

Proof. Any formula of the form ¢ = ¢ is valid, since for every
structure M, M £ t = t. (Note that we assume the term ¢ to be
ground, i.e., it contains no variables, so variable assignments are
irrelevant).

Suppose the last inference in a derivation is =Elim, i.e., the
derivation has the following form:

I Iy
5(51 5(52

h - by A(t)
A(to)

The premises #; = f and A(¢1) are derived from undischarged
assumptions /7 and [y, respectively. We want to show that A(%)
follows from I'; U I's. Consider a structure M with M £ I'7 U Is.
By induction hypothesis, M & A(#1) and M £ t; = t5. There-
fore, Val™ (1) = Val™ (). Let s be any variable assignment, and
m = Val™(#) = Val™ (). By Proposition 7.22, M,s £ A(t) iff
M,s[m/x] £ A(x) iff M,s £ A(&). Since M k£ A(#1), we have
M E A(t). O

=Elim



Summary

Proof systems provide purely syntactic methods for characteriz-
ing consequence and compatibility between sentences. Natural
deduction is one such proof system. A derivation in it consists
of a tree formulas. The topmost formulas in a derivation are as-
sumptions. All other formulas, for the derivation to be correct,
must be correctly justified by one of a number of inference rules.
These come in pairs; an introduction and an elimination rule for
each connective and quantifier. For instance, if a formula 4 is
justified by a —Elim rule, the preceding formulas (the premises)
must be B — 4 and B (for some B). Some inference rules also
allow assumptions to be discharged. For instance, if A — B is in-
ferred from B using —Intro, any occurrences of 4 as assumptions
in the derivation leading to the premise B may be discharged, and
is given a label that is also recorded at the inference.

If there is a derivation with end formula 4 and all assumptions
are discharged, we say 4 is a theorem and write +- 4. If all undis-
charged assumptions are in some set /", we say A4 is derivable
from " and write ' + A. If I' + L we say I is inconsistent, oth-
erwise consistent. These notions are interrelated, e.g., I" + 4 iff
I'U{-4} is inconsistent. They are also related to the correspond-
ing semantic notions, e.g., if I' + 4 then I' £ A. This property
of proof systems—what can be derived from I” is guaranteed to
be entailed by I'—is called soundness. The soundness theo-
rem is proved by induction on the length of derivations, showing
that each individual inference preserves entailment of its conclu-
sion from open assumptions provided its premises are entailed
by their undischarged assumptions.

Problems

Problem 11.1. Give derivations of the following:

1. -(A— B) » (AA-B)



2. (4— C)V (B — () from the assumption (4 A B) — C
3. 14— A4
4. A — =B from the assumption B — 4
5. —A from the assumption (4 — —4)
6. A from the assumptions B — 4 and =B — 4
Problem 11.2. Give derivations of the following:
1. 3y A(y) — B from the assumption Vx (4(x) — B)
2. dx (A(x) = Vy A(y))
Problem 11.3. Prove Proposition 11.16
Problem 11.4. Prove that I' + =A4 iff I U {4} is inconsistent.
Problem 11.5. Complete the proof of Theorem 11.27.

Problem 11.6. Prove that = is both symmetric and transitive,
i.e., give derivations of VxVy (x = y — y = x) and VaVyVz((x =
JAY=2) > x=2)

Problem 11.7. Give derivations of the following formulas:
1. VaVy ((x =y A A(x)) = A(y))

2. Ax A(x) AVyVz ((A(y) A A(2)) =y = z) = Tx(A(x) A
Yy (A(y) =y = %))



CHAPTER 12

12.1 Introduction

The completeness theorem is one of the most fundamental re-
sults about logic. It comes in two formulations, the equivalence
of which we’ll prove. In its first formulation it says something fun-
damental about the relationship between semantic consequence
and our derivation system: if a sentence 4 follows from some sen-
tences I', then there is also a derivation that establishes I" + A.
Thus, the derivation system is as strong as it can possibly be
without proving things that don’t actually follow.

In its second formulation, it can be stated as a model exis-
tence result: every consistent set of sentences is satisfiable. Con-
sistency is a proof-theoretic notion: it says that our derivation
system is unable to produce certain derivations. But who’s to
say that just because there are no derivations of a certain sort
from I', it’s guaranteed that there is a structure M? Before the
completeness theorem was first proved—in fact before we had the
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derivation systems we now do—the great German mathematician
David Hilbert held the view that consistency of mathematical the-
ories guarantees the existence of the objects they are about. He
put it as follows in a letter to Gottlob Frege:

If the arbitrarily given axioms do not contradict one
another with all their consequences, then they are
true and the things defined by the axioms exist. This
is for me the criterion of truth and existence.

Frege vehemently disagreed. The second formulation of the com-
pleteness theorem shows that Hilbert was right in at least the
sense that if the axioms are consistent, then some structure exists
that makes them all true.

These aren’t the only reasons the completeness theorem—or
rather, its proof—is important. It has a number of important con-
sequences, some of which we’ll discuss separately. For instance,
since any derivation that shows I" + A4 is finite and so can only
use finitely many of the sentences in I, it follows by the com-
pleteness theorem that if 4 is a consequence of I', it is already
a consequence of a finite subset of I". This is called compactness.
Equivalently, if every finite subset of I is consistent, then I” itself
must be consistent.

Although the compactness theorem follows from the com-
pleteness theorem via the detour through derivations, it is also
possible to use the the proof of the completeness theorem to estab-
lish it directly. For what the proof does is take a set of sentences
with a certain property—consistency—and constructs a structure
out of this set that has certain properties (in this case, that it sat-
isfies the set). Almost the very same construction can be used
to directly establish compactness, by starting from “finitely sat-
isfiable” sets of sentences instead of consistent ones. The con-
struction also yields other consequences, e.g., that any satisfiable
set of sentences has a finite or countably infinite model. (This
result is called the Léwenheim-Skolem theorem.) In general, the
construction of structures from sets of sentences is used often in
logic, and sometimes even in philosophy.



12.2 OQOutline of the Proof

The proof of the completeness theorem is a bit complex, and
upon first reading it, it is easy to get lost. So let us outline the
proof. The first step is a shift of perspective, that allows us to see
a route to a proof. When completeness is thought of as “whenever
I' £ Athen I' + 4,” it may be hard to even come up with an idea:
for to show that I + A we have to find a derivation, and it does
not look like the hypothesis that I" £ A4 helps us for this in any
way. For some proof systems it is possible to directly construct
a derivation, but we will take a slightly different approach. The
shift in perspective required is this: completeness can also be
formulated as: “if I" is consistent, it is satisfiable.” Perhaps we
can use the information in I" together with the hypothesis that it
is consistent to construct a structure that satisfies every sentence
in I'. After all, we know what kind of structure we are looking
for: one that is as I" describes it!

If I contains only atomic sentences, it is easy to construct a
model for it. Suppose the atomic sentences are all of the form
P(a1,...,a,) where the a; are constant symbols. All we have to
do is come up with a domain |M| and an assignment for P so
that M & P(as,...,a,). But that’s not very hard: put |[M| = N,
CZM =i, and for every P(a1,...,a,) € I', put the tuple (k1,....k,)
into PM where £; is the index of the constant symbol a; (ie.,
a; = Ckl-)~

Now suppose I contains some formula —B, with B atomic.
We might worry that the construction of M interferes with the
possibility of making —B true. But here’s where the consistency
of I comes in: if =B € I', then B ¢ I, or else I' would be
inconsistent. And if B ¢ I', then according to our construction
of M, M ¥ B, so M £ =B. So far so good.

What if I” contains complex, non-atomic formulas? Say it
contains 4 A B. To make that true, we should proceed as if both
A and B were in I'. And if AV B € I', then we will have to make
at least one of them true, i.e., proceed as if one of them was in I".



This suggests the following idea: we add additional formulas
to I" so as to (a) keep the resulting set consistent and (b) make
sure that for every possible atomic sentence 4, either 4 is in the
resulting set, or -4 is, and (c) such that, whenever 4 A B is in
the set, so are both 4 and B, if AV B is in the set, at least one of
A or B is also, etc. We keep doing this (potentially forever). Call
the set of all formulas so added I"*. Then our construction above
would provide us with a structure M for which we could prove,
by induction, that it satisfies all sentences in /™", and hence also
all sentence in I" since I C I'*. It turns out that guaranteeing
(a) and (b) is enough. A set of sentences for which (b) holds is
called complete. So our task will be to extend the consistent set I”
to a consistent and complete set ™.

There is one wrinkle in this plan: if 3x A(x) € I' we would
hope to be able to pick some constant symbol ¢ and add A4(c)
in this process. But how do we know we can always do that?
Perhaps we only have a few constant symbols in our language,
and for each one of them we have —=A4(¢) € I'. We can’t also add
A(c), since this would make the set inconsistent, and we wouldn’t
know whether M has to make A(¢) or —A(c) true. Moreover, it
might happen that I" contains only sentences in a language that
has no constant symbols at all (e.g., the language of set theory).

The solution to this problem is to simply add infinitely many
constants at the beginning, plus sentences that connect them with
the quantifiers in the right way. (Of course, we have to verify that
this cannot introduce an inconsistency.)

Our original construction works well if we only have constant
symbols in the atomic sentences. But the language might also
contain function symbols. In that case, it might be tricky to find
the right functions on N to assign to these function symbols to
make everything work. So here’s another trick: instead of using
i to interpret ¢;, just take the set of constant symbols itself as
the domain. Then M can assign every constant symbol to itself:
cM = ¢. But why not go all the way: let [M| be all terms of
the language! If we do this, there is an obvious assignment of
functions (that take terms as arguments and have terms as values)



to function symbols: we assign to the function symbol 7" the
function which, given n terms ¢, ..., ¢, as input, produces the
term 1" (#1,...,t,) as value.

The last piece of the puzzle is what to do with =. The
predicate symbol = has a fixed interpretation: M ¢ ¢ = ¢’ iff
ValM (¢) = Val™ (¢/). Now if we set things up so that the value of
a term ¢ is ¢ itself, then this structure will make no sentence of
the form ¢ = ¢’ true unless ¢ and ¢’ are one and the same term.
And of course this is a problem, since basically every interesting
theory in a language with function symbols will have as theorems
sentences ¢ = ¢’ where ¢ and ¢’ are not the same term (e.g., in
theories of arithmetic: (0 +0) = 0). To solve this problem, we
change the domain of M: instead of using terms as the objects
in [M|, we use sets of terms, and each set is so that it contains
all those terms which the sentences in I" require to be equal. So,
e.g., if I is a theory of arithmetic, one of these sets will contain:
0, (0+0), (0 x0), etc. This will be the set we assign to 0, and it
will turn out that this set is also the value of all the terms in it,
e.g., also of (0 + 0). Therefore, the sentence (0 + 0) = o will be
true in this revised structure.

So here’s what we’ll do. First we investigate the properties of
complete consistent sets, in particular we prove that a complete
consistent set contains 4 A B iff it contains both 4 and B, AV B iff
it contains at least one of them, etc. (Proposition 12.2). Then we
define and investigate “saturated” sets of sentences. A saturated
set is one which contains conditionals that link each quantified
sentence to instances of it (Definition 12.5). We show that any
consistent set I" can always be extended to a saturated set I’
(Lemma 12.6). If a set is consistent, saturated, and complete it
also has the property that it contains 3x A(x) iff it contains A(¢)
for some closed term ¢ and Vx A(x) iff it contains A(¢) for all
closed terms ¢ (Proposition 12.7). We’ll then take the saturated
consistent set /" and show that it can be extended to a satu-
rated, consistent, and complete set /™" (Lemma 12.8). This set
I'* is what we’ll use to define our term model M(I"*). The term
model has the set of closed terms as its domain, and the interpre-



tation of its predicate symbols is given by the atomic sentences
in I"* (Definition 12.g). We’ll use the properties of saturated, com-
plete consistent sets to show that indeed M(I'™*) £ Aiff A € I'*
(Lemma 12.11), and thus in particular, M(I™*) £ I'. Finally, we’ll
consider how to define a term model if I" contains = as well (Def-
inition 12.15) and show that it satisfies I'* (Lemma 12.17).

12.3 Complete Consistent Sets of Sentences

Definition 12.1 (Complete set). A set I" of sentences is com-
plete iff for any sentence 4, either A € " or ~A €T

Complete sets of sentences leave no questions unanswered.
For any sentence A4, I “says” if A is true or false. The impor-
tance of complete sets extends beyond the proof of the complete-
ness theorem. A theory which is complete and axiomatizable, for
instance, is always decidable.

Complete consistent sets are important in the completeness
proof since we can guarantee that every consistent set of sen-
tences I is contained in a complete consistent set /™. A com-
plete consistent set contains, for each sentence 4, either A4 or its
negation —4, but not both. This is true in particular for atomic
sentences, so from a complete consistent set in a language suit-
ably expanded by constant symbols, we can construct a structure
where the interpretation of predicate symbols is defined accord-
ing to which atomic sentences are in /™*. This structure can then
be shown to make all sentences in I'* (and hence also all those
in I') true. The proof of this latter fact requires that -4 € I'* iff
Ag¢lI*, (AvB)el"iff AeI'" or B eI, etc.

In what follows, we will often tacitly use the properties of
reflexivity, monotonicity, and transitivity of +- (see sections 10.8
and 11.7).



Proposition 12.2. Suppose I is complete and consistent. Then:
1. IfT'+ A, then AeT.
2. ANBeT iffbothAcl and BeT.
3 AVBeT iffeitherAcT orBel.

4- A—> B el iffeitherA¢ T orBel.

Proof. Let us suppose for all of the following that I" is complete
and consistent.

1. f '+ A, then A eI

Suppose that I" + A. Suppose to the contrary that 4 ¢ I'.
Since I' is complete, -4 € I'. By Propositions 10.20
and 11.20, I" is inconsistent. This contradicts the assump-
tion that I" is consistent. Hence, it cannot be the case that
A¢l,soAel.

2. Exercise.

3. First we show that if 4 vV B € I', then either 4 € I' or
B € I'. Suppose AVB € I'but A ¢ I' and B ¢ I.
Since I" is complete, -4 € I' and =B € I'. By Proposi-
tions 10.23 and 11.23, item (1), I" is inconsistent, a contra-
diction. Hence, either A€ I" or Be I'.

For the reverse direction, suppose that 4 € I" or B € I'. By
Propositions 10.23 and 11.23, item (2), I' + AV B. By (1),
AV B €I, as required.

4. Exercise. O

12.4 Henkin Expansion

Part of the challenge in proving the completeness theorem is that
the model we construct from a complete consistent set /" must



make all the quantified formulas in I” true. In order to guar
antee this, we use a trick due to Leon Henkin. In essence, the
trick consists in expanding the language by infinitely many con-
stant symbols and adding, for each formula with one free variable
A(x) a formula of the form 3x A(x) — A(c), where ¢ is one of the
new constant symbols. When we construct the structure satisfy-
ing I, this will guarantee that each true existential sentence has
a witness among the new constants.

Proposition 12.3. If I is consistent in £ and <L’ is obtained from
< by adding a countably infinite set of new constant symbols dy, d,
..., then I is consistent in &L’.

Definition 12.4 (Saturated set). A set I" of formulas of a lan-
guage & is saturated iff for each formula A(x) € Frm(&Z) with
one free variable x there is a constant symbol ¢ € & such that
Ax A(x) > A(c) € T.

The following definition will be used in the proof of the next
theorem.

Definition 12.5. Let &’ be as in Proposition 12.3. Fix an enu-
meration Ay(xg), A1(x1), ...of all formulas 4;(x;) of £’ in which
one variable (x;) occurs free. We define the sentences D, by in-
duction on n.

Let ¢y be the first constant symbol among the d; we added
to & which does not occur in 4y (xp). Assuming that Dy, ..., D,
have already been defined, let ¢, be the first among the new con-
stant symbols d; that occurs neither in Dy, ..., D,_1 norin 4,(x,).

Now let D, be the formula 3x, 4,(x,) — A,(c,).

Lemma 12.6. Every consistent set I' can be extended to a saturated
consistent set I"’.



Proof. Given a consistent set of sentences /" in a language &, ex-
pand the language by adding a countably infinite set of new con-
stant symbols to form &’. By Proposition 12.3, I is still consistent
in the richer language. Further, let D; be as in Definition 12.5.
Let

Iy=T
Fn+1=FnU{Dn}

ie, I'ny1 =T U{Dy,...,D,}, and let I'" = |J, I,. I’ is clearly
saturated.

If I'’ were inconsistent, then for some #n, I, would be incon-
sistent (Exercise: explain why). So to show that /"’ is consistent it
suffices to show, by induction on =z, that each set I, is consistent.

The induction basis is simply the claim that I'y = I'" is consis-
tent, which is the hypothesis of the theorem. For the induction
step, suppose that I, is consistent but /7,41 = I, U {D,} is incon-
sistent. Recall that D, is 3x, 4,(x,) — A,(c,), where A4,(x,) is
a formula of &£’ with only the variable x, free. By the way we’ve
chosen the ¢, (see Definition 12.5), ¢, does not occur in A4,(x,)
nor in [5,.

If I, U{D,} is inconsistent, then I, + =D,, and hence both
of the following hold:

[y - 3xy Ap(x2) Iy v —A5(cy)

Since ¢, does not occur in I, or in A4,(x,), Theorems 10.25
and 11.25 applies. From I, + -4,(c,), we obtain I, F
Vx, = A,(x,). Thus we have that both I', + 3x, 4,(x,) and I, +
Vx, = A,(x,), so I, itself is inconsistent. (Note that Vx, =4, (x,) +
—-3x, A,(x,).) Contradiction: I, was supposed to be consistent.
Hence I', U {D,} is consistent. O

We’ll now show that complete, consistent sets which are satu-
rated have the property that it contains a universally quantified
sentence iff it contains all its instances and it contains an existen-
tially quantified sentence iff it contains at least one instance. We’ll



use this to show that the structure we’ll generate from a complete,
consistent, saturated set makes all its quantified sentences true.

Proposition 12.7. Suppose I is complete, consistent, and saturated.
7. Ax A(x) € I iff A(t) € I for at least one closed term t.

2. VxA(x) e I iff A(t) € T for all closed terms t.

Proof. 1. First suppose that 3x A(x) € I'. Because [’ is satu-
rated, (3x A(x) — A(c¢)) € I" for some constant symbol c.
By Propositions 10.24 and 11.24, item (1), and Proposi-
tion 12.2(1), A(¢) € I'.

For the other direction, saturation is not necessary: Sup-
pose A(t) € I'. Then I' + 3x A(x) by Propositions 10.26
and 11.26, item (1). By Proposition 12.2(1), 3x A(x) € I".

2. Exercise. |

12.5 Lindenbaum’s Lemma

We now prove a lemma that shows that any consistent set of sen-
tences is contained in some set of sentences which is not just
consistent, but also complete. The proof works by adding one
sentence at a time, guaranteeing at each step that the set remains
consistent. We do this so that for every A, either 4 or -4 gets
added at some stage. The union of all stages in that construction
then contains either A4 or its negation —4 and is thus complete.
It is also consistent, since we made sure at each stage not to in-
troduce an inconsistency.

Lemma 12.8 (Lindenbaum’s Lemma). Every consistent set I in
a language £ can be extended to a complete and consistent set I'*.



Proof. Let I' be consistent. Let Ay, 41, ... be an enumeration of
all the sentences of &£. Define I'y = I', and

oo r,u{d,y ifI,U{4,} is consistent;
e I, U{-A4,} otherwise.

Let I'* = U, 50 I -

Each I, is consistent: [ is consistent by definition. If
Iy = I'y U {4,}, this is because the latter is consistent. If it
isn’t, I+ = I, U {—4,}. We have to verify that I, U {—-4,} is
consistent. Suppose it’s not. Then both I', U{4,} and I, U {—4,}
are inconsistent. This means that I, would be inconsistent by
Propositions 10.20 and 11.20, contrary to the induction hypothe-
sis.

For every n and every i < n, I'; C I',. This follows by a simple
induction on . For n = 0, there are no i < 0, so the claim holds
automatically. For the inductive step, suppose it is true for n.
We have I, = I, U{4,} or = I, U {—4,} by construction. So
Iy € Iy If i < m, then I'; C I, by inductive hypothesis, and so
C ;41 by transitivity of C.

From this it follows that every finite subset of I is a subset
of I', for some 7, since each B € I'* not already in Iy is added at
some stage 7. If z is the last one of these, then all B in the finite
subset are in I,. So, every finite subset of I"* is consistent. By
Propositions 10.17 and 11.17, I'* is consistent.

Every sentence of Frm(&) appears on the list used to de-
fine I'*. If A, ¢ I'*, then that is because I', U {4,} was inconsis-
tent. But then =4, € I'*, so I'* is complete. m|

12.6 Construction of a Model

Right now we are not concerned about =, i.e., we only want to
show that a consistent set /" of sentences not containing = is satis-
fiable. We first extend I” to a consistent, complete, and saturated
set I'*. In this case, the definition of a model M (1) is simple: We
take the set of closed terms of &£’ as the domain. We assign every



constant symbol to itself, and make sure that more generally, for
every closed term ¢, Val™"") (¢) = ¢. The predicate symbols are
assigned extensions in such a way that an atomic sentence is true
in M(I'*) iff it is in I"*. This will obviously make all the atomic
sentences in ™" true in M(I™*). The rest are true provided the I'™*
we start with is consistent, complete, and saturated.

Definition 12.9 (Term model). Let /™ be a complete and con-
sistent, saturated set of sentences in a language &. The term
model M(I'*) of I'* is the structure defined as follows:

1. The domain |M(I'*)| is the set of all closed terms of £.

2. The interpretation of a constant symbol ¢ is ¢ itself:
M) = ¢,

3. The function symbol f is assigned the function which,
given as arguments the closed terms ¢, ..., ¢,, has as value
the closed term f(¢#1,...,t,):

MIN g, k) = f(f. o t)

4. If R is an n-place predicate symbol, then

(ti,. ... b)) € RMUD S R(4y,.. . t,) € T

A structure M may make an existentially quantified sen-
tence 3x A(x) true without there being an instance A(¢) that it
makes true. A structure M may make all instances 4(¢) of a uni-
versally quantified sentence Vx A4(x) true, without making Vx A4(x)
true. This is because in general not every element of |[M]| is the
value of a closed term (M may not be covered). This is the rea-
son the satisfaction relation is defined via variable assignments.
However, for our term model M (/™) this wouldn’t be necessary—
because it is covered. This is the content of the next result.



Proposition 12.10. Let M(I'*) be the term model of Definition 12.9.
7. M(I'*) £ Ax A(x) iff M(I'*) £ A(¢) for at least one term t.
2. M(I'*) EVx A(x) iff M(I'*) & A(t) for all terms ¢.

Proof 1. By Proposition 7.18, M(I"*) £ 3x A(x) iff for at least
one variable assignment s, M(I""),s £ A(x). As [M(I™")|
consists of the closed terms of &£, this is the case iff there is
at least one closed term ¢ such that s(x) = { and M(I'),s &
A(x). By Proposition 7.22, M(I'*),s £ A(x) iff M(I'*),s E
A(t), where s(x) = ¢t. By Proposition 7.17, M(I"*),s £ A(t)
ifft M(I'*) £ A(t), since A(#) is a sentence.

2. Exercise. a

Lemma 12.11 (Truth Lemma). Suppose A does not contain =.
Then M(I'™) £ AiffAe ™.

Proof. We prove both directions simultaneously, and by induction
on A.

1. A= 1: M(I'") ¢ L by definition of satisfaction. On the
other hand, L ¢ I'* since I'* is consistent.

2. A =R(f,...,ty): MIT) E R(f1,...,8,) iff {f1,...,t,) €
RMUT) (by the definition of satisfaction) iff R(#,....t,) €
I'* (by the construction of M(I"")).

3.4 =-B: M(I") £ Aiff M(I'*) ¥ B (by definition of
satisfaction). By induction hypothesis, M(I™*) ¥ B iff B ¢
I'*. Since I'* is consistent and complete, B ¢ I iff -B € I'*.

4. A= B A C: exercise.

5 A=BvC: MUI*)E A MUIT™) £ Bor M(I'") £ C
(by definition of satisfaction) iff B € I'* or C € I'* (by
induction hypothesis). This is the case iff (BV C) € I'* (by
Proposition 12.2(3)).



6. A=B — C: exercise.
7. A=VxB(x): exercise.

8. 4=3xB(x): M{I™) r Aiff M(I'*) £ B(t) for at least
one term ¢ (Proposition 12.10). By induction hypothesis,
this is the case iff B(¢) € I'* for at least one term ¢. By
Proposition 12.7, this in turn is the case iff 3x B(x) € I'".
O

12.7 Identity

The construction of the term model given in the preceding sec-
tion is enough to establish completeness for first-order logic for
sets I" that do not contain =. The term model satisfies every
A € I'* which does not contain = (and hence all 4 € I'). It does
not work, however, if = is present. The reason is that I"* then
may contain a sentence ¢ = ¢/, but in the term model the value of
any term is that term itself. Hence, if ¢ and ¢’ are different terms,
their values in the term model—i.e., ¢ and ¢, respectively—are
different, and so ¢ = ¢’ is false. We can fix this, however, using a
construction known as “factoring.”

Definition 12.12. Let ™" be a consistent and complete set of
sentences in &£. We define the relation ~ on the set of closed
terms of & by

t~t ff t=ter

Proposition 12.13. The relation ~ has the following properties:

1. ~ is reflexive.

Q

2. =~ is symmetric.

is transitive.

Q

3



¢ Ift = t', f is a function symbol, and t, ..., t;_1, tix1, ..., by
are terms, then

f(t]J' . ~’ti—1at7ti+1" . ’tn) ~ f(t1’~ . ~’ti—1’t,ati+1" . atn)

5. Ift = t', R is a predicate symbol, and t, ..., t;_1, tis1, ..., ty
are terms, then

R(t1,....tic1 b1, . o ty) € T dff
R(t,....t; 1.t  tiz1,. .. ty) €T,

Proof. Since I'* is consistent and complete, ¢ = ¢’ € I'* iff I'* +
¢t = t’. Thus it is enough to show the following:

1. I'*+ ¢t =t for all terms ¢.
o. IfI'*vt=¢tthenI'+t' =1t
3. fr*vret=¢tandI' v ¢ =t",then ' +¢t=1¢".
4. I' v ¢t = ¢/, then
T v f(t,. it b tindss e oo tn) = (8o bim1,t by oo En)

for every n-place function symbol f and terms ¢, ..., #-1,
Litsly - tn

5. XIr*v ¢t =1¢and I'* + R(t1,...,t-1,8,4i+1,- - - » 1), then
I'" v R(t,...,t-1,t" tis1,. .., 1) for every n-place predicate
symbol R and terms {1, ..., -1, tis1, ..., In- O

Definition 12.14. Suppose I'* is a consistent and complete set
in a language &£, ¢ is a term, and = as in the previous definition.
Then:

[t]~={t' : t' € Tm(L),t = t'}



and Trm(Z) /x= {[t]~ : t € Trm(Z)}.

Definition 12.15. Let M = M(I'*) be the term model for I'*.
Then M/ is the following structure:

1. M/.| = Trm(2) /.
2. Mk =[¢].

3. ME([t]ss. o [tals) = [ (B ta)]s
4. ([t)es- 5 [tal) € RMEE M E R(8y,. .. ,t,).

Note that we have defined fM~ and RM~ for elements of
Trm(Z)/~ by referring to them as [¢]x, i.e., via representatives t €
[£]~. We have to make sure that these definitions do not depend
on the choice of these representatives, i.e., that for some other
choices ¢ which determine the same equivalence classes ([¢]~ =
[t']~), the definitions yield the same result. For instance, if R
is a one-place predicate symbol, the last clause of the definition
says that [¢]. € RM/~ iff M & R(t). If for some other term ¢’ with
t ~t', M ¢ R(t), then the definition would require [¢']~ ¢ RMF-,
If ¢ ~ t’, then [{]~ = [t']~, but we can’t have both [¢]. € RM’
and [t]~ ¢ RM/~. However, Proposition 12.13 guarantees that
this cannot happen.

Proposition 12.16. M /. is well defined, i.c., if ti, ..., t,, tl’, U 34
are terms, and t; ~ 1] then

7. [t )]s = [f (.. )]s de,
f(t,....ty) = f(t],....t;)

and



2 MER(l,....t,) iff MER(Y,....t,), ie,
R(t1,....t,) €I iff R(t{,...,t,) €.

Proof. Follows from Proposition 12.13 by induction on z. o

Lemma 12.17. M/ = A iff A € I'* for all sentences A.

Proof By induction on 4, just as in the proof of Lemma 12.11.
The only case that needs additional attention is when 4 = ¢ = ¢'.

M/. et =1t"iff [t]~ = [t']~ (by definition of M/.)
iff # ~ ¢’ (by definition of [¢]~)
iff £ =¢" € I'" (by definition of =). o

Note that while M (I"*) is always countable and infinite, M /.
may be finite, since it may turn out that there are only finitely
many classes [¢]~. This is to be expected, since " may contain
sentences which require any structure in which they are true to
be finite. For instance, VxVyx = y is a consistent sentence, but
is satisfied only in structures with a domain that contains exactly
one element.

12.8 The Completeness Theorem

Let’s combine our results: we arrive at the completeness theo-
rem.

Theorem 12.18 (Completeness Theorem). Let I' be a set of
sentences. If I' is consistent, it is satisfiable.

Proof. Suppose I' is consistent. By Lemma 12.6, there is a satu-
rated consistent set /'’ 2 I'. By Lemma 12.8, thereisa I'* 2 I’
which is consistent and complete. Since I'” C I'*, for each for-
mula A(x), I'* contains a sentence of the form 3x A(x)— A(c) and



so I'* is saturated. If I" does not contain =, then by Lemma 12.11,
M(I'*) e Aiff A € I'*. From this it follows in particular that for
all A e I', M(I'*) £ A, so I is satisfiable. If I" does contain =,
then by Lemma 12.17, for all sentences 4, M/ F Aiff A€ I'*. In
particular, M/« & A for all A € I', so I’ is satisfiable. O

Corollary 12.19 (Completeness Theorem, Second Version).
For all T and sentences A: if I' £ A then I' + A.

Proof. Note that the I'’s in Corollary 12.19 and Theorem 12.18
are universally quantified. To make sure we do not confuse our-
selves, let us restate Theorem 12.18 using a different variable: for
any set of sentences 4, if 4 is consistent, it is satisfiable. By con-
traposition, if 4 is not satisfiable, then 4 is inconsistent. We will
use this to prove the corollary.

Suppose that I" £ A. Then I" U {—A4} is unsatisfiable by Propo-
sition 7.27. Taking I" U {-4} as our 4, the previous version of
Theorem 12.18 gives us that I" U {~4} is inconsistent. By Propo-
sitions 10.19 and 11.19, I" + 4. O

12.9 The Compactness Theorem

One important consequence of the completeness theorem is the
compactness theorem. The compactness theorem states that if
each finite subset of a set of sentences is satisfiable, the entire
set is satisfiable—even if the set itself is infinite. This is far from
obvious. There is nothing that seems to rule out, at first glance at
least, the possibility of there being infinite sets of sentences which
are contradictory, but the contradiction only arises, so to speak,
from the infinite number. The compactness theorem says that
such a scenario can be ruled out: there are no unsatisfiable infinite
sets of sentences each finite subset of which is satisfiable. Like the
completeness theorem, it has a version related to entailment: if an
infinite set of sentences entails something, already a finite subset
does.



Definition 12.20. A set I" of formulas is finitely satisfiable iff ev-
ery finite /) C I is satisfiable.

Theorem 12.21 (Compactness Theorem). The following hold
Sfor any sentences I' and A:

1. I' £ A iff there is a finite Iy C I" such that Iy £ A.
2. I is satisfiable iff it is finitely satisfiable.

Proof- We prove (2). If I' is satisfiable, then there is a structure M
such that M £ A for all A € I'. Of course, this M also satisfies
every finite subset of I, so I is finitely satisfiable.

Now suppose that I" is finitely satisfiable. Then every finite
subset Iy C I is satisfiable. By soundness (Corollaries 11.29
and 10.31), every finite subset is consistent. Then I” itself must
be consistent by Propositions 10.17 and 11.17. By completeness
(Theorem 12.18), since I" is consistent, it is satisfiable. O

Example 12.22. In every model M of a theory I', each term ¢ of
course picks out an element of |M|. Can we guarantee that it is
also true that every element of |M| is picked out by some term or
other? In other words, are there theories I" all models of which
are covered? The compactness theorem shows that this is not the
case if I" has infinite models. Here’s how to see this: Let M be
an infinite model of I", and let ¢ be a constant symbol not in the
language of I'. Let 4 be the set of all sentences ¢ # ¢ for ¢ a term
in the language & of I', i.e.,

A={c#t:te€Trm(<L)}.

A finite subset of I" U 4 can be written as I'" U A4’, with I'" C I
and 4’ C 4. Since 4’ is finite, it can contain only finitely many
terms. Let a € [M| be an element of |[M| not picked out by any
of them, and let M’ be the structure that is just like M, but also
M = 4. Since a # Val™(¢) for all ¢ occuring in 4, M" £ 4"



Since M e I'y I'" € I', and ¢ does not occur in I, also M’ £ I,
Together, M’ £ I'" U A’ for every finite subset I""U A" of I'U 4. So
every finite subset of I" U 4 is satisfiable. By compactness, I" U 4
itself is satisfiable. So there are models M £ I" U 4. Every such
M is a model of I', but is not covered, since Val™(¢) # Val™ (¢)
for all terms ¢ of Z.

Example 12.23. Consider a language £ containing the predi-
cate symbol <, constant symbols 0, 1, and function symbols +,
X, —, =. Let I" be the set of all sentences in this language true in
Q with domain Q and the obvious interpretations. I" is the set of
all sentences of & true about the rational numbers. Of course,
in Q (and even in R), there are no numbers which are greater
than 0 but less than 1/k for all £ € Z*. Such a number, if it
existed, would be an infinitesimal: non-zero, but infinitely small.
The compactness theorem shows that there are models of I in
which infinitesimals exist: Let 4 be {0 < ¢}U{¢ < (1+%) 1k eZ}
(where k= (1+ (1+---+(1+1)...)) with k¥ 1’s). For any finite
subset Ag of A there is a K such that all the sentences ¢ < (1 + k)
in 4 have k < K. If we expand Q to Q" with ¢?" = 1/K we have
that Q" £ I U 4, and so I" U 4 is finitely satisfiable (Exercise:
prove this in detail). By compactness, I" U 4 is satisfiable. Any
model S of I" U 4 contains an infinitesimal, namely ¢®.

Example 12.24. We know that first-order logic with identity
predicate can express that the size of the domain must have some
minimal size: The sentence A, (which says “there are at least
n distinct objects”) is true only in structures where |M| has at
least n objects. So if we take

A={AZ”:Tl21}

then any model of 4 must be infinite. Thus, we can guarantee that
a theory only has infinite models by adding 4 to it: the models
of I' U 4 are all and only the infinite models of I".

So first-order logic can express infinitude. The compactness
theorem shows that it cannot express finitude, however. For sup-



pose some set of sentences A were satisfied in all and only finite
structures. Then 4 U A is finitely satisfiable. Why? Suppose
AU A C AU A is finite with 4" € 4 and A” C A. Let n be the
largest number such that 4, € 4’. A, being satisfied in all finite
structures, has a model M with finitely many but > n elements.
But then M £ 4" U A’. By compactness, 4 U A has an infinite
model, contradicting the assumption that A is satisfied only in
finite structures.

12.10 A Direct Proof of the Compactness
Theorem

We can prove the Compactness Theorem directly, without appeal-
ing to the Completeness Theorem, using the same ideas as in the
proof of the completeness theorem. In the proof of the Complete-
ness Theorem we started with a consistent set I" of sentences,
expanded it to a consistent, saturated, and complete set /™ of
sentences, and then showed that in the term model M(I"™*) con-
structed from I'*, all sentences of I" are true, so I is satisfiable.

We can use the same method to show that a finitely satis-
fiable set of sentences is satisfiable. We just have to prove the
corresponding versions of the results leading to the truth lemma
where we replace “consistent” with “finitely satisfiable.”

Proposition 12.25. Suppose I' is complete and finitely satisfiable.
Then:

. (ANB) el iffbothAel and BeT.
2. (AV B) €I iffeitherAcT orBel.

3 (A—> B) eI iffeither A¢T orBel.



Lemma 12.26. Every finitely satisfiable set I' can be extended to a
saturated finitely satisfiable set I'.

Proposition 12.27. Suppose I' is complete, finitely satisfiable, and
saturated.

7. Ax A(x) € I' iff A(¢t) € I for at least one closed term ¢.

2. Vx A(x) e I' iff A(t) € I' for all closed terms t.

Lemma 12.28. Every finitely satisfiable set I' can be extended to a
complete and finitely satisfiable set I'*.

Theorem 12.29 (Compactness). I is satisfiable if and only if it
is finitely satisfiable.

Proof. If I' is satisfiable, then there is a structure M such that
M £ A for all A € I'. Of course, this M also satisfies every finite
subset of I, so I is finitely satisfiable.

Now suppose that I is finitely satisfiable. By Lemma 12.26,
there is a finitely satisfiable, saturated set I 2 [I. By
Lemma 12.28, I’ can be extended to a complete and finitely
satisfiable set I'*, and I'* is still saturated. Construct the term
model M(I"*) as in Definition 12.9. Note that Proposition 12.10
did not rely on the fact that /™" is consistent (or complete or satu-
rated, for that matter), but just on the fact that M(1"*) is covered.
The proof of the Truth Lemma (Lemma 12.11) goes through if
we replace references to Proposition 12.2 and Proposition 12.7 by
references to Proposition 12.25 and Proposition 12.27 O

12.11 The Léwenheim-Skolem Theorem

The Léwenheim-Skolem Theorem says that if a theory has an in-
finite model, then it also has a model that is at most countably



infinite. An immediate consequence of this fact is that first-order
logic cannot express that the size of a structure is uncountable:
any sentence or set of sentences satisfied in all uncountable struc-
tures is also satisfied in some countable structure.

Theorem 12.30. IfT is consistent then it has a countable model, i.e.,
it is satisfiable in a structure whose domain is either finite or countably
infinite.

Proof. If I is consistent, the structure M delivered by the proof
of the completeness theorem has a domain |M| that is no larger
than the set of the terms of the language £. So M is at most
countably infinite. ]

Theorem 12.31. If I is a consistent set of sentences in the language
of first-order logic without identity, then it has a countably infinite
model, i.e., it is satisfiable in a structure whose domain is infinite and
countable.

Proof. If I' is consistent and contains no sentences in which iden-
tity appears, then the structure M delivered by the proof of the
completness theorem has a domain |[M| identical to the set of
terms of the language £’. So M is countably infinite, since
Trm(Z’) is. |

Example 12.32 (Skolem’s Paradox). Zermelo-Fraenkel  set
theory ZFC is a very powerful framework in which practically
all mathematical statements can be expressed, including facts
about the sizes of sets. So for instance, ZFC can prove that
the set R of real numbers is uncountable, it can prove Cantor’s
Theorem that the power set of any set is larger than the set
itself, etc. If ZFC is consistent, its models are all infinite, and
moreover, they all contain elements about which the theory says
that they are uncountable, such as the element that makes true
the theorem of ZFC that the power set of the natural numbers



exists. By the Lowenheim-Skolem Theorem, ZFC also has count-
able models—models that contain “uncountable” sets but which
themselves are countable.

Summary

The completeness theorem is the converse of the soundness
theorem. In one form it states that if I" £ A then I + A4, in an-
other that if I" is consistent then it is satisfiable. We proved the
second form (and derived the first from the second). The proof is
involved and requires a number of steps. We start with a consis-
tent set I". First we add infinitely many new constant symbols ¢;
as well as formulas of the form 3x A(x) — A(c) where each for-
mula 4(x) with a free variable in the expanded language is paired
with one of the new constants. This results in a saturated con-
sistent set of sentences containing I". It is still consistent. Now
we take that set and extend it to a complete consistent set. A
complete consistent set has the nice property that for any sen-
tence A, either 4 or —4 is in the set (but never both). Since we
started from a saturated set, we now have a saturated, complete,
consistent set of sentences /' that includes I". From this set it
is now possible to define a structure M such that M(I™*) £ 4 iff
A € I'*. In particular, M(I'*) £ I, i.e., I' is satisfiable. If = is
present, the construction is slightly more complex.

Two important corollaries follow from the completeness theo-
rem. The compactness theorem states that I" £ 4 iff Iy £ 4
for some finite Iy € I'. An equivalent formulation is that I
is satisfiable iff every finite Iy C I is satisfiable. The com-
pactness theorem is useful to prove the existence of structures
with certain properties. For instance, we can use it to show that
there are infinite models for every theory which has arbitrarily
large finite models. This means in particular that finitude can-
not be expressed in first-order logic. The second corollary, the
Lowenheim-Skolem Theorem, states that every satisfiable I



has a countable model. It in turn shows that uncountability can-
not be expressed in first-order logic.

Problems

Problem 12.1. Complete the proof of Proposition 12.2.
Problem 12.2. Complete the proof of Proposition 12.10.
Problem 12.3. Complete the proof of Lemma 12.11.
Problem 12.4. Complete the proof of Proposition 12.13.

Problem 12.5. Use Corollary 12.19 to prove Theorem 12.18,
thus showing that the two formulations of the completeness the-
orem are equivalent.

Problem 12.6. In order for a derivation system to be complete,
its rules must be strong enough to prove every unsatisfiable set
inconsistent. Which of the rules of derivation were necessary to
prove completeness? Are any of these rules not used anywhere
in the proof? In order to answer these questions, make a list or
diagram that shows which of the rules of derivation were used in
which results that lead up to the proof of Theorem 12.18. Be sure
to note any tacit uses of rules in these proofs.

Problem 12.7. Prove (1) of Theorem 12.21.

Problem 12.8. In the standard model of arithmetic N, there is
no element £ € |[N| which satisfies every formula 7 < x (where 7
is 0" with n 7’s). Use the compactness theorem to show that the
set of sentences in the language of arithmetic which are true in
the standard model of arithmetic N are also true in a structure N’
that contains an element which does satisfy every formula 7 < x.

Problem 12.9. Prove Proposition 12.25. Avoid the use of .



Problem 12.10. Prove Lemma 12.26. (Hint: The crucial step is
to show that if I, is finitely satisfiable, so is I, U {D,}, without
any appeal to derivations or consistency.)

Problem 12.11. Prove Proposition 12.27.

Problem 12.12. Prove Lemma 12.28. (Hint: the crucial step is
to show that if I, is finitely satisfiable, then either I, U {4,} or
I, U {—4,} is finitely satisfiable.)

Problem 12.13. Write out the complete proof of the Truth
Lemma (Lemma 12.11) in the version required for the proof of
Theorem 12.29.



CHAPTER 13

13.1 Overview

First-order logic is not the only system of logic of interest: there
are many extensions and variations of first-order logic. A logic
typically consists of the formal specification of a language, usu-
ally, but not always, a deductive system, and usually, but not
always, an intended semantics. But the technical use of the term
raises an obvious question: what do logics that are not first-order
logic have to do with the word “logic,” used in the intuitive or
philosophical sense? All of the systems described below are de-
signed to model reasoning of some form or another; can we say
what makes them logical?

No easy answers are forthcoming. The word “logic” is used
in different ways and in different contexts, and the notion, like
that of “truth,” has been analyzed from numerous philosophical
stances. For example, one might take the goal of logical reason-
ing to be the determination of which statements are necessarily
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true, true a priori, true independent of the interpretation of the
nonlogical terms, true by virtue of their form, or true by linguistic
convention; and each of these conceptions requires a good deal
of clarification. Even if one restricts one’s attention to the kind of
logic used in mathematics, there is little agreement as to its scope.
For example, in the Principia Mathematica, Russell and Whitehead
tried to develop mathematics on the basis of logic, in the logicist
tradition begun by Frege. Their system of logic was a form of
higher-type logic similar to the one described below. In the end
they were forced to introduce axioms which, by most standards,
do not seem purely logical (notably, the axiom of infinity, and
the axiom of reducibility), but one might nonetheless hold that
some forms of higher-order reasoning should be accepted as logi-
cal. In contrast, Quine, whose ontology does not admit “proposi-
tions” as legitimate objects of discourse, argues that second-order
and higher-order logic are really manifestations of set theory in
sheep’s clothing; in other words, systems involving quantification
over predicates are not purely logical.

For now, it is best to leave such philosophical issues for a rainy
day, and simply think of the systems below as formal idealizations
of various kinds of reasoning, logical or otherwise.

13.2 Many-Sorted Logic

In first-order logic, variables and quantifiers range over a single
domain. But it is often useful to have multiple (disjoint) domains:
for example, you might want to have a domain of numbers, a do-
main of geometric objects, a domain of functions from numbers
to numbers, a domain of abelian groups, and so on.
Many-sorted logic provides this kind of framework. One
starts with a list of “sorts”—the “sort” of an object indicates the
“domain” it is supposed to inhabit. One then has variables and
quantifiers for each sort, and (usually) an identity predicate for
each sort. Functions and relations are also “typed” by the sorts
of objects they can take as arguments. Otherwise, one keeps the



usual rules of first-order logic, with versions of the quantifierrules
repeated for each sort.

For example, to study international relations we might choose
a language with two sorts of objects, French citizens and German
citizens. We might have a unary relation, “drinks wine,” for ob-
jects of the first sort; another unary relation, “eats wurst,” for
objects of the second sort; and a binary relation, “forms a multi-
national married couple,” which takes two arguments, where the
first argument is of the first sort and the second argument is of
the second sort. If we use variables a, b, ¢ to range over French
citizens and x, y, z to range over German citizens, then

VaVx[(MarriedTo(a,x)—(DrinksWine(a)v-EatsWurst(x))]]

asserts that if any French person is married to a German, either
the French person drinks wine or the German doesn’t eat wurst.

Many-sorted logic can be embedded in first-order logic in a
natural way, by lumping all the objects of the many-sorted do-
mains together into one first-order domain, using unary predi-
cate symbols to keep track of the sorts, and relativizing quanti-
fiers. For example, the first-order language corresponding to the
example above would have unary predicate symbols “German”
and “French,” in addition to the other relations described, with
the sort requirements erased. A sorted quantifier Vx 4, where x
is a variable of the German sort, translates to

Vx (German(x) — A).

We need to add axioms that insure that the sorts are separate—
e.g., Vx ~(German(x)AFrench(x))—as well as axioms that guar-
antee that “drinks wine” only holds of objects satisfying the pred-
icate French(x), etc. With these conventions and axioms, it is
not difficult to show that many-sorted sentences translate to first-
order sentences, and many-sorted derivations translate to first-
order derivations. Also, many-sorted structures “translate” to cor-
responding first-order structures and vice-versa, so we also have
a completeness theorem for many-sorted logic.



13.3 Second-Order logic

The language of second-order logic allows one to quantify not
just over a domain of individuals, but over relations on that do-
main as well. Given a first-order language &, for each £ one adds
variables R which range over £-ary relations, and allows quantifi-
cation over those variables. If R is a variable for a k-ary rela-
tion, and 4, ..., ¢ are ordinary (first-order) terms, R(t1,...,%)
is an atomic formula. Otherwise, the set of formulas is defined
just as in the case of first-order logic, with additional clauses for
second-order quantification. Note that we only have the identity
predicate for first-order terms: if R and § are relation variables
of the same arity £, we can define R = § to be an abbreviation
for
Vx1 e ka (R(xl,. .. ,xk) d S(xl,. .. ,xk)).

The rules for second-order logic simply extend the quanti-
fier rules to the new second order variables. Here, however, one
has to be a little bit careful to explain how these variables in-
teract with the predicate symbols of £, and with formulas of &
more generally. At the bare minimum, relation variables count
as terms, so one has inferences of the form

A(R) v 3R A(R)

But if & is the language of arithmetic with a constant relation
symbol <, one would also expect the following inference to be
valid:

x <yr3RR(x,y)

or for a given formula 4,
A(x1,...,x¢) F AR R(x1,...,x1)
More generally, we might want to allow inferences of the form
A[AX.B(%)/R] +3R A

where A[1%. B(X)/R] denotes the result of replacing every atomic
formula of the form Rt,...,# in Aby B(#,...,t). This last rule



is equivalent to having a comprehension schema, i.e., an axiom of
the form

ARVx1,...,x; (A(x1,...,x:) © R(x1,...,x)),

one for each formula 4 in the second-order language, in which
R is not a free variable. (Exercise: show that if R is allowed to
occur in 4, this schema is inconsistent!)

When logicians refer to the “axioms of second-order logic”
they usually mean the minimal extension of first-order logic by
second-order quantifier rules together with the comprehension
schema. But it is often interesting to study weaker subsystems of
these axioms and rules. For example, note that in its full gen-
erality the axiom schema of comprehension is impredicative: it
allows one to assert the existence of a relation R(x1,...,xz) that
is “defined” by a formula with second-order quantifiers; and these
quantifiers range over the set of all such relations—a set which
includes R itself! Around the turn of the twentieth century, a com-
mon reaction to Russell’s paradox was to lay the blame on such
definitions, and to avoid them in developing the foundations of
mathematics. If one prohibits the use of second-order quantifiers
in the formula 4, one has a predicative form of comprehension,
which is somewhat weaker.

From the semantic point of view, one can think of a second-
order structure as consisting of a first-order structure for the lan-
guage, coupled with a set of relations on the domain over which
the second-order quantifiers range (more precisely, for each £
there is a set of relations of arity k). Of course, if comprehen-
sion is included in the derivation system, then we have the added
requirement that there are enough relations in the “second-order
part” to satisfy the comprehension axioms—otherwise the deriva-
tion system is not sound! One easy way to insure that there are
enough relations around is to take the second-order part to con-
sist of all the relations on the first-order part. Such a structure is
called full, and, in a sense, is really the “intended structure” for
the language. If we restrict our attention to full structures we have



what is known as the full second-order semantics. In that case,
specifying a structure boils down to specifying the first-order part,
since the contents of the second-order part follow from that im-
plicitly.

To summarize, there is some ambiguity when talking about
second-order logic. In terms of the derivation system, one might
have in mind either

1. A “minimal” second-order derivation system, together with
some comprehension axioms.

2. The “standard” second-order derivation system, with full
comprehension.

In terms of the semantics, one might be interested in either

1. The “weak” semantics, where a structure consists of a first-
order part, together with a second-order part big enough
to satisfy the comprehension axioms.

2. The “standard” second-order semantics, in which one con-
siders full structures only.

When logicians do not specify the derivation system or the se-
mantics they have in mind, they are usually refering to the second
item on each list. The advantage to using this semantics is that,
as we will see, it gives us categorical descriptions of many natural
mathematical structures; at the same time, the derivation system
is quite strong, and sound for this semantics. The drawback is
that the derivation system is not complete for the semantics; in
fact, no effectively given derivation system is complete for the
full second-order semantics. On the other hand, we will see that
the derivation system is complete for the weakened semantics;
this implies that if a sentence is not provable, then there is some
structure, not necessarily the full one, in which it is false.

The language of second-order logic is quite rich. One can
identify unary relations with subsets of the domain, and so in



particular you can quantify over these sets; for example, one can
express induction for the natural numbers with a single axiom

VR ((R(0) AVx (R(x) = R(x"))) = Vx R(x)).

If one takes the language of arithmetic to have symbols 0,7,+,x
and <, one can add the following axioms to describe their behav-
ior:

1. Vx-x' =0

2. VaVy (s(x) =s(p) = x=9)
Vx(x+0)=x

VaVy (x+9") =(x+y)

Vx(xXx0)=0

IS A

Va ¥y (x X p') = ((x X y) + x)
7. VaVy(x <y Jzy=(x+2'))

It is not difficult to show that these axioms, together with the
axiom of induction above, provide a categorical description of
the structure N, the standard model of arithmetic, provided we
are using the full second-order semantics. Given any structure M
in which these axioms are true, define a function f from N to the
domain of M using ordinary recursion on N, so that £(0) = oM
and f(x+1) = M(f(x)). Using ordinary induction on N and the
fact that axioms (1) and (2) hold in M, we see that f is injective.
To see that f is surjective, let P be the set of elements of |[M|
that are in the range of f. Since M is full, P is in the second-
order domain. By the construction of f, we know that oM isin P,
and that P is closed under /™. The fact that the induction axiom
holds in M (in particular, for P) guarantees that P is equal to the
entire first-order domain of M. This shows that f is a bijection.
Showing that f is a homomorphism is no more difficult, using
ordinary induction on N repeatedly.



In set-theoretic terms, a function is just a special kind of re-
lation; for example, a unary function f can be identified with a
binary relation R satisfying Vx 3!y R(x,y). As a result, one can
quantify over functions too. Using the full semantics, one can
then define the class of infinite structures to be the class of struc-
tures M for which there is an injective function from the domain
of M to a proper subset of itself:

3f (VaVy (f(x) = f() = x=p) ATyVx f(x) # p).

The negation of this sentence then defines the class of finite struc-
tures.

In addition, one can define the class of well-orderings, by
adding the following to the definition of a linear ordering:

VP (Ax P(x) = Jx (P(x) AVy (y < x —= =P (y)))).

This asserts that every non-empty set has a least element, modulo
the identification of “set” with “one-place relation”. For another
example, one can express the notion of connectedness for graphs,
by saying that there is no nontrivial separation of the vertices into
disconnected parts:

—34 (3x A(x) ATy —A(p) AVwVz ((A(w) A —~A(2)) = -R(w, 2))).

For yet another example, you might try as an exercise to define
the class of finite structures whose domain has even size. More
strikingly, one can provide a categorical description of the real
numbers as a complete ordered field containing the rationals.
In short, second-order logic is much more expressive than
first-order logic. That’s the good news; now for the bad. We have
already mentioned that there is no effective derivation system
that is complete for the full second-order semantics. For better
or for worse, many of the properties of first-order logic are absent,
including compactness and the Léwenheim-Skolem theorems.
On the other hand, if one is willing to give up the full second-
order semantics in terms of the weaker one, then the minimal



second-order derivation system is complete for this semantics. In
other words, if we read I as “proves in the minimal system” and ¢
as “logically implies in the weaker semantics”, we can show that
whenever I £ 4 then I + A. If one wants to include specific
comprehension axioms in the derivation system, one has to re-
strict the semantics to second-order structures that satisfy these
axioms: for example, if 4 consists of a set of comprehension
axioms (possibly all of them), we have that if " U 4 £ 4, then
I' U4+ A. In particular, if 4 is not provable using the compre-
hension axioms we are considering, then there is a model of -4
in which these comprehension axioms nonetheless hold.

The easiest way to see that the completeness theorem holds
for the weaker semantics is to think of second-order logic as a
many-sorted logic, as follows. One sort is interpreted as the ordi-
nary “first-order” domain, and then for each £ we have a domain
of “relations of arity £.” We take the language to have built-in

relation symbols “trueg(R,x1,...,x;)” which is meant to assert
that R holds of x1, ..., xz, where R is a variable of the sort “k-ary
relation” and x1, ..., x; are objects of the first-order sort.

With this identification, the weak second-order semantics is
essentially the usual semantics for many-sorted logic; and we have
already observed that many-sorted logic can be embedded in first-
order logic. Modulo the translations back and forth, then, the
weaker conception of second-order logic is really a form of first-
order logic in disguise, where the domain contains both “objects”
and “relations” governed by the appropriate axioms.

13.4 Higher-Order logic

Passing from first-order logic to second-order logic enabled us
to talk about sets of objects in the first-order domain, within the
formal language. Why stop there? For example, third-order logic
should enable us to deal with sets of sets of objects, or perhaps
even sets which contain both objects and sets of objects. And



fourth-order logic will let us talk about sets of objects of that kind.
As you may have guessed, one can iterate this idea arbitrarily.

In practice, higher-order logic is often formulated in terms
of functions instead of relations. (Modulo the natural identifica-
tions, this difference is inessential.) Given some basic “sorts” 4,
B, C, ... (which we will now call “types”), we can create new ones
by stipulating

If o and 7 are finite types then so is o0 — 7.

Think of types as syntactic “labels,” which classify the objects
we want in our domain; o — 7 describes those objects that are
functions which take objects of type o to objects of type 7. For
example, we might want to have a type Q of truth values, “true”
and “false,” and a type N of natural numbers. In that case, you
can think of objects of type N — @ as unary relations, or sub-
sets of N; objects of type N — N are functions from natural nu-
mers to natural numbers; and objects of type (N — N) — N are
“functionals,” that is, higher-type functions that take functions to
numbers.

As in the case of second-order logic, one can think of higher-
order logic as a kind of many-sorted logic, where there is a sort for
each type of object we want to consider. But it is usually clearer
just to define the syntax of higher-type logic from the ground up.
For example, we can define a set of finite types inductively, as
follows:

1. N is a finite type.
2. If o and 7 are finite types, then so is o0 — 7.
3. If o and 7 are finite types, so is o X 7.

Intuitively, N denotes the type of the natural numbers, o — 7
denotes the type of functions from o to 7, and o X T denotes the
type of pairs of objects, one from o and one from 7. We can then
define a set of terms inductively, as follows:



1. For each type o, there is a stock of variables x, y, z, ...of
type o

2. 0is a term of type N
3. S (successor) is a term of type N —» N

4. If s is a term of type o, and ¢ is a term of type N — (o0 —
o), then Ry, is a term of type N — o

5. If s is a term of type 7 — o and ¢ is a term of type 7, then
s(t) is a term of type o

6. If s is a term of type o and x is a variable of type 7, then
Ax.s is a term of type 7 — 0.

7. If s is a term of type o and ¢ is a term of type 7, then (s, ¢)
is a term of type o X 7.

8. If s is a term of type o X 7 then p1(s) is a term of type o
and py(s) is a term of type 7.

Intuitively, R;; denotes the function defined recursively by

Rs:(0) =5
Rst(x + 1) = t(vast(x)),

(s,t) denotes the pair whose first component is s and whose sec-
ond component is ¢, and p1(s) and po(s) denote the first and
second elements (“projections”) of s. Finally, 1x.s denotes the
function f defined by

fx)=s

for any x of type o; so item (6) gives us a form of comprehension,
enabling us to define functions using terms. Formulas are built
up from identity predicate statements s = ¢ between terms of the
same type, the usual propositional connectives, and higher-type
quantification. One can then take the axioms of the system to be
the basic equations governing the terms defined above, together



with the usual rules of logic with quantifiers and identity predi-
cate.

If one augments the finite type system with a type € of truth
values, one has to include axioms which govern its use as well. In
fact, if one is clever, one can get rid of complex formulas entirely,
replacing them with terms of type Q! The proof system can then
be modified accordingly. The result is essentially the simple theory
of types set forth by Alonzo Church in the 1930s.

As in the case of second-order logic, there are different ver-
sions of higher-type semantics that one might want to use. In the
full version, variables of type o — 7 range over the set of all
functions from the objects of type o to objects of type 7. As you
might expect, this semantics is too strong to admit a complete,
effective derivation system. But one can consider a weaker se-
mantics, in which a structure consists of sets of elements 77 for
each type 7, together with appropriate operations for application,
projection, etc. If the details are carried out correctly, one can
obtain completeness theorems for the kinds of derivation systems
described above.

Higher-type logic is attractive because it provides a frame-
work in which we can embed a good deal of mathematics in a
natural way: starting with N, one can define real numbers, con-
tinuous functions, and so on. It is also particularly attractive in
the context of intuitionistic logic, since the types have clear “con-
structive” intepretations. In fact, one can develop constructive
versions of higher-type semantics (based on intuitionistic, rather
than classical logic) that clarify these constructive interpretations
quite nicely, and are, in many ways, more interesting than the
classical counterparts.

13.5 Intuitionistic Logic

In constrast to second-order and higher-order logic, intuitionistic
first-order logic represents a restriction of the classical version,
intended to model a more “constructive” kind of reasoning. The



following examples may serve to illustrate some of the underlying
motivations.

Suppose someone came up to you one day and announced
that they had determined a natural number x, with the property
that if x is prime, the Riemann hypothesis is true, and if x is com-
posite, the Riemann hypothesis is false. Great news! Whether the
Riemann hypothesis is true or not is one of the big open ques-
tions of mathematics, and here they seem to have reduced the
problem to one of calculation, that is, to the determination of
whether a specific number is prime or not.

What is the magic value of x? They describe it as follows: x is
the natural number that is equal to 7 if the Riemann hypothesis
is true, and 9 otherwise.

Angrily, you demand your money back. From a classical point
of view, the description above does in fact determine a unique
value of x; but what you really want is a value of x that is given
explicitly.

To take another, perhaps less contrived example, consider
the following question. We know that it is possible to raise an
irrational number to a rational power, and get a rational result.

For example, \/52 = 2. What is less clear is whether or not it is
possible to raise an irrational number to an irrational power, and
get a rational result. The following theorem answers this in the
affirmative:

Theorem 13.1. There are irrational numbers a and b such that a®
is rational.

V2
Proof- Consider V2. If this is rational, we are done: we can let
a = b = V2. Otherwise, it is irrational. Then we have

(\/5\/5)\/5 _ \/5‘5‘& _ \/52 _ 2’

V2
which is certainly rational. So, in this case, let a be V2 , and let

b be V2. O



Does this constitute a valid proof? Most mathematicians feel
that it does. But again, there is something a little bit unsatisfying
here: we have proved the existence of a pair of real numbers
with a certain property, without being able to say which pair of
numbers it is. It is possible to prove the same result, but in such
a way that the pair a, b is given in the proof: take a = V3 and
b =logy 4. Then

ab = 3BT Z gl/210g,4 _ (308 4)1/2 = 41/2 _ 9.
since 31°8:* = x.

Intuitionistic logic is designed to model a kind of reasoning
where moves like the one in the first proof are disallowed. Proving
the existence of an x satisfying 4(x) means that you have to give a
specific ¥, and a proof that it satisfies 4, like in the second proof.
Proving that 4 or B holds requires that you can prove one or the
other.

Formally speaking, intuitionistic first-order logic is what you
get if you omit restrict a derivation system for first-order logic in a
certain way. Similarly, there are intuitionistic versions of second-
order or higher-order logic. From the mathematical point of view,
these are just formal deductive systems, but, as already noted,
they are intended to model a kind of mathematical reasoning.
One can take this to be the kind of reasoning that is justified on
a certain philosophical view of mathematics (such as Brouwer’s
intuitionism); one can take it to be a kind of mathematical rea-
soning which is more “concrete” and satisfying (along the lines
of Bishop’s constructivism); and one can argue about whether or
not the formal description captures the informal motivation. But
whatever philosophical positions we may hold, we can study in-
tuitionistic logic as a formally presented logic; and for whatever
reasons, many mathematical logicians find it interesting to do so.

There is an informal constructive interpretation of the intu-
itionist connectives, usually known as the BHK interpretation
(named after Brouwer, Heyting, and Kolmogorov). It runs as
follows: a proof of 4 A B consists of a proof of 4 paired with a



proof of B; a proof of AV B consists of either a proof of 4, or a
proof of B, where we have explicit information as to which is the
case; a proof of A — B consists of a procedure, which transforms
a proof of 4 to a proof of B; a proof of Vx A(x) consists of a proce-
dure which returns a proof of 4(x) for any value of x; and a proof
of 3x A(x) consists of a value of x, together with a proof that this
value satisfies 4. One can describe the interpretation in compu-
tational terms known as the “Curry-Howard isomorphism” or the
“formulas-as-types paradigm”: think of a formula as specifying a
certain kind of data type, and proofs as computational objects
of these data types that enable us to see that the corresponding
formula is true.

Intuitionistic logic is often thought of as being classical logic
“minus” the law of the excluded middle. This following theorem
makes this more precise.

Theorem 13.2. Intuitionistically, the following axiom schemata are
equivalent:

7. (A— 1) > —A.
2. AV —-A

3- ——A4A— A

Obtaining instances of one schema from either of the others is a
good exercise in intuitionistic logic.

The first deductive systems for intuitionistic propositional
logic, put forth as formalizations of Brouwer’s intuitionism, are
due, independently, to Kolmogorov, Glivenko, and Heyting. The
first formalization of intuitionistic first-order logic (and parts of
intuitionist mathematics) is due to Heyting. Though a number
of classically valid schemata are not intuitionistically valid, many
are.

The double-negation translation describes an important rela-
tionship between classical and intuitionist logic. It is defined in-
ductively follows (think of AV as the “intuitionist” translation of



the classical formula A):

AY = =4 for atomic formulas A
(AN BN = (4" A BY)
(Av B)N = ==(4" v BY)
(4—- BN = (4¥ - BY)

(Vx AN = vx AV
(Fx AN = ~-Fx 4V

Kolmogorov and Glivenko had versions of this translation for
propositional logic; for predicate logic, it is due to Godel and
Gentzen, independently. We have

Theorem 13.3. 1. A AN is provable classically

2. If A is provable classically, then AV is provable intuitionistically.

We can now envision the following dialogue. Classical math-
ematician: “I’ve proved A4!” Intuitionist mathematician: “Your
proof isn’t valid. What you’ve really proved is AY.” Classical
mathematician: “Fine by me!” As far as the classical mathemati-
cian is concerned, the intuitionist is just splitting hairs, since the
two are equivalent. But the intuitionist insists there is a differ-
ence.

Note that the above translation concerns pure logic only; it
does not address the question as to what the appropriate nonlog-
ical axioms are for classical and intuitionistic mathematics, or
what the relationship is between them. But the following slight
extension of the theorem above provides some useful informa-
tion:

Theorem 13.4. IfT" proves A classically, TN proves AN intuitionis-
tically.

In other words, if 4 is provable from some hypotheses classi-
cally, then A" is provable from their double-negation translations.



To show that a sentence or propositional formula is intuition-
istically valid, all you have to do is provide a proof. But how can
you show that it is not valid? For that purpose, we need a seman-
tics that is sound, and preferrably complete. A semantics due to
Kripke nicely fits the bill.

We can play the same game we did for classical logic: de-
fine the semantics, and prove soundness and completeness. It
is worthwhile, however, to note the following distinction. In the
case of classical logic, the semantics was the “obvious” one, in
a sense implicit in the meaning of the connectives. Though one
can provide some intuitive motivation for Kripke semantics, the
latter does not offer the same feeling of inevitability. In addi-
tion, the notion of a classical structure is a natural mathematical
one, so we can either take the notion of a structure to be a tool
for studying classical first-order logic, or take classical first-order
logic to be a tool for studying mathematical structures. In con-
trast, Kripke structures can only be viewed as a logical construct;
they don’t seem to have independent mathematical interest.

A Kripke structure It = (W,R,V) for a propositional lan-
guage consists of a set W, partial order R on W with a least ele-
ment, and an “monotone” assignment of propositional variables
to the elements of W. The intuition is that the elements of W
represent “worlds,” or “states of knowledge”; an element v > u
represents a “possible future state” of u; and the propositional
variables assigned to u are the propositions that are known to be
true in state u. The forcing relation I, w I 4 then extends this
relationship to arbitrary formulas in the language; read I, w I~ 4
as “4 is true in state w.” The relationship is defined inductively,
as follows:

1. M, w I+ p; iff p; is one of the propositional variables as-
signed to w.

2. M w K L.

3. Mwir (AAB) it M,w i+ A and M, w - B.



4. Mw - (AVv B) iff M, w - A or M, w - B.

5 M, w - (A — B) iff, whenever w’ > w and I, w’ I A, then
M, w’ I+ B.

It is a good exercise to try to show that =(p A ¢) = (—p V ~q) is
not intuitionistically valid, by cooking up a Kripke structure that
provides a counterexample.

13.6 Modal Logics

Consider the following example of a conditional sentence:

If Jeremy is alone in that room, then he is drunk and
naked and dancing on the chairs.

This is an example of a conditional assertion that may be mate-
rially true but nonetheless misleading, since it seems to suggest
that there is a stronger link between the antecedent and conclu-
sion other than simply that either the antecedent is false or the
consequent true. That is, the wording suggests that the claim is
not only true in this particular world (where it may be trivially
true, because Jeremy is not alone in the room), but that, more-
over, the conclusion would have been true had the antecedent
been true. In other words, one can take the assertion to mean
that the claim is true not just in this world, but in any “possible”
world; or that it is necessarily true, as opposed to just true in this
particular world.

Modal logic was designed to make sense of this kind of ne-
cessity. One obtains modal propositional logic from ordinary
propositional logic by adding a box operator; which is to say, if 4
is a formula, so is OA. Intuitively, OA4 asserts that 4 is necessarily
true, or true in any possible world. ¢4 is usually taken to be
an abbreviation for ~0-4, and can be read as asserting that 4 is
possibly true. Of course, modality can be added to predicate logic
as well.



Kripke structures can be used to provide a semantics for
modal logic; in fact, Kripke first designed this semantics with
modal logic in mind. Rather than restricting to partial orders,
more generally one has a set of “possible worlds,” P, and a bi-
nary “accessibility” relation R(x,y) between worlds. Intuitively,
R(p,q) asserts that the world ¢ is compatible with p; i.e., if we are
“in” world p, we have to entertain the possibility that the world
could have been like ¢.

Modal logic is sometimes called an “intensional” logic, as op-
posed to an “extensional” one. The intended semantics for an
extensional logic, like classical logic, will only refer to a single
world, the “actual” one; while the semantics for an “intensional”
logic relies on a more elaborate ontology. In addition to structure-
ing necessity, one can use modality to structure other linguistic
constructions, reinterpreting 0 and ¢ according to the applica-
tion. For example:

1. In provability logic, 04 is read “4 is provable” and ¢4 is
read “4 is consistent.”

2. In epistemic logic, one might read 04 as “I know 4” or “I
believe A4.”

3. In temporal logic, one can read 04 as “4 is always true”
and ¢4 as “4 is sometimes true.”

One would like to augment logic with rules and axioms deal-
ing with modality. For example, the system S4 consists of the
ordinary axioms and rules of propositional logic, together with
the following axioms:

0(4 — B) — (04 — OB)
od— A
04 — oo4



as well as a rule, “from 4 conclude 04.” S5 adds the following
axiom:

CA— O0A

Variations of these axioms may be suitable for different applica-
tions; for example, S5 is usually taken to characterize the notion
of logical necessity. And the nice thing is that one can usually
find a semantics for which the derivation system is sound and
complete by restricting the accessibility relation in the Kripke
structures in natural ways. For example, S4 corresponds to the
class of Kripke structures in which the accessibility relation is
reflexive and transitive. S5 corresponds to the class of Kripke
structures in which the accessibility relation is universal, which
is to say that every world is accessible from every other; so 04
holds if and only if 4 holds in every world.

13.7 Other Logics

As you may have gathered by now, it is not hard to design a new
logic. You too can create your own a syntax, make up a deductive
system, and fashion a semantics to go with it. You might have to
be a bit clever if you want the derivation system to be complete
for the semantics, and it might take some effort to convince the
world at large that your logic is truly interesting. But, in return,
you can enjoy hours of good, clean fun, exploring your logic’s
mathematical and computational properties.

Recent decades have witnessed a veritable explosion of for-
mal logics. Fuzzy logic is designed to model reasoning about
vague properties. Probabilistic logic is designed to model reason-
ing about uncertainty. Default logics and nonmonotonic logics
are designed to model defeasible forms of reasoning, which is to
say, “reasonable” inferences that can later be overturned in the
face of new information. There are epistemic logics, designed
to model reasoning about knowledge; causal logics, designed to
model reasoning about causal relationships; and even “deontic”



logics, which are designed to model reasoning about moral and
ethical obligations. Depending on whether the primary motiva-
tion for introducing these systems is philosophical, mathematical,
or computational, you may find such creatures studies under the
rubric of mathematical logic, philosophical logic, artificial intel-
ligence, cognitive science, or elsewhere.

The list goes on and on, and the possibilities seem endless.
We may never attain Leibniz’ dream of reducing all of human
reason to calculation—but that can’t stop us from trying.
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CHAPTER 14

14.1 Introduction

What does it mean for a function, say, from N to N to be com-
putable? Among the first answers, and the most well known one,
is that a function is computable if it can be computed by a Tur-
ing machine. This notion was set out by Alan Turing in 1936.
Turing machines are an example of a model of computation—they
are a mathematically precise way of defining the idea of a “com-
putational procedure.” What exactly that means is debated, but
it is widely agreed that Turing machines are one way of speci-
fying computational procedures. Even though the term “Turing
machine” evokes the image of a physical machine with moving
parts, strictly speaking a Turing machine is a purely mathemat-
ical construct, and as such it idealizes the idea of a computa-
tional procedure. For instance, we place no restriction on either
the time or memory requirements of a Turing machine: Turing
machines can compute something even if the computation would
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A Turing machine executing its program.

require more storage space or more steps than there are atoms in
the universe.

It is perhaps best to think of a Turing machine as a program
for a special kind of imaginary mechanism. This mechanism con-
sists of a tape and a read-write head. In our version of Turing ma-
chines, the tape is infinite in one direction (to the right), and it is
divided into squares, each of which may contain a symbol from a
finite alphabet. Such alphabets can contain any number of differ-
ent symbols, say, but we will mainly make do with three: », LI, and
I. When the mechanism is started, the tape is empty (i.e., each
square contains the symbol LI) except for the leftmost square,
which contains », and a finite number of squares which contain
the input. At any time, the mechanism is in one of a finite number
of states. At the outset, the head scans the leftmost square and in
a specified initial state. At each step of the mechanism’s run, the
content of the square currently scanned together with the state
the mechanism is in and the Turing machine program determine
what happens next. The Turing machine program is given by a
partial function which takes as input a state ¢ and a symbol o
and outputs a triple (¢’,0’,D). Whenever the mechanism is in
state ¢ and reads symbol o, it replaces the symbol on the current
square with o/, the head moves left, right, or stays put according
to whether D is L, R, or N, and the mechanism goes into state ¢’.

For instance, consider the situation in Figure 14.1. The visible
part of the tape of the Turing machine contains the end-of-tape



symbol > on the leftmost square, followed by three 1’s, a 0, and
four more 1’s. The head is reading the third square from the left,
which contains a 1, and is in state g;—we say “the machine is
reading a 1 in state ¢;.” If the program of the Turing machine
returns, for input (¢1,1), the triple (g2,0,N), the machine would
now replace the 1 on the third square with a 0, leave the read/write
head where it is, and switch to state go. If then the program re-
turns (g3,0, R) for input (g,0), the machine would now overwrite
the 0 with another 0O (effectively, leaving the content of the tape
under the read/write head unchanged), move one square to the
right, and enter state g3. And so on.

We say that the machine /alts when it encounters some state,
¢, and symbol, o such that there is no instruction for (g,,o),
i.e., the transition function for input (g,,0") is undefined. In other
words, the machine has no instruction to carry out, and at that
point, it ceases operation. Halting is sometimes represented by
a specific halt state 4. This will be demonstrated in more detail
later on.

The beauty of Turing’s paper, “On computable numbers,”
is that he presents not only a formal definition, but also an ar-
gument that the definition captures the intuitive notion of com-
putability. From the definition, it should be clear that any func-
tion computable by a Turing machine is computable in the intu-
itive sense. Turing offers three types of argument that the con-
verse is true, i.e., that any function that we would naturally regard
as computable is computable by such a machine. They are (in
Turing’s words):

1. A direct appeal to intuition.

2. A proof of the equivalence of two definitions (in case the
new definition has a greater intuitive appeal).

3. Giving examples of large classes of numbers which are com-
putable.

Our goal is to try to define the notion of computability “in prin-
ciple,” i.e., without taking into account practical limitations of



time and space. Of course, with the broadest definition of com-
putability in place, one can then go on to consider computation
with bounded resources; this forms the heart of the subject known
as “computational complexity.”

Historical Remarks Alan Turing invented Turing machines in
1936. While his interest at the time was the decidability of first-
order logic, the paper has been described as a definitive paper
on the foundations of computer design. In the paper, Turing
focuses on computable real numbers, i.e., real numbers whose
decimal expansions are computable; but he notes that it is not
hard to adapt his notions to computable functions on the nat-
ural numbers, and so on. Notice that this was a full five years
before the first working general purpose computer was built in
1941 (by the German Konrad Zuse in his parent’s living room),
seven years before Turing and his colleagues at Bletchley Park
built the code-breaking Colossus (1943), nine years before the
American ENIAC (1945), twelve years before the first British gen-
eral purpose computer—the Manchester Small-Scale Experimen-
tal Machine—was built in Manchester (1948), and thirteen years
before the Americans first tested the BINAC (1949). The Manch-
ester SSEM has the distinction of being the first stored-program
computer—previous machines had to be rewired by hand for each
new task.

14.2 Representing Turing Machines

Turing machines can be represented visually by state diagrams.
The diagrams are composed of state cells connected by arrows.
Unsurprisingly, each state cell represents a state of the machine.
Each arrow represents an instruction that can be carried out from
that state, with the specifics of the instruction written above or
below the appropriate arrow. Consider the following machine,



which has only two internal states, go and ¢1, and one instruction:

u,I,R
e EINE

Recall that the Turing machine has a read/write head and a tape
with the input written on it. The instruction can be read as if
reading a U in state qo, write a I, move right, and move to state q.
This is equivalent to the transition function mapping (go,L!) to
(q1.1.R).

Example 14.1. Even Machine: The following Turing machine
halts if, and only if, there are an even number of I’s on the tape
(under the assumption that all /’s come before the first LI on the

tape).
LU, R
I,I,R
start —>
I,I.R

The state diagram corresponds to the following transition
function:

0(g0.1) = {q1.1,R),
6(q1,1) = {g0,1,R),
0(q1,1) = {(q1,L, R)

The above machine halts only when the input is an even num-
ber of strokes. Otherwise, the machine (theoretically) continues
to operate indefinitely. For any machine and input, it is possi-
ble to trace through the configurations of the machine in order to
determine the output. We will give a formal definition of config-
urations later. For now, we can intuitively think of configurations
as a series of diagrams showing the state of the machine at any



point in time during operation. Configurations show the con-
tent of the tape, the state of the machine and the location of the
read/write head.

Let us trace through the configurations of the even machine
if it is started with an input of four I’s. In this case, we expect
that the machine will halt. We will then run the machine on an
input of three I’s, where the machine will run forever.

The machine starts in state ¢y, scanning the leftmost 7. We
can represent the initial state of the machine as follows:

slplIT 0. ..

The above configuration is straightforward. As can be seen, the
machine starts in state one, scanning the leftmost 7. This is rep-
resented by a subscript of the state name on the first 7. The
applicable instruction at this point is 6(go,/) = (g1,Z,R), and so
the machine moves right on the tape and changes to state ¢;.

sITLHITU. ..

Since the machine is now in state ¢; scanning a /, we have to
“follow” the instruction 6(q1,7) = (go./,R). This results in the
configuration

Il L. ..

As the machine continues, the rules are applied again in the same
order, resulting in the following two configurations:

SIITH U ...
sII1T L. ..

The machine is now in state gy scanning a LI. Based on the tran-
sition diagram, we can easily see that there is no instruction to
be carried out, and thus the machine has halted. This means that
the input has been accepted.

Suppose next we start the machine with an input of three I’s.
The first few configurations are similar, as the same instructions
are carried out, with only a small difference of the tape input:

sl L. ..



sILT U ...
sl 1L . ..
sIIT 1. ..

The machine has now traversed past all the I’s, and is reading
a Ll in state g;. As shown in the diagram, there is an instruction
of the form 6(¢1,1) = (¢g1,L,R). Since the tape is filled with LI
indefinitely to the right, the machine will continue to execute this
instruction forever, staying in state ¢; and moving ever further to
the right. The machine will never halt, and does not accept the
input.

It is important to note that not all machines will halt. If halt-
ing means that the machine runs out of instructions to execute,
then we can create a machine that never halts simply by ensuring
that there is an outgoing arrow for each symbol at each state.
The even machine can be modified to run indefinitely by adding
an instruction for scanning a LI at ¢o.

L, LLR L, LL R
I,1,R
OO
I,1,R

’

Example 14.2.

Machine tables are another way of representing Turing ma-
chines. Machine tables have the tape alphabet displayed on the
x-axis, and the set of machine states across the y-axis. Inside the
table, at the intersection of each state and symbol, is written the
rest of the instruction—the new state, new symbol, and direc-
tion of movement. Machine tables make it easy to determine in
what state, and for what symbol, the machine halts. Whenever
there is a gap in the table is a possible point for the machine to
halt. Unlike state diagrams and instruction sets, where the points



at which the machine halts are not always immediately obvious,
any halting points are quickly identified by finding the gaps in
the machine table.

Example 14.3. The machine table for the even machine is:

L I >
qo I,q1,R
1| Uq,R | I,q0,R

As we can see, the machine halts when scanning a U in state go.

So far we have only considered machines that read and accept
input. However, Turing machines have the capacity to both read
and write. An example of such a machine (although there are
many, many examples) is a doubler. A doubler, when started with
a block of n I’s on the tape, outputs a block of 2n I’s.

Example 14.4. Before building a doubler machine, it is impor-
tant to come up with a strategy for solving the problem. Since the
machine (as we have formulated it) cannot remember how many
I’s it has read, we need to come up with a way to keep track of all
the I’s on the tape. One such way is to separate the output from
the input with a L. The machine can then erase the first 7 from
the input, traverse over the rest of the input, leave a LI, and write
two new I’s. The machine will then go back and find the second
I in the input, and double that one as well. For each one I of
input, it will write two I’s of output. By erasing the input as the
machine goes, we can guarantee that no / is missed or doubled
twice. When the entire input is erased, there will be 2z I’s left
on the tape. The state diagram of the resulting Turing machine
is depicted in Figure 14.2.

14.3 Turing Machines

The formal definition of what constitutes a Turing machine looks
abstract, but is actually simple: it merely packs into one mathe-
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A doubler machine

matical structure all the information needed to specify the work-
ings of a Turing machine. This includes (1) which states the
machine can be in, (2) which symbols are allowed to be on the
tape, (3) which state the machine should start in, and (4) what
the instruction set of the machine is.

Definition 14.5 (Turing machine). A Turing machine M is a tu-
ple (0.2, ¢o,6) consisting of

1. a finite set of states Q,

2. a finite alphabet 2 which includes > and L,

3. an initial state gy € Q,

4. a finite instruction set 6: Q X 2 + Q X 2 X {L,R,N}.

The partial function ¢ is also called the ¢ransition function of M.



We assume that the tape is infinite in one direction only. For
this reason it is useful to designate a special symbol » as a marker
for the left end of the tape. This makes it easier for Turing ma-
chine programs to tell when they’re “in danger” of running off
the tape. We could assume that this symbol is never overwritten,
i.e., that 6(¢,») = (¢’.»,x) if 6(¢,>) is defined. Some textbooks
do this, we do not. You can simply be careful when construct-
ing your Turing machine that it nevery overwrites ». Moreover,
there are cases where allowing such overwriting provides some
convenient flexibility.

Example 14.6. Even Machine: The even machine is formally the
quadruple (Q,2', ¢o,0) where

Q0 ={q0,¢1}
2 ={,u,1},

6(g0,1) = {q1.1, R),
6(q1,1) = (qo. 1, R),
6(q1,1) = (q1.LLR).

14.4 Configurations and Computations

Recall tracing through the configurations of the even machine
earlier. The imaginary mechanism consisting of tape, read/write
head, and Turing machine program is really just an intuitive way
of visualizing what a Turing machine computation is. Formally,
we can define the computation of a Turing machine on a given
input as a sequence of configurations—and a configuration in turn
is a sequence of symbols (corresponding to the contents of the
tape at a given point in the computation), a number indicating
the position of the read/write head, and a state. Using these,
we can define what the Turing machine M computes on a given
input.



Definition 14.7 (Configuration). A configuration of Turing ma-
chine M = (0,2, ¢o,0) is a triple (C,m,¢q) where

1. C € 2" is a finite sequence of symbols from 2,

2. m € N is a number < len(C), and

3-¢9€0

Intuitively, the sequence C is the content of the tape (symbols
of all squares from the leftmost square to the last non-blank or
previously visited square), m is the number of the square the
read/write head is scanning (beginning with 0 being the number
of the leftmost square), and ¢ is the current state of the machine.

The potential input for a Turing machine is a sequence of
symbols, usually a sequence that encodes a number in some form.
The initial configuration of the Turing machine is that configura-
tion in which we start the Turing machine to work on that input:
the tape contains the tape end marker immediately followed by
the input written on the squares to the right, the read/write head
is scanning the leftmost square of the input (i.e., the square to
the right of the left end marker), and the mechanism is in the
designated start state go.

Definition 14.8 (Initial configuration). The initial configura-
tion of M for input 7 € 2™ is

(>~1,1,90).

The —~ symbol is for concatenation—the input string begins
immediately to the left end marker.

Definition 14.9. We say that a configuration (C,m,q) yields the
configuration (C’,m’,q") in one step (according to M), iff

1. the m-th symbol of C is o,



2. the instruction set of M specifies 6(¢,0) = (¢’,0’,D),
3. the m-th symbol of C’ is o’, and

4. a) D=Land m'"=m—1if m > 0, otherwise m’ = 0, or
b) D=Rand m' =m+1, or
¢) D=N and m’ = m,

5. if m’ = len(C), then len(C’) = len(C) + 1 and the m’-th
symbol of C” is LI. Otherwise len(C’) =len(C).

6. for all i such that i < len(C) and i # m, C'(i) = C(i),

Definition 14.10. A run of M on input I is a sequence C; of con-
figurations of M, where Cj is the initial configuration of M for
input 7/, and each C; yields C;,1 in one step.

We say that M halts on input I after k steps if Cp = (C,m,q),
the mth symbol of C is o, and d(¢,0) is undefined. In that case,
the output of M for input 7 is O, where O is a string of symbols
not ending in U such that C =» ~ 0 ~ L/ for some i, j € N.

According to this definition, the output O of M always ends
in a symbol other than L, or, if at time £ the entire tape is filled
with LI (except for the leftmost »), O is the empty string.

14.5 Unary Representation of Numbers

Turing machines work on sequences of symbols written on their
tape. Depending on the alphabet a Turing machine uses, these
sequences of symbols can represent various inputs and outputs.
Of particular interest, of course, are Turing machines which com-
pute arithmetical functions, i.e., functions of natural numbers. A
simple way to represent positive integers is by coding them as
sequences of a single symbol 7. If n € N, let /" be the empty se-
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quence if # = 0, and otherwise the sequence consisting of exactly
n I’s.

Definition 14.11 (Computation). A Turing machine M com-
putes the function f: N¥ — N iff M halts on input

Imurm=2y...ul™

with output 77 ("),

Example 14.12. Addition: Let’s build a machine that computes
the function f(n,m) = n+m. This requires a machine that starts
with two blocks of I’s of length # and m on the tape, and halts
with one block consisting of z+m I’s. The two input blocks of I’s
are separated by a LI, so one method would be to write a stroke
on the square containing the LI, and erase the last 7.

In Example 14.4, we gave an example of a Turing machine
that takes as input a sequence of I’s and halts with a sequence of
twice as many /’s on the tape—the doubler machine. However,
because the output contains LI’s to the left of the doubled block
of I’s, it does not actually compute the function f(x) = 2x, as
you might have assumed. We’ll describe two ways of fixing that.

Example 14.13. The machine in Figure 14.4 computes the func-
tion f(x) = 2x. Instead of erasing the input and writing two I’s
at the far right for every 7 in the input as the machine from Ex-
ample 14.4 does, this machine adds a single / to the right for
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every [ in the input. It has to keep track of where the input ends,
so it leaves a LI between the input and the added strokes, which it
fills with a 7 at the very end. And we have to “remember” where
we are in the input, so we temporarily replace a / in the input
block by a LI

Example 14.14. A second possibility for computing f(x) = 2x
is to keep the original doubler machine, but add states and in-
structions at the end which move the doubled block of strokes to
the far left of the tape. The machine in Figure 14.5 does just this
last part: started on a tape consisting of a block of L’s followed
by a block of I’s (and the head positioned anywhere in the block
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of LI’s), it erases the I’s one at a time and writes them at the be-
ginning of the tape. In order to be able to tell when it is done, it
first marks the end of the block of I’s with a > symbol, which gets
deleted at the end. We’ve started numbering the states at gg, so
they can be added to the doubler machine. All you’ll need is an
additional instruction 6(g¢s,U) = (g6, N), i.e., an arrow from g¢;
to ge labelled LI, LI, N.

UL, R

Moving a block of I’s to the left

Definition 14.15. A Turing machine 4 computes the partial
function f: Nf 4 N iff,

1. M halts on input /™ ~ LI ~ ... ~ U —~ I" with output
I™if f(n,...,n) = m.



2. M does not halt at all, or with an output that is not a single
block of I’s if f(ni,...,n;) is undefined.

14.6 Halting States

Although we have defined our machines to halt only when there
is no instruction to carry out, common representations of Turing
machines have a dedicated halting state h, such that 4 € Q.

The idea behind a halting state is simple: when the machine
has finished operation (it is ready to accept input, or has finished
writing the output), it goes into a state 4 where it halts. Some
machines have two halting states, one that accepts input and one
that rejects input.

Example 14.16. Halting States. To elucidate this concept, let us
begin with an alteration of the even machine. Instead of having
the machine halt in state g if the input is even, we can add an
instruction to send the machine into a halting state.

L, LR
I1,I,R
OWR0
I1,I,R
LU, N

Let us further expand the example. When the machine de-
termines that the input is odd, it never halts. We can alter the
machine to include a reject state by replacing the looping instruc-



tion with an instruction to go to a reject state 7.

I,I1,R
OO
I,I1,R
U, L, N U, U, N

Adding a dedicated halting state can be advantageous in
cases like this, where it makes explicit when the machine ac-
cepts/rejects certain inputs. However, it is important to note
that no computing power is gained by adding a dedicated halting
state. Similarly, a less formal notion of halting has its own advan-
tages. The definition of halting used so far in this chapter makes
the proof of the Halting Problem intuitive and easy to demonstrate.
For this reason, we continue with our original definition.

14.7 Disciplined Machines

In section section 14.6, we considered Turing machines that have
a single, designated halting state A—such machines are guaran-
teed to halt, if they halt at all, in state 4. In this way, machines
with a single halting state are more “disciplined” than we allow
Turing machines in general to be. There are other restrictions we
might impose on the behavior of Turing machines. For instance,
we also have not prohibited Turing machines from ever erasing
the tape-end marker on square 0, or to attempt to move left from
square 0. (Our definition states that the head simply stays on
square 0 in this case; other definitions have the machine halt.) It
is likewise sometimes desirable to be able to assume that a Turing
machine, if it halts at all, halts on square 1.



Definition 14.17. A Turing machine M is disciplined ift
1. it has a designated single halting state 4,
2. it halts, if it halts at all, while scanning square 1,
3. it never erases the » symbol on square 0, and

4. it never attempts to move left from square 0.

We have already discussed that any Turing machine can be
changed into one with the same behavor but with a designated
halting state. This is done simply by adding a new state 4, and
adding an instruction 6(¢,0) = (k,0, N) for any pair (¢,0") where
the original ¢ is undefined. It is true, although tedious to prove,
that any Turing machine M can be turned into a disciplined Tur-
ing machine M’ which halts on the same inputs and produces
the same output. For instance, if the Turing machine halts and
is not on square 1, we can add some instructions to make the
head move left until it finds the tape-end marker, then move one
square to the right, then halt. We’ll leave you to think about how
the other conditions can be dealt with.

Example 14.18. In Figure 14.6, we turn the addition machine
from Example 14.12 into a disciplined machine.

Proposition 14.19. For every Turing machine M, there is a disci-
plined Turing machine M’ which halts with output O if M halts with
output O, and does not halt if M does not halt. In particular, and
Sfunction f: N" — N computable by a Turing machine is computable
by a disciplined Turing machine.

14.8 Combining Turing Machines

The examples of Turing machines we have seen so far have been
fairly simple in nature. But in fact, any problem that can be solved
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with any modern programming language can also be solved with
Turing machines. To build more complex Turing machines, it
is important to convince ourselves that we can combine them,
so we can build machines to solve more complex problems by
breaking the procedure into simpler parts. If we can find a natu-
ral way to break a complex problem down into constituent parts,
we can tackle the problem in several stages, creating several sim-
ple Turing machines and combining them into one machine that
can solve the problem. This point is especially important when
tackling the Halting Problem in the next section.

How do we combine Turing machines M = (Q,2,¢,6)
and M’ = (Q’,E',qé,é’)? We now use the configuration of the
tape after M has halted as the input configuration of a run of
machine M’. To get a single Turing machine M/ —~ M’ that does
this, do the following:

1. Renumber (or relabel) all the states Q’ of M’ so that M
and M’ have no states in common (Q N Q' = 0).

2. The states of M —~ M’ are Q U Q".



3. The tape alphabet is 2 U 2",
4. The start state is go.

5. The transition function is the function 6" given by:

6(g,o) ifgeQ
6"(g,0) =16"(¢.0)  ifgeQ’
(g4-0,N) if ¢ € Q and 6(¢,0) undefined

The resulting machine uses the instructions of A/ when it is in a
state ¢ € Q, the instructions of M’ when it is in a state ¢ € Q.
When it is in a state ¢ € Q and is scanning a symbol o for which
M has no transition (i.e., M would have halted), it enters the start
state of M’ (and leaves the tape contents and head position as it
is).

Note that unless the machine M is disciplined, we don’t know
where the tape head is when M halts, so the halting configuration
of M need not have the head scanning square 1. When combining
machines, it’s important to keep this in mind.

Example 14.20. Combining Machines: We’ll design a machine
which, when started on input consisting of two blocks of I’s of
length z and m, halts with a single block of 2(m + ) I’s on the
tape. In order to build this machine, we can combine two ma-
chines we are already familiar with: the addition machine, and
the doubler. We begin by drawing a state diagram for the addi-

tion machine.

I1,I,R I,I,R I,LLN

u,/,N % L, L, L
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N

Instead of halting in state g2, we want to continue operation in or-
der to double the output. Recall that the doubler machine erases




the first stroke in the input and writes two strokes in a separate
output. Let’s add an instruction to make sure the tape head is
reading the first stroke of the output of the addition machine.

I.I,R I,I.R

u,f,N % L, L, L
start —( 4o @

IIL e

It is now easy to double the input—all we have to do is con-
nect the doubler machine onto state g4. This requires renaming
the states of the doubler machine so that they start at g4 instead
of go—this way we don’t end up with two starting states. The
final diagram should look as in Figure 14.7.

Proposition 14.21. If M and M’ are disciplined and compute the
functions f: NF — N and f": N — N, respectively, then M ~ M’ is
disciplined and computes ' o f.

Proof. Since M is disciplined, when it halts with out-
put f(ni1,...,n;) = m, the head is scanning square 1. If we
now enter the start state of AM’, the machine will halt with out-
put f(m), again scanning square 1. The other conditions of
Definition 14.17 are also satisfied. O
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Combining adder and doubler machines

14.9 Variants of Turing Machines

There are in fact many possible ways to define Turing machines,
of which ours is only one. In some ways, our definition is more
liberal than others. We allow arbitrary finite alphabets, a more
restricted definition might allow only two tape symbols, 7 and LI
We allow the machine to write a symbol to the tape and move at
the same time, other definitions allow either writing or moving.
We allow the possibility of writing without moving the tape head,
other definitions leave out the N “instruction.” In other ways,



our definition is more restrictive. We assumed that the tape is
infinite in one direction only, other definitions allow the tape to
be infinite both to the left and the right. In fact, one can even
allow any number of separate tapes, or even an infinite grid of
squares. We represent the instruction set of the Turing machine
by a transition function; other definitions use a transition relation
where the machine has more than one possible instruction in any
given situation.

This last relaxation of the definition is particularly interest-
ing. In our definition, when the machine is in state ¢ reading
symbol o, 6(¢,0) determines what the new symbol, state, and
tape head position is. But if we allow the instruction set to be a
relation between current state-symbol pairs (¢,07) and new state-
symbol-direction triples (¢’,0”’, D), the action of the Turing ma-
chine may not be uniquely determined—the instruction relation
may contain both (¢,0,¢’,0”’,D) and (¢,0,¢",0”,D’). In this
case we have a non-deterministic Turing machine. These play an
important role in computational complexity theory.

There are also different conventions for when a Turing ma-
chine halts: we say it halts when the transition function is un-
defined, other definitions require the machine to be in a special
designated halting state. We have explained in section 14.6 why
requiring a designated halting state is not a restriction which im-
pacts what Turing machines can compute. Since the tapes of our
Turing machines are infinite in one direction only, there are cases
where a Turing machine can’t properly carry out an instruction:
if it reads the leftmost square and is supposed to move left. Ac-
cording to our definition, it just stays put instead of “falling off”,
but we could have defined it so that it halts when that happens.
This definition is also equivalent: we could simulate the behavior
of a Turing machine that halts when it attempts to move left from



square O by deleting every transition §(¢,>) = (¢’,0,L)—then
instead of attempting to move left on » the machine halts."

There are also different ways of representing numbers (and
hence the input-output function computed by a Turing machine):
we use unary representation, but you can also use binary repre-
sentation. This requires two symbols in addition to LI and ».

Now here is an interesting fact: none of these variations mat-
ters as to which functions are Turing computable. If a function is
Turing computable according to one definition, it is Turing computable
according to all of them.

We won’t go into the details of verifying this. Here’s just one
example: we gain no additional computing power by allowing a
tape that is infinite in both directions, or multiple tapes. The
reason is, roughly, that a Turing machine with a single one-way
infinite tape can simulate multiple or two-way infinite tapes. E.g.,
using additional states and instructions, we can “translate” a pro-
gram for a machine with multiple tapes or two-way infinite tape
into one with a single one-way infinite tape. The translated ma-
chine can use the even squares for the squares of tape 1 (or the
“positive” squares of a two-way infinite tape) and the odd squares
for the squares of tape 2 (or the “negative” squares).

14.10 The Church-Turing Thesis

Turing machines are supposed to be a precise replacement for
the concept of an effective procedure. Turing thought that any-
one who grasped both the concept of an effective procedure and
the concept of a Turing machine would have the intuition that
anything that could be done via an effective procedure could be
done by Turing machine. This claim is given support by the fact
that all the other proposed precise replacements for the concept
of an effective procedure turn out to be extensionally equivalent

1This doesn’t quite work, since nothing prevents us from writing and read-
ing » on squares other than square 1 (see Example 14.14). We can get around
that by adding a second »’ symbol we use instead for such a purpose.



to the concept of a Turing machine —that is, they can compute
exactly the same set of functions. This claim is called the Church-
Turing thesis.

Definition 14.22 (Church-Turing thesis). The Church-Turing
Thesis states that anything computable via an effective procedure
is Turing computable.

The Church-Turing thesis is appealed to in two ways. The first
kind of use of the Church-Turing thesis is an excuse for laziness.
Suppose we have a description of an effective procedure to com-
pute something, say, in “pseudo-code.” Then we can invoke the
Church-Turing thesis to justify the claim that the same function
is computed by some Turing machine, even if we have not in fact
constructed it.

The other use of the Church-Turing thesis is more philosoph-
ically interesting. It can be shown that there are functions which
cannot be computed by Turing machines. From this, using the
Church-Turing thesis, one can conclude that it cannot be effec-
tively computed, using any procedure whatsoever. For if there
were such a procedure, by the Church-Turing thesis, it would fol-
low that there would be a Turing machine for it. So if we can
prove that there is no Turing machine that computes it, there also
can’t be an effective procedure. In particular, the Church-Turing
thesis is invoked to claim that the so-called halting problem not
only cannot be solved by Turing machines, it cannot be effectively
solved at all.

Summary

A Turing machine is a kind of idealized computation mecha-
nism. It consists of a one-way infinite tape, divided into squares,
each of which can contain a symbol from a pre-determined al-
phabet. The machine operates by moving a read-write head
along the tape. It may also be in one of a pre-determined num-
ber of states. The actions of the read-write head are determined



by a set of instructions; each instruction is conditional on the ma-
chine being in a certain state and reading a certain symbol, and
specifies which symbol the machine will write onto the current
square, whether it will move the read-write head one square left,
right, or stay put, and which state it will switch to. If the tape
contains a certain input, represented as a sequence of symbols
on the tape, and the machine is put into the designated start state
with the read-write head reading the leftmost square of the input,
the instruction set will step-wise determine a sequence of config-
urations of the machine: content of tape, position of read-write
head, and state of the machine. Should the machine encounter
a configuration in which the instruction set does not contain an
instruction for the current symbol read/state combination, the
machine halts, and the content of the tape is the output.

Numbers can very easily be represented as sequences of
strokes on the Tape of a Turing machine. We say a function
N — N is Turing computable if there is a Turing machine
which, whenever it is started on the unary representation of =
as input, eventually halts with its tape containing the unary rep-
resentation of f(n) as output. Many familiar arithmetical func-
tions are easily (or not-so-easily) shown to be Turing computable.
Many other models of computation other than Turing machines
have been proposed; and it has always turned out that the arith-
metical functions computable there are also Turing computable.
This is seen as support for the Church-Turing Thesis, that every
arithmetical function that can effectively be computed is Turing
computable.

Problems

Problem 14.1. Choose an arbitary input and trace through the
configurations of the doubler machine in Example 14.4.

Problem 14.2. Design a Turing-machine with alphabet
{»,Uu,4,B} that accepts, i.e., halts on, any string of 4’s and
B’s where the number of 4’s is the same as the number of B’s and



all the 4’s precede all the B’s, and rejects, i.e., does not halt on,
any string where the number of A’s is not equal to the number
of B’s or the A’s do not precede all the B’s. (E.g., the machine
should accept AABB, and AAABBB, but reject both AAB and
AABBAABB.)

Problem 14.3. Design a Turing-machine with alphabet
{»,U,4,B} that takes as input any string @ of A’s and B’s and
duplicates them to produce an output of the form aa. (E.g. input
ABBA should result in output ABBAABBA).

Problem 14.4. Alphabetical?: Design a Turing-machine with al-
phabet {>,L1,4, B} that when given as input a finite sequence of
A’s and B’s checks to see if all the A’s appear to the left of all
the B’s or not. The machine should leave the input string on the
tape, and either halt if the string is “alphabetical”, or loop forever
if the string is not.

Problem 14.5. Alphabetizer: Design a Turing-machine with al-
phabet {>,L1,4,B} that takes as input a finite sequence of A’s
and B’s rearranges them so that all the 4’s are to the left of
all the B’s. (e.g., the sequence BABAA should become the se-
quence AAABB, and the sequence ABBABB should become the
sequence AABBBB).

Problem 14.6. Give a definition for when a Turing machine M
computes the function f: Nf — N™.

Problem 14.7. Trace through the configurations of the machine
from Example 14.12 for input (3,2). What happens if the machine
computes 0+ 0?

Problem 14.8. Subtraction: Design a Turing machine that when
given an input of two non-empty strings of strokes of length »
and m, where n > m, computes the function f(z,m) = n — m.



Problem 14.9. Eguality: Design a Turing machine to compute
the following function:

£ =
equality(n,m) = {1 sa=m
0

fn#m
where 7 and m € Z*.

Problem 14.10. Design a Turing machine to compute the func-
tion min(x,y) where x and y are positive integers represented on
the tape by strings of I’s separated by a LI. You may use addi-
tional symbols in the alphabet of the machine.

The function min selects the smallest value from its argu-
ments, so min(3,5) = 3, min(20,16) = 16, and min(4,4) = 4, and
so on.

Problem 14.11. Give a disciplined machine that computes

f(x)=x+1.

Problem 14.12. Find a disciplined machine which, when started
on input /" produces output I ~ LI ~ I".

Problem 14.13. Give a disciplined Turing machine computing
f(x) = x +2 by taking the machine M from problem 14.11 and
construct M —~ M.



CHAPTER 15

15.1 Introduction

It might seem obvious that not every function, even every arith-
metical function, can be computable. There are just too many,
whose behavior is too complicated. Functions defined from the
decay of radioactive particles, for instance, or other chaotic or
random behavior. Suppose we start counting 1-second intervals
from a given time, and define the function f(z) as the number
of particles in the universe that decay in the n-th 1-second inter-
val after that initial moment. This seems like a candidate for a
function we cannot ever hope to compute.

But it is one thing to not be able to imagine how one would
compute such functions, and quite another to actually prove that
they are uncomputable. In fact, even functions that seem hope-
lessly complicated may, in an abstract sense, be computable. For
instance, suppose the universe is finite in time—some day, in the
very distant future the universe will contract into a single point,
as some cosmological theories predict. Then there is only a fi-
nite (but incredibly large) number of seconds from that initial
moment for which f(n) is defined. And any function which is
defined for only finitely many inputs is computable: we could list
the outputs in one big table, or code it in one very big Turing
machine state transition diagram.

288



We are often interested in special cases of functions whose
values give the answers to yes/no questions. For instance, the
question “is # a prime number?” is associated with the function

. {1 if » is prime
isprime(n) = .
0 otherwise.
We say that a yes/no question can be effectively decided, if the as-
sociated 1/0-valued function is effectively computable.

To prove mathematically that there are functions which can-
not be effectively computed, or problems that cannot effectively
decided, it is essential to fix a specific model of computation,
and show about it that there are functions it cannot compute or
problems it cannot decide. We can show, for instance, that not
every function can be computed by Turing machines, and not
every problem can be decided by Turing machines. We can then
appeal to the Church-Turing thesis to conclude that not only are
Turing machines not powerful enough to compute every function,
but no effective procedure can.

The key to proving such negative results is the fact that we
can assign numbers to Turing machines themselves. The easiest
way to do this is to enumerate them, perhaps by fixing a specific
way to write down Turing machines and their programs, and then
listing them in a systematic fashion. Once we see that this can
be done, then the existence of Turing-uncomputable functions
follows by simple cardinality considerations: the set of functions
from N to N (in fact, even just from N to {0,1}) are uncountable,
but since we can enumerate all the Turing machines, the set of
Turing-computable functions is only countably infinite.

We can also define specific functions and problems which we
can prove to be uncomputable and undecidable, respectively.
One such problem is the so-called Halting Problem. Turing ma-
chines can be finitely described by listing their instructions. Such
a description of a Turing machine, i.e., a Turing machine pro-
gram, can of course be used as input to another Turing machine.
So we can consider Turing machines that decide questions about



other Turing machines. One particularly interesting question is
this: “Does the given Turing machine eventually halt when started
on input #?” It would be nice if there were a Turing machine that
could decide this question: think of it as a quality-control Turing
machine which ensures that Turing machines don’t get caught
in infinite loops and such. The interesting fact, which Turing
proved, is that there cannot be such a Turing machine. There
cannot be a single Turing machine which, when started on in-
put consisting of a description of a Turing machine 4 and some
number 7, will always halt with either output 1 or 0 according to
whether M machine would have halted when started on input =
or not.

Once we have examples of specific undecidable problems we
can use them to show that other problems are undecidable, too.
For instance, one celebrated undecidable problem is the question,
“Is the first-order formula 4 valid?”. There is no Turing machine
which, given as input a first-order formula 4, is guaranteed to halt
with output 1 or 0 according to whether 4 is valid or not. His-
torically, the question of finding a procedure to effectively solve
this problem was called simply “the” decision problem; and so we
say that the decision problem is unsolvable. Turing and Church
proved this result independently at around the same time, so it
is also called the Church-Turing Theorem.

15.2 Enumerating Turing Machines

We can show that the set of all Turing machines is countable. This
follows from the fact that each Turing machine can be finitely
described. The set of states and the tape vocabulary are finite
sets. The transition function is a partial function from Q x 2" to
0 x2 x{L,R,N}, and so likewise can be specified by listing its
values for the finitely many argument pairs for which it is defined.

This is true as far as it goes, but there is a subtle difference.
The definition of Turing machines made no resriction on what
elements the set of states and tape alphabet can have. So, e.g.,



L, L, R
I1,I,R

start —>
I1,I,R

L, L, R
A,A,R
start ﬁ@/—\
A,A,R

Variants of the Even machine

for every real number, there technically is a Turing machine that
uses that number as a state. However, the behavior of the Tur-
ing machine is independent of which objects serve as states and
vocabulary. Consider the two Turing machines in Figure 15.1.
These two diagrams correspond to two machines, M with the
tape alphabet 2 = {>,11,7} and set of states {go,¢1}, and M’ with
alphabet 2’ = {»,1,4} and states {s,4}. But their instructions
are otherwise the same: M will halt on a sequence of n I’s iff n
is even, and M’ will halt on a sequence of n A’s iff z is even. All
we’ve done is rename I to 4, ¢ to s, and ¢; to . This example
generalizes: we can think of Turing machines as the same as long
as one results from the other by such a renaming of symbols and
states. In fact, we can simply think of the symbols and states of a
Turing machine as positive integers: instead of o think 1, instead
of o1 think 2, etc.; » is 1, Ll is 2, etc. In this way, the Even machine
becomes the machine depicted in Figure 15.2. We might call a
Turing machine with states and symbols that are positive integers



2,2,R
3,3,R

start %@/—\

3,3,R

A standard Even machine

a standard machine, and only consider standard machines from
now on."

We wanted to show that the set of Turing machines is count-
able, and with the above considerations in mind, it is enough to
show that the set of standard Turing machines is countable. Sup-
pose are given a standard Turing machine M = (Q,2, ¢9,6). How
could we describe it using a finite string of positive integers? We’ll
first list the number of states, the states themselves, the number
of symbols, the symbols themselves, and the starting state. (Re-
member, all of these are positive integers, since M is a standard
machine.) What about 67 The set of possible arguments, i.e.,
pairs (g,07), is finite, since Q and X are finite. So the informa-
tion in ¢ is simply the finite list of all 5-tuples (¢,0,¢’,0’,d) where
0(g,0) =(¢’,0’,D), and d is a number that codes the direction D
(say, 1 for L, 2 for R, and 3 for N).

In this way, every standard Turing machine can be described
by a finite list of positive integers, i.e., as a sequence sy € (Z*)*.
For instance, the standard Even machine is coded by the sequence

x 6(2,2)=(22,R)
— —_—~—
2, 1,2 ,3,1,2,3,1, 1,3,2,3,2, 2,2,2,2,2 , 2,3,1,3,2 .
—— —————— ~———
Q 5(13)=(23.R) 3(23)=(13.R)

1The terminology “standard machine” is not standard.



Theorem 15.1. There are functions from N to N which are not Tur-
ing computable.

Proof. We know that the set of finite sequences of positive inte-
gers (Z*)* is countable (problem 4.7). This gives us that the set
of descriptions of standard Turing machines, as a subset of (Z*)",
is itself enumerable. Every Turing computable function N to N is
computed by some (in fact, many) Turing machines. By renam-
ing its states and symbols to positive integers (in particular, »
as 1, U as 2, and I as 3) we can see that every Turing computable
function is computed by a standard Turing machine. This means
that the set of all Turing computable functions from N to N is
also enumerable.

On the other hand, the set of all functions from N to N is
not countable (problem 4.21). If all functions were computable
by some Turing machine, we could enumerate the set of all func-
tions by listing all the descriptions of Turing machines that com-
pute them. So there are some functions that are not Turing com-
putable. o

15.3 Universal Turing Machines

In section 15.2 we discussed how every Turing machine can be de-
scribed by a finite sequence of integers. This sequence encodes
the states, alphabet, start state, and instructions of the Turing
machine. We also pointed out that the set of all of these descrip-
tions is countable. Since the set of such descriptions is countably
infinite, this means that there is a surjective function from N to
these descriptions. Such a surjective function can be obtained,
for instance, using Cantor’s zig-zag method. It gives us a way of
enumerating all (descriptions) of Turing machines. If we fix one
such enumeration, it now makes sense to talk of the 1st, 2nd, ...,
eth Turing machine. These numbers are called indices.



Definition 15.2. If M is the eth Turing machine (in our fixed
enumeration), we say that ¢ is an index of M. We write M, for
the eth Turing machine.

A machine may have more than one index, e.g., two descrip-
tions of M may differ in the order in which we list its instructions,
and these different descriptions will have different indices.

Importantly, it is possible to give the enumeration of Tur-
ing machine descriptions in such a way that we can effectively
compute the description of M from its index, and to effectively
compute an index of a machine M from its description. By the
Church-Turing thesis, it is then possible to find a Turing machine
which recovers the description of the Turing machine with index e
and writes the corresponding description on its tape as output.
The description would be a sequence of blocks of I’s (represent-
ing the positive integers in the sequence describing A,).

Given this, it now becomes natural to ask: what functions
of Turing machine indices are themselves computable by Turing
machines? What properties of Turing machine indices can be de-
cided by Turing machines? An example: the function that maps
an index ¢ to the number of states the Turing machine with in-
dex ¢ has, is computable by a Turing machine. Here’s what such
a Turing machine would do: started on a tape containing a sin-
gle block of ¢ I’s, it would first decode ¢ into its description. The
description is now represented by a sequence of blocks of I’s on
the tape. Since the first element in this sequence is the number
of states. So all that has to be done now is to erase everything
but the first block of I’s and then halt.

A remarkable result is the following:

Theorem 15.3. There is a universal Turing machine U which,
when started on input (e, n)

1. halts iff M, halts on input n, and



2. if M, halts with output m, so does U.

U thus computes the function f: N XN - N given by f(e,n) = m if
M, started on input n halts with output m, and undefined otherwise.

Proof- To actually produce U is basically impossible, since it is an
extremely complicated machine. But we can describe in outline
how it works, and then invoke the Church-Turing thesis. When it
starts, U’s tape contains a block of ¢ I’s followed by a block of
n I’s. It first “decodes” the index ¢ to the right of the input =.
This is produces a list of numbers (i.e., blocks of I’s separated
by L’s) that describes the instructions of machine M,. U then
writes the number of the start state of 44, and the number 1 on
the tape to the right of the description of M,. (Again, these are
represented in unary, as blocks of I’s.) Next, it copies the input
(block of n I’s) to the right—but it replaces each I by a block of
three I’s (remember, the number of the 7 symbol is 3, 1 being
the number of » and 2 being the number of LI). At the left end
of this sequence of blocks (separated by LI symbols on the tape
of U), it writes a single 7, the code for ».

U now has on its tape: the index ¢, the number #, the code
number of the start state (the “current state”), the number of
the initial head position 1 (the “current head position”), and the
initial contents of the “tape” (a sequence of blocks of I’s repre-
senting the code numbers of the symbols of #/,—the “symbols”—
separated by L’s).

It now simulates what 4, would do if started on input z, by
doing the following:

1. Find the number £ of the “current head position” (at the
beginning, that’s 1),

2. Move to the kth block in the “tape” to see what the “sym-
bol” there is,

3. Find the instruction matching the current “state” and “sym-
bol,”



4. Move back to the kth block on the “tape” and replace the
“symbol” there with the code number of the symbol A/,
would write,

5. Move the head to where it records the current “state” and
replace the number there with the number of the new state,

6. Move to the place where it records the “tape position” and
erase a / or add a 7 (if the instruction says to move left or
right, respectively).

7. Repeat.”

If M, started on input z never halts, then U also never halts, so
its output is undefined.

If in step (3) it turns out that the description of M, contains no
instruction for the current “state”/“symbol” pair, then M, would
halt. If this happens, U erases the part of its tape to the left of
the “tape.” For each block of three I’s (representing a / on M,’s
tape), it writes a / on the left end of its own tape, and successively
erases the “tape.” When this is done, U’s tape contains a single
block of I’s of length m.

If U encounters something other than a block of three I’s
on the “tape,” it immediately halts. Since U’s tape in this case
does not contain a single block of I’s, its output is not a natural
number, i.e., f(e,n) is undefined in this case. |

15.4 The Halting Problem

Assume we have fixed some an enumeration of Turing machine
descriptions. Each Turing machine thus receives an index: its
place in the enumeration M;, My, M3, ... of Turing machine
descriptions.

2We're glossing over some subtle difficulties here. E.g., U may need some
extra space when it increases the counter where it keeps track of the “current
head position”—in that case it will have to move the entire “tape” to the right.



We know that there must be non-Turing-computable func-
tions: the set of Turing machine descriptions—and hence the
set of Turing machines—is countable, but the set of all functions
from N to N is not. But we can find specific examples of non-
computable function as well. One such function is the halting
function.

Definition 15.4 (Halting function). The halting function h is
defined as

h(e.n) = {0 if machine M, does not halt for input =

1 if machine A, halts for input »

Definition 15.5 (Halting problem). The Halting Problem is the
problem of determining (for any ¢, n) whether the Turing ma-
chine M, halts for an input of z strokes.

We show that £ is not Turing-computable by showing that a
related function, s, is not Turing-computable. This proof relies on
the fact that anything that can be computed by a Turing machine
can be computed by a disciplined Turing machine (section 14.7),
and the fact that two Turing machines can be hooked together to
create a single machine (section 14.8).

Definition 15.6. The function s is defined as

) {0 if machine M, does not halt for input ¢
s(e) =

1 if machine A, halts for input ¢

Lemma 15.7. The function s is not Turing computable.

Proof- We suppose, for contradiction, that the function s is Tur-
ing computable. Then there would be a Turing machine § that



computes s. We may assume, without loss of generality, that when
$ halts, it does so while scanning the first square (i.e., that it is
disciplined). This machine can be “hooked up” to another ma-
chine /, which halts if it is started on input O (i.e., if it reads Ll in
the initial state while scanning the square to the right of the end-
of-tape symbol), and otherwise wanders off to the right, never
halting. § —~ /, the machine created by hooking § to /, is a Tur-
ing machine, so it is M, for some ¢ (i.e., it appears somewhere in
the enumeration). Start M, on an input of ¢ Is. There are two
possibilities: either A4, halts or it does not halt.

1. Suppose M, halts for an input of ¢ Is. Then s(¢) = 1. So
S, when started on ¢, halts with a single 7 as output on the
tape. Then J starts with a / on the tape. In that case J
does not halt. But 4, is the machine § —~ /, so it should
do exactly what S followed by / would do (i.e., in this case,
wander off to the right nad never halt). So M, cannot halt
for an input of ¢ I’s.

2. Now suppose M, does not halt for an input of ¢ /s. Then
s(e) =0, and S, when started on input ¢, halts with a blank
tape. J, when started on a blank tape, immediately halts.
Again, M, does what § followed by / would do, so M, must
halt for an input of ¢ I’s.

In each case we arrive at a contradiction with our assumption.
This shows there cannot be a Turing machine S: s is not Turing
computable. m|

Theorem 15.8 (Unsolvability of the Halting Problem). 7%e
halting problem is unsolvable, i.e., the function h is not Turing com-
putable.

Proof. Suppose h were Turing computable, say, by a Turing ma-
chine H. We could use H to build a Turing machine that com-
putes s: First, make a copy of the input (separated by a LI symbol).



Then move back to the beginning, and run H. We can clearly
make a machine that does the former (see problem 14.12), and
if H existed, we would be able to “hook it up” to such a copier
machine to get a new machine which would determine if A, halts
on input ¢, i.e., computes s. But we’ve already shown that no such
machine can exist. Hence, £ is also not Turing computable. O

15.5 The Decision Problem

We say that first-order logic is decidable iff there is an effective
method for determining whether or not a given sentence is valid.
As it turns out, there is no such method: the problem of deciding
validity of first-order sentences is unsolvable.

In order to establish this important negative result, we prove
that the decision problem cannot be solved by a Turing machine.
That is, we show that there is no Turing machine which, when-
ever it is started on a tape that contains a first-order sentence,
eventually halts and outputs either 1 or 0 depending on whether
the sentence is valid or not. By the Church-Turing thesis, every
function which is computable is Turing computable. So if this
“validity function” were effectively computable at all, it would be
Turing computable. If it isn’t Turing computable, then, it also
cannot be effectively computable.

Our strategy for proving that the decision problem is unsolv-
able is to reduce the halting problem to it. This means the follow-
ing: We have proved that the function 4(e,w) that halts with out-
put 1 if the Turing machine described by ¢ halts on input w and
outputs 0 otherwise, is not Turing computable. We will show that
if there were a Turing machine that decides validity of first-order
sentences, then there is also Turing machine that computes 4.
Since & cannot be computed by a Turing machine, there cannot
be a Turing machine that decides validity either.

The first step in this strategy is to show that for every input w
and a Turing machine M, we can effectively describe a sentence
T (M,w) representing the instruction set of M and the input w



and a sentence E(M,w) expressing “M eventually halts” such
that:

FT(M,w) — E(M,w) iff M halts for input w.

The bulk of our proof will consist in describing these sentences
T(M,w) and E(M,w) and in verifying that 7(M,w) — E(M,w)
is valid iff M halts on input w.

15.6 Representing Turing Machines

In order to represent Turing machines and their behavior by
a sentence of first-order logic, we have to define a suitable lan-
guage. The language consists of two parts: predicate symbols
for describing configurations of the machine, and expressions
for numbering execution steps (“moments”) and positions on the
tape.

We introduce two kinds of predicate symbols, both of them
2-place: For each state g, a predicate symbol Q,, and for each
tape symbol o, a predicate symbol S,. The former allow us to
describe the state of M and the position of its tape head, the
latter allow us to describe the contents of the tape.

In order to express the positions of the tape head and the
number of steps executed, we need a way to express numbers.
This is done using a constant symbol 0, and a 1-place function v,
the successor function. By convention it is written after its argu-
ment (and we leave out the parentheses). So 0 names the leftmost
position on the tape as well as the time before the first execution
step (the initial configuration), 0’ names the square to the right
of the leftmost square, and the time after the first execution step,
and so on. We also introduce a predicate symbol < to express
both the ordering of tape positions (when it means “to the left
of”) and execution steps (then it means “before”).

Once we have the language in place, we list the “axioms” of
T (M,w), i.e., the sentences which, taken together, describe the
behavior of M when run on input w. There will be sentences



which lay down conditions on 0, 7, and <, sentences that de-
scribes the input configuration, and sentences that describe what
the configuration of M is after it executes a particular instruc-
tion.

Definition 15.9. Given a Turing machine M = (Q,2', ¢9,6), the
language £y consists of:

1. A two-place predicate symbol Q,(x,y) for every state ¢ € Q.
Intuitively, Q, (m, n) expresses “after n steps, M is in state ¢
scanning the mth square.”

2. A two-place predicate symbol S, (x, ) for every symbol o €
2. Intuitively, S,(m,n) expresses “after n steps, the mth
square contains symbol o.”

3. A constant symbol 0
4. A one-place function symbol s

5. A two-place predicate symbol <
For each number 7 there is a canonical term_ﬁ, the numeral

for n, which represents it in &y. 0is o, 1is 0, 2is 0”, and so
on. More formally:

ol
Il
o

’

—

n+l=mn
The sentences describing the operation of the Turing ma-

chine M on input w = o, ... o, are the following:

1. Axioms describing numbers and <:

a) A sentence that says that every number is less than its
successor:
Vax < x’



b) A sentence that ensures that < is transitive:
VaVyVz((x <y Ay <2z)—>x<2)
2. Axioms describing the input configuration:

a) After 0 steps—before the machine starts—AM is in the
inital state ¢, scanning square 1:

Q% (i 6)

b) The first £ +1 squares contain the symbols », o, ...
O'l'k:

b

5.(0,0) A S, (1,0) A+ A S, (K,0)
c) Otherwise, the tape is empty:
Vx (k < x = S,(x,0))

3. Axioms describing the transition from one configuration to

the next:

For the following, let A(x,y) be the conjunction of all sen-

tences of the form

Vz(((z <xVx<2)ASs(z,9) = Ss(2,9))

where o0 € 2. We use A(m,n) to express “other than at
square m, the tape after n + 1 steps is the same as after n
steps.”

a) For every instruction 6(¢;,0) = (g;,0”’,R), the sen-
tence:

VaVy (Qg, (x,9) A So(x.)) =
(Qq]' (x,9_y,) /\ S(T' (xv_y/) /\ A(x7.y)))

This says that if, after y steps, the machine is in state ¢;
scanning square x which contains symbol o, then af-
ter y +1 steps it is scanning square x +1, is in state ¢;,
square x now contains o', and every square other
than x contains the same symbol as it did after y steps.



b) For every instruction 6(¢;,07) = (¢;,0’,L), the sen-
tence:

VaVy ((Qq (x,9) A S (x',)) —

(Qq (%.9") A S (x,9") A A(x,9))) A
Vy ((Qg,(0,9) A 54(0,y)) —

(Qg;(0,3") A Sgv(0,y") A A(0,)))

Take a moment to think about how this works: now
we don’t start with “if scanning square x ...” but: “if
scanning square x +1 ...” A move to the left means
that in the next step the machine is scanning square x.
But the square that is written on is x +1. We do it this
way since we don’t have subtraction or a predecessor
function.

Note that numbers of the form x+1 are 1, 2, ..., i.e,,
this doesn’t cover the case where the machine is scan-
ning square 0 and is supposed to move left (which of
course it can’t—it just stays put). That special case is
covered by the second conjunction: it says that if, af-
ter y steps, the machine is scanning square 0 in state
¢:; and square 0 contains symbol o, then after y +1
steps it’s still scanning square 0, is now in state ¢;, the
symbol on square 0 is ¢’, and the squares other than
square O contain the same symbols they contained of-
ter y steps.

c) For every instruction 6(¢;,0) = (¢g;,0’,N), the sen-
tence:

VaVy ((Qq (%,9) A S (%,9)) =
(Qq; (%,9") A Sov(x,9") A A(x,3)))

Let 7'(M,w) be the conjunction of all the above sentences for
Turing machine M and input w.

In order to express that 4 eventually halts, we have to find
a sentence that says “after some number of steps, the transition



function will be undefined.” Let X be the set of all pairs (g,0)
such that 6(g,0) is undefined. Let E(M,w) then be the sentence

3x3y (\/ (Qq(x.9) A Se(x.9))

(go)eX

If we use a Turing machine with a designated halting state 4,
it is even easier: then the sentence E(M,w)

x H_y Qh(x’.y)

expresses that the machine eventually halts.
Proposition 15.10. Ifm < k, then T (M,w) £ m < k

Proof. Exercise. o

15.7 Verifying the Representation

In order to verify that our representation works, we have to prove
two things. First, we have to show that if 4/ halts on input w,
then 7' (M,w) — E(M,w) is valid. Then, we have to show the
converse, i.e., that if T(M,w) — E(M,w) is valid, then M does
in fact eventually halt when run on input w.

The strategy for proving these is very different. For the first
result, we have to show that a sentence of first-order logic (namely,
T(M,w)— E(M,w)) is valid. The easiest way to do this is to give
a derivation. Our proof is supposed to work for all M and w,
though, so there isn’t really a single sentence for which we have
to give a derivation, but infinitely many. So the best we can do
is to prove by induction that, whatever M and w look like, and
however many steps it takes M to halt on input w, there will be
a derivation of 7'(M,w) — E(M,w).

Naturally, our induction will proceed on the number of steps
M takes before it reaches a halting configuration. In our induc-
tive proof, we’ll establish that for each step n of the run of M
on input w, I'(M,w) £ C(M,w,n), where C(M,w,n) correctly



describes the configuration of M run on w after n steps. Now if
M halts on input w after, say, n steps, C(M,w,n) will describe a
halting configuration. We’ll also show that C(M,w,n) £ E(M,w),
whenever C(M,w,n) describes a halting configuration. So, if M
halts on input w, then for some n, M will be in a halting con-
figuration after n steps. Hence, T'(M,w) £ C(M,w,n) where
C(M,w,n) describes a halting configuration, and since in that
case C(M,w,n) £ E(M,w), we get that T (M,w) £ E(M,w), i.e.,
that e T(M,w) — E(M,w).

The strategy for the converse is very different. Here we as-
sume that £ 7 (M,w)— E(M,w) and have to prove that M halts on
input w. From the hypothesis we get that 7 (M, w) £ E(M,w), i.e.,
E(M,w) is true in every structure in which 7'(M,w) is true. So
we’ll describe a structure M in which 7' (M, w) is true: its domain
will be N, and the interpretation of all the Q, and S, will be given
by the configurations of M during a run on input w. So, e.g.,
M k= Q,(m,n) iff T, when run on input w for n steps, is in state ¢
and scanning square m. Now since 7'(M,w) £ E(M,w) by hy-
pothesis, and since M £ T (M, w) by construction, M £ E(M,w).
But M £ E(M,w) iff there is some n € |M| = N so that M, run on
input w, is in a halting configuration after z steps.

Definition 15.11. Let C(M,w,n) be the sentence
Qu(M,7) A Sgy (0,70) A -+ A Sery (K, ) AV (K < x — Su(x,7))

where ¢ is the state of A/ at time n, M is scanning square m at
time 7, square i contains symbol o; at time n for 0 < i < £
and £ is the right-most non-blank square of the tape at time 0,
or the right-most square the tape head has visited after n steps,
whichever is greater.

Lemma 15.12. If M run on input w is in a halting configuration
after n steps, then C(M,w,n) £ E(M,w).



Proof. Suppose that M halts for input w after n steps. There is
some state ¢, square m, and symbol o such that:

1. After n steps, M is in state ¢ scanning square m on which o
appears.

2. The transition function §(¢, o) is undefined.

C(M,w,n) is the description of this configuration and will include
the clauses Q,(m,n) and S;-(m,n). These clauses together imply
E(M,w):

3x3y (\/ (Qpx.9) A Se(x.9)))

(go)eX

since Qg (m,n) A So(m,n) £V (g 0yex(Qq(m,n) A Sy(m,n)), as
(¢/,0") € X. O

So if M halts for input w, then there is some n such that
C(M,w,n) £ E(M,w). We will now show that for any time =,
TM,w)e C(M,w,n).

Lemma 15.13. For each n, if M has not halted after n steps,
T(M,w)Ee C(M,w,n).

Proof- Induction basis: If n = 0, then the conjuncts of C(M,w,0)
are also conjuncts of 7' (M,w), so entailed by it.

Inductive hypothesis: If M has not halted before the nth
step, then 7'(M,w) £ C(M,w,n). We have to show that (un-
less C(M,w,n) describes a halting configuration), 7'(M,w) E
CM,w,n+1).

Suppose n > 0 and after n steps, M started on w is in state ¢
scanning square m. Since M does not halt after n steps, there
must be an instruction of one of the following three forms in the
program of M:

1. 6(q,0) ={(¢’,0",R)

2. 6(q.0)=(q',0",L)



3. 6(¢q,0) =(¢’,0',N)
We will consider each of these three cases in turn.

1. Suppose there is an instruction of the form (1). By Defini-
tion 15.9(3a), this means that

VaVy ((Qqg(x,9) A So(%,)) —
(Qq(x".9") A Sor(x.y") A A(x.)))

is a conjunct of 7'(M,w). This entails the following sen-
tence (universal instantiation, m for x and 7 for y):

(Qq (m,7) A Sor (1, ) —
(Qy(m',n") A So(m,n") A A(m,n)).
By induction hypothesis, 7' (M,w) £ C(M,w,n), i.e.,
Qq(m,n) A Sy 0,7) A--- A Sy (k7)) AVx (k < x —> Su(x,7))

Since after n steps, tape square m contains o, the corre-
sponding conjunct is S, (m,n), so this entails:

Qq(ﬁ’ﬁ) A S(J’(m9ﬁ))
We now get

Qp (', 0') A So (m, ") A
Sey(0, ) A -+~ A Sy, (K, 7)) A
Vx (k < x > S,(x,7))

as follows: The first line comes directly from the conse-
quent of the preceding conditional, by modus ponens. Each
conjunct in the middle line—which excludes S, (m,n")—
follows from the corresponding conjunct in C(M,w,n) to-
gether with A(m,n).



Ifm < k, TM,w) + m < k (Proposition 15.10) and
by transitivity of <, we have Vx (k < x - m < x). If
m = k, then Vx (k < x » m < x) by logic alone. The
last line then follows from the corresponding conjunct in
C(M,w,n),Vx (k < x—m < x), and A(m, 7). If m < k, this
already is C(M,w,n +1).

Now suppose m = k. In that case, after n+1 steps, the tape
head has also visited square k£ + 1, which now is the right-
most square visited. So C(M,w,n + 1) has a new conjunct,

Su(z/,ﬁ'), and the last conjuct is Yx (El < x— Sy(x,7n")).
We have to verify that these two sentences are also implied.
We already have Vx (k < x — S,(x,7")). In particular, this
gives us /c <k > Su(lc n’). From the axiom Vx x < x” we
get k < . By modus ponens, 5u(k n') follows.

Also, since T (M, w) + <k , the axiom for transitivity of <
—

gives us Vx (k < x — S (x,7")). (We leave the verification

of this as an exercise.)

. Suppose there is an instruction of the form (2). Then, by
Definition 15.9(3b),

VaVy (Qu(x",y) A Se(x,)) —
(Qg(%,9") A S (x”,9") A A(x,))) A

Vy ((Qg,(0,9) A Si-(0,9)) —
(Rq,(0,9") A Syr(0,5") A A(0,3)))

is a conjunct of 7(M,w). If m > 0, thenlet / =m -1 (i.e.,
m = [ +1). The first conjunct of the above sentence entails
the following:

Q') A Se (7)) >
(Qu (L") A So (I, 7)) A AL T))



Otherwise, let / = m = 0 and consider the following sen-
tence entailed by the second conjunct:

((Qqg,(0,7) A Ss-(0,7)) —
(Qq,(0,7") A Sy (0,1") A A(0,7)))

Either sentence implies

Qy (L,7) A Ser(m,7') A
Soo(0,2") A+ A Sy, (k') A
Vx (k < x = Su(x,7))

as before. (Note that in the first case, I'=l+1=mandin
the second case [ = 0.) But this just is C(M,w,n +1).

3. Case (3) is left as an exercise.

We have shown that for any n, T'(M,w) £ C(M,w,n). O

Lemma 15.14. If M halts on input w, then T (M,w) — E(M,w) is
valid.

Proof. By Lemma 15.13, we know that, for any time =z, the de-
scription C(M,w,n) of the configuration of M at time z is en-
tailed by 7'(M,w). Suppose M halts after £ steps. It will be
scanning square m, say. Then C(M,w,k) describes a halting
configuration of M, i.e., it contains as conjuncts both Q, (E,Z)
and S, (m, k) with 0(¢,0) undefined. Thus, by Lemma 15.12,
C(M,w,k) £ E(M,w). But since T(M,w) £ C(M,w,k), we have
T(M,w) = E(M,w) and therefore T (M,w) — E(M,w) is valid.O

To complete the verification of our claim, we also have to
establish the reverse direction: if 7 (M,w) — E(M,w) is valid,
then M does in fact halt when started on input m.



Lemma 15.15. If T'(M,w) — E(M,w), then M halts on input w.

Proof. Consider the &j-structure M with domain N which inter-
prets 0 as 0, " as the successor function, and < as the less-than
relation, and the predicates (), and S as follows:

started on w, after n steps,
M is in state ¢ scanning square m

QY = {(m,n):

started on w, after n steps,
square m of M contains symbol o

Syl = {(m.n) : }

In other words, we construct the structure M so that it describes
what M started on input w actually does, step by step. Clearly,
MeT(M,w). If e T(M,w) > E(M,w), then also M £ E(M,w),
ie.,

ME3xIy(\/ (Qpx.9) ASe(x.9))).
(qgo)eX

As [M| = N, there must be m, n € N so that M £ Q,(m,n) A
So(m,n) for some ¢ and o such that §(¢,0) is undefined. By the
definition of M, this means that M started on input w after z steps

is in state ¢ and reading symbol o, and the transition function is
undefined, i.e., M has halted. O

15.8 The Decision Problem is Unsolvable

Theorem 15.16. The decision problem is unsolvable: There is no Tur-
ing machine D, which when started on a tape that contains a sentence B
of first-order logic as input, D eventually halts, and outputs 1 iff B is
valid and O otherwise.

Proof. Suppose the decision problem were solvable, i.e., suppose
there were a Turing machine D. Then we could solve the halting
problem as follows. We construct a Turing machine E that, given
as input the number ¢ of Turing machine A/, and input w, com-
putes the corresponding sentence 7" (M,,w) — E(M,,w) and halts,



scanning the leftmost square on the tape. The machine £ ~ D
would then, given input ¢ and w, first compute 7' (M,, w) —
E(M,,w) and then run the decision problem machine D on that
input. D halts with output 1 iff 7 (M,,w) — E(M,,w) is valid
and outputs 0 otherwise. By Lemma 15.15 and Lemma 15.14,
T(M,,w) - E(M,,w) is valid iff M, halts on input w. Thus,
E ~ D, given input ¢ and w halts with output 1 iff M, halts
on input w and halts with output 0 otherwise. In other words,
E —~ D would solve the halting problem. But we know, by Theo-
rem 15.8, that no such Turing machine can exist. |

Corollary 15.17. It is undecidable if an arbitrary sentence of first-
order logic is satisfiable.

Proof. Suppose satisfiability were decidable by a Turing ma-
chine §. Then we could solve the decision problem as follows:
Given a sentence B as input, move B to the right one square.
Return to square 1 and write the symbol —.

Now run the Turing machine §. It eventually halts with output
either 1 (if =B is satisfiable) or 0 (if —B is unsatisfiable) on the
tape. If there is a / on square 1, erase it; if square 1 is empty,
write a 1, then halt.

This Turing machine always halts, and its output is 1 iff =B
is unsatisfiable and 0 otherwise. Since B is valid iff =B is unsatis-
fiable, the machine outputs 1 iff B is valid, and 0 otherwise, i.e.,
it would solve the decision problem. |

So there is no Turing machine which always gives a correct
“yes” or “no” answer to the question “Is B a valid sentence of
first-order logic?” However, there is a Turing machine that always
gives a correct “yes” answer—but simply does not halt if the an-
swer is “no.” This follows from the soundness and completeness
theorem of first-order logic, and the fact that derivations can be

effectively enumerated.



Theorem 15.18. Validity of first-order sentences is semi-decidable:
There is a Turing machine E, which when started on a tape that con-
tains a sentence B of first-order logic as input, E eventually halts and
outputs 1 iff B is valid, but does not halt otherwise.

Proof- All possible derivations of first-order logic can be gener-
ated, one after another, by an effective algorithm. The machine £
does this, and when it finds a derivation that shows that + B, it
halts with output 1. By the soundness theorem, if £ halts with
output 1, it’s because £ B. By the completeness theorem, if £ B
there is a derivation that shows that ++ B. Since E systematically
generates all possible derivations, it will eventually find one that
shows + B, so will eventually halt with output 1. O

15.9 Trakthenbrot’s Theorem

In section 15.6 we defined sentences 7'(M,w) and E(M,w) for
a Turing machine M and input string w. Then we showed in
Lemma 15.14 and Lemma 15.15 that T (M, w) — E(M,w) is valid
iff T’ started on input w eventually halts. Since the Halting Prob-
lem is undecidable, this implies that validity and satisfiability
of sentences of first-order logic is undecidable (Theorem 15.16
and Corollary 15.17).

But validity and satisfiability of sentences is defined for ar-
bitrary structures, finite or infinite. You might suspect that it is
easier to decide if a sentence is satisfiable in a finite structure (or
valid in all finite structures). We can improve the proof of the
unsolvability of the decision so that it shows this is not the case.

First, if you go back to the proof of Lemma 15.15, you’ll see
that what we did there is produce a model M of 7' (M,w) which
describes exactly what machine M does when started on input w.
The domain of that model was N, i.e., infinite. But if M actually
halts on input w, we can build a finite model M’ in the same
way. Suppose M started on input w halts after £ steps. Take as
domain |M’| the set {0,...,n}, where z is the larger of £ and the



length of w, and let

/M'(x):{x-l-l ifx<n

n otherwise.

Otherwise M’ is defined just like M. By the definition of M’, just
like in the proof of Lemma 15.15, M’ £ T(M,w). And since we
assumed that M halts on input w, M’ £ E(M,w). So, M’ is a
finite model of 7'(M,w) A E(M,w) (note that we’ve replaced —
by A). We are halfway to a proof: if M halts on input w, then
T(M,e) N E(M,w) has a finite model. Unfortunately, the “only
if” direction does not hold. For instance, if M after n steps is
in state ¢ and reads a symbol o, and 6(¢,0) = (¢,0,N), then
the configuration after n + 1 steps is exactly the same as the con-
figuration after n steps (same state, same head position, same
tape contents). But the machine never halts; it’s in an infinite
loop. The corresponding structure M’ above satisfies 7 (M, w)
but not E(M,w). (In it, the values of n+1 are all the same, so
it is finite). But by changing 7 (M,w) suitable we can rule out
structures like this.

Consider the sentences describing the operation of the Turing
machine M on input w = 0 ... 0y,:

1. Axioms describing numbers and < (just like in the defini-

tion of 7'(M,w) in section 15.6).

2. Axioms describing the input configuration: just like in the
definition of T (M, w).

3. Axioms describing the transition from one configuration to
the next:

For the following, let A(x,y) be as before, and let

B(y)=Vx(x <y—>x+y).



a) For every instruction 6(¢;,0) = (g;,0’,R), the sen-
tence:

VaVy ((Qq (%.9) A So (%)) —
(Qq, (¥".3") A Ser(x,)") N Ax,9) A B(5')))
In other words, the same as the corresponding sen-
tence in 7' (M,w), except we add B(y’) at the end.

(B(y’) ensures that the number y’ of the “next” con-
figuration is different from all previous numbers o, 0,

..)
b) For every instruction 6(¢g;,0) = (¢;,0”,L), the sen-
tence
VaVy ((Qq(x",9) A Se(x',y)) —
(Qq,(%,9") A S (x",9") A A(x,))) A
Vy ((Qg,(0,9) A 54(0,9)) —
(Qqg;(0,9") A S¢2(0,9") A A(0,3) A B(y')))
c) For every instruction 6(¢;,07) = {(¢;,0’,N), the sen-
tence:
VxVy ((Qq, (%,9) A S (%,y)) —
(Qq,(%.9) A Ser (3,5") A A(x,9) A B())

Let 77(M,w) be the conjunction of all the above sentences for
Turing machine M and input w.

Lemma 15.19. If M started on input w halts, then T'(M,w) A
E(M,w) has a finite model.

Proof. Let M’ be as in the proof of Lemma 15.15, except

IM’| ={0,...,n}
/M'(x)—{ﬁl ifx<n

n otherwise,



where n = max(k,len(w)) and £ is the least number such that
M started on input w has halted after k£ steps. We leave the
verification that M’ £ T(M,w) A E(M,w) as an exercise. |

Lemma 15.20. If T'(M,w) N E(M,w) has a finite model, then M
started on input w halts.

Proof. We show the contrapositive. Suppose that A/ started on w
does not halt. If 7/(M,w) A E(M,w) has no model at all, we are
done. So assume M is a model of 7'(M,w) A E(M,w). We have
to show that it cannot be finite.

We can prove, just like in Lemma 15.13, that if M, started
on input w, has not halted after n steps, then 7’'(M,w) E
C(M,w,n) A B(m). Since M started on input w does not halt,
T'(M,w) £ C(M,w,n) A B(n) for all n € N. Note that by
Proposition 15.10, T'(M,w) & k < 7mforall £k < n. Also
B(m) E k<n—k # 7 So, M E k # 7 foral k < n, ie.,
the infinitely many terms & must all have different values in M.
But this requires that |[M| be infinite, so M cannot be a finite
model of T(M,w) AN E(M,w). O

Theorem 15.21 (Trakthenbrot’s Theorem). [t is undecidable if

an arbitrary sentence of first-order logic has a finite model (i.e., is finitely
satisfiable).

Proof. Suppose there were a Turing machine F that decides the
finite satisfiability problem. Then given any Turing machine M
and input w, we could compute the sentence 7' (M, w) AN E(M,w),
and use F to decide if it has a finite model. By Lemmas 15.19
and 15.20, it does iff M started on input w halts. So we could use
F to solve the halting problem, which we know is unsolvable. O



Corollary 15.22. There can be no derivation system that is sound
and complete for finite validity, i.e., a derivation system which has+ B
iff M e B for every finite structure M.

Proof. Exercise. o

Summary

Turing machines are determined by their instruction sets, which
are finite sets of quintuples (for every state and symbol read, spec-
ify new state, symbol written, and movement of the head). The
finite sets of quintuples are enumerable, so there is a way of as-
sociating a number with each Turing machine instruction set.
The index of a Turing machine is the number associated with
its instruction set under a fixed such schema. In this way we can
“talk about” Turing machines indirectly—by talking about their
indices.

One important problem about the behavior of Turing ma-
chines is whether they eventually halt. Let %(e,n) be the func-
tion which = 1 if the Turing machine with index ¢ halts when
started on input #, and = 0 otherwise. It is called the halting
function. The question of whether the halting function is itself
Turing computable is called the halting problem. The answer is
no: the halting problem is unsolvable. This is established using
a diagonal argument.

The halting problem is only one example of a larger class
of problems of the form “can X be accomplished using Turing
machines.” Another central problem of logic is the decision
problem for first-order logic: is there a Turing machine that
can decide if a given sentence is valid or not. This famous prob-
lem was also solved negatively: the decision problem is unsolv-
able. This is established by a reduction argument: we can asso-
ciate with each Turing machine M and input w a first-order sen-
tence T (M,w) — E(M,w) which is valid iff M halts when started



on input w. If the decision problem were solvable, we could thus
use it to solve the halting problem.

Problems

Problem 15.1. Can you think of a way to describe Turing ma-
chines that does not require that the states and alphabet symbols
are explicitly listed”? You may define your own notion of “stan-
dard” machine, but say something about why every Turing ma-
chine can be computed by a “standard” machine in your new
sense.

Problem 15.2. The Three Halting (3-Halt) problem is the prob-
lem of giving a decision procedure to determine whether or not
an arbitrarily chosen Turing Machine halts for an input of three
I’s on an otherwise blank tape. Prove that the g-Halt problem is
unsolvable.

Problem 15.3. Show that if the halting problem is solvable for
Turing machine and input pairs M, and n where ¢ # n, then it is
also solvable for the cases where ¢ = n.

Problem 15.4. We proved that the halting problem is unsolvable
if the input is a number ¢, which identifies a Turing machine M,
via an enumaration of all Turing machines. What if we allow
the description of Turing machines from section 15.2 directly as
input? Can there be a Turing machine which decides the halting
problem but takes as input descriptions of Turing machines rather
than indices? Explain why or why not.

Problem 15.5. Show that the partial function s’ is defined as

, 1 if machine M, halts for input ¢
s'(e) =

undefined if machine M, does not halt for input e

is Turing computable.



Problem 15.6. Prove Proposition 15.10. (Hint: use induction on
k—m).

Problem 15.7. Complete case (3) of the proof of Lemma 15.13.

Problem 15.8. Give a derivation of S, (i,7") from S, (i,7) and
A(m,n) (assuming i # m, i.e., either i < m or m < i).

Problem 15.9. Give a derivation of Vx (%/ < x— S,(x,7")) from
Vx (k < x = Su(x, 7)), Vax < x/, and VaVyVz ((x < y Ay <
Z) > x < 2).)

Problem 15.10. Complete the proof of Lemma 15.19 by proving
that M' £ T (M,w) N E(M,w).

Problem 15.11. Complete the proof of Lemma 15.20 by proving
that if M, started on input w, has not halted after n steps, then
T'(M,w) £ B(n).

Problem 15.12. Prove Corollary 15.22. Observe that B is sat-
isfied in every finite structure iff —B is not finitely satisfiable.
Explain why finite satisfiability is semi-decidable in the sense of
Theorem 15.18. Use this to argue that if there were a derivation
system for finite validity, then finite satisfiability would be decid-
able.
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APPENDIX A

A.1 Introduction

Based on your experiences in introductory logic, you might be
comfortable with a derivation system—probably a natural de-
duction or Fitch style derivation system, or perhaps a proof-tree
system. You probably remember doing proofs in these systems,
either proving a formula or show that a given argument is valid.
In order to do this, you applied the rules of the system until you
got the desired end result. In reasoning about logic, we also prove
things, but in most cases we are not using a derivation system. In
fact, most of the proofs we consider are done in English (perhaps,
with some symbolic language thrown in) rather than entirely in
the language of first-order logic. When constructing such proofs,
you might at first be at a loss—how do I prove something without
a derivation system? How do I start? How do I know if my proof
is correct?

Before attempting a proof, it’s important to know what a proof
is and how to construct one. As implied by the name, a proof is
meant to show that something is true. You might think of this in
terms of a dialogue—someone asks you if something is true, say,
if every prime other than two is an odd number. To answer “yes”
is not enough; they might want to know why. In this case, youd
give them a proof.
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In everyday discourse, it might be enough to gesture at an
answer, or give an incomplete answer. In logic and mathematics,
however, we want rigorous proof—we want to show that some-
thing is true beyond any doubt. This means that every step in our
proof must be justified, and the justification must be cogent (i.e.,
the assumption you’re using is actually assumed in the statement
of the theorem you’re proving, the definitions you apply must be
correctly applied, the justifications appealed to must be correct
inferences, etc.).

Usually, we’re proving some statement. We call the statements
we’re proving by various names: propositions, theorems, lemmas,
or corollaries. A proposition is a basic proof-worthy statement:
important enough to record, but perhaps not particularly deep
nor applied often. A theorem is a significant, important proposi-
tion. Its proof often is broken into several steps, and sometimes
it is named after the person who first proved it (e.g., Cantor’s
Theorem, the Lowenheim-Skolem theorem) or after the fact it
concerns (e.g., the completeness theorem). A lemma is a propo-
sition or theorem that is used to in the proof of a more impor-
tant result. Confusingly, sometimes lemmas are important results
in themselves, and also named after the person who introduced
them (e.g., Zorn’s Lemma). A corollary is a result that easily
follows from another one.

A statement to be proved often contains some assumption
that clarifies about which kinds of things we’re proving some-
thing. It might begin with “Let 4 be a formula of the form B— C”
or “Suppose I' + A” or something of the sort. These are Aypothe-
ses of the proposition, theorem, or lemma, and you may assume
these to be true in your proof. They restrict what we’re proving
about, and also introduce some names for the objects we’re talk-
ing about. For instance, if your proposition begins with “Let 4 be
a formula of the form B — C,” you’re proving something about
all formulas of a certain sort only (namely, conditionals), and it’s
understood that B— C is an arbitrary conditional that your proof
will talk about.



A.2 Starting a Proof

But where do you even start?

You’ve been given something to prove, so this should be the
last thing that is mentioned in the proof (you can, obviously, an-
nounce that you’re going to prove it at the beginning, but you don’t
want to use it as an assumption). Write what you are trying to
prove at the bottom of a fresh sheet of paper—this way you don’t
lose sight of your goal.

Next, you may have some assumptions that you are able to use
(this will be made clearer when we talk about the #ype of proof you
are doing in the next section). Write these at the top of the page
and make sure to flag that they are assumptions (i.e., if you are
assuming p, write “assume that p,” or “suppose that p”). Finally,
there might be some definitions in the question that you need
to know. You might be told to use a specific definition, or there
might be various definitions in the assumptions or conclusion
that you are working towards. Write these down and ensure that you
understand what they mean.

How you set up your proof will also be dependent upon the
form of the question. The next section provides details on how
to set up your proof based on the type of sentence.

A.3 Using Definitions

We mentioned that you must be familiar with all definitions that
may be used in the proof, and that you can properly apply them.
This is a really important point, and it is worth looking at in
a bit more detail. Definitions are used to abbreviate properties
and relations so we can talk about them more succinctly. The
introduced abbreviation is called the definiendum, and what it ab-
breviates is the definiens. In proofs, we often have to go back to
how the definiendum was introduced, because we have to exploit
the logical structure of the definiens (the long version of which
the defined term is the abbreviation) to get through our proof. By



unpacking definitions, you’re ensuring that you’re getting to the
heart of where the logical action is.

We'll start with an example. Suppose you want to prove the
following:

Proposition A.1. For any sets A and B, AUB =B U A.

In order to even start the proof, we need to know what it
means for two sets to be identical; i.e., we need to know what
the “=” in that equation means for sets. Sets are defined to be
identical whenever they have the same elements. So the definition
we have to unpack is:

Definition A.2. Sets 4 and B are identical, A = B, iff every ele-
ment of 4 is an element of B, and vice versa.

This definition uses 4 and B as placeholders for arbitrary sets.
What it defines—the definiendum—is the expression “4 = B” by
giving the condition under which 4 = B is true. This condition—
“every element of 4 is an element of B, and vice versa”—is the
definiens.' The definition specifies that 4 = B is true if, and only
if (we abbreviate this to “iff”) the condition holds.

When you apply the definition, you have to match the 4 and
B in the definition to the case you’re dealing with. In our case, it
means that in order for AU B = BU A to be true, each z € AUB
must also be in BUA, and vice versa. The expression AU B in the
proposition plays the role of A4 in the definition, and B U 4 that
of B. Since 4 and B are used both in the definition and in the
statement of the proposition we’re proving, but in different uses,
you have to be careful to make sure you don’t mix up the two.
For instance, it would be a mistake to think that you could prove
the proposition by showing that every element of 4 is an element

In this particular case—and very confusingly!—when 4 = B, the sets 4
and B are just one and the same set, even though we use different letters for it
on the left and the right side. But the ways in which that set is picked out may
be different, and that makes the definition non-trivial.



of B, and vice versa—that would show that 4 = B, not that AUB =
B U A. (Also, since 4 and B may be any two sets, you won’t get
very far, because if nothing is assumed about 4 and B they may
well be different sets.)

Within the proof we are dealing with set-theoretic notions
such as union, and so we must also know the meanings of the
symbol U in order to understand how the proof should pro-
ceed. And sometimes, unpacking the definition gives rise to
further definitions to unpack. For instance, 4 U B is defined as
{2z :2 € Aor z € B}. So if you want to prove that x € AU B,
unpacking the definition of U tells you that you have to prove
x € {z:z € Aor z € B}. Now you also have to remember that
xe€{z:...z...}iff ...x.... So, further unpacking the definition
of the {z :...z...} notation, what you have to show is: x € 4 or
x € B. So, “every element of AU B is also an element of BU 4”
really means: “for every x, if x € 4 or x € B, then x € B or
x € A.” If we fully unpack the definitions in the proposition, we
see that what we have to show is this:

Proposition A.3. For any sets A and B: (a) for every x, if x € A or
x € B, then x € B or x € A, and (b) for every x, if x € B or x € A,
then x € A or x € B.

What’s important is that unpacking definitions is a necessary
part of constructing a proof. Properly doing it is sometimes diffi-
cult: you must be careful to distinguish and match the variables
in the definition and the terms in the claim you’re proving. In
order to be successful, you must know what the question is ask-
ing and what all the terms used in the question mean—you will
often need to unpack more than one definition. In simple proofs
such as the ones below, the solution follows almost immediately
from the definitions themselves. Of course, it won’t always be this
simple.



A.4 Inference Patterns

Proofs are composed of individual inferences. When we make an
inference, we typically indicate that by using a word like “so,”
“thus,” or “therefore.” The inference often relies on one or two
facts we already have available in our proof—it may be something
we have assumed, or something that we’ve concluded by an in-
ference already. To be clear, we may label these things, and in
the inference we indicate what other statements we’re using in the
inference. An inference will often also contain an explanation of
why our new conclusion follows from the things that come before
it. There are some common patterns of inference that are used
very often in proofs; we’ll go through some below. Some patterns
of inference, like proofs by induction, are more involved (and will
be discussed later).

We’ve already discussed one pattern of inference: unpack-
ing, or applying, a definition. When we unpack a definition, we
just restate something that involves the definiendum by using the
definiens. For instance, suppose that we have already established
in the course of a proof that D = E (a). Then we may apply the
definition of = for sets and infer: “Thus, by definition from (a),
every element of D is an element of E and vice versa.”

Somewhat confusingly, we often do not write the justification
of an inference when we actually make it, but before. Suppose
we haven’t already proved that D = E, but we want to. If D = E
is the conclusion we aim for, then we can restate this aim also
by applying the definition: to prove D = E we have to prove
that every element of D is an element of £ and vice versa. So
our proof will have the form: (a) prove that every element of D
is an element of E; (b) every element of E is an element of D;
(c) therefore, from (a) and (b) by definition of =, D = E. But
we would usually not write it this way. Instead we might write
something like,



We want to show D = E. By definition of =, this
amounts to showing that every element of D is an el-
ement of £ and vice versa.

(a) ... (a proof that every element of D is an element
of E) ...

(b) ... (a proof that every element of £ is an element
of D) ...

Using a Conjunction

Perhaps the simplest inference pattern is that of drawing as con-
clusion one of the conjuncts of a conjunction. In other words:
if we have assumed or already proved that p and ¢, then we’re
entitled to infer that p (and also that ¢). This is such a basic
inference that it is often not mentioned. For instance, once we’ve
unpacked the definition of D = E we’ve established that every
element of D is an element of £ and vice versa. From this we can
conclude that every element of E is an element of D (that’s the
“vice versa” part).

Proving a Conjunction

Sometimes what you’ll be asked to prove will have the form of a
conjunction; you will be asked to “prove p and ¢.” In this case,
you simply have to do two things: prove p, and then prove ¢. You
could divide your proof into two sections, and for clarity, label
them. When you’re making your first notes, you might write “(1)
Prove p” at the top of the page, and “(2) Prove ¢” in the middle of
the page. (Of course, you might not be explicitly asked to prove
a conjunction but find that your proof requires that you prove a
conjunction. For instance, if you’re asked to prove that D = E
you will find that, after unpacking the definition of =, you have to
prove: every element of D is an element of E and every element
of E is an element of D).



Proving a Disjunction

When what you are proving takes the form of a disjunction (i.e., it
is an statement of the form “p or ¢”), it is enough to show that one
of the disjuncts is true. However, it basically never happens that
either disjunct just follows from the assumptions of your theorem.
More often, the assumptions of your theorem are themselves dis-
junctive, or you’re showing that all things of a certain kind have
one of two properties, but some of the things have the one and
others have the other property. This is where proof by cases is
useful (see below).

Conditional Proof

Many theorems you will encounter are in conditional form (i.e.,
show that if p holds, then ¢ is also true). These cases are nice and
easy to set up—simply assume the antecedent of the conditional
(in this case, p) and prove the conclusion ¢ from it. So if your
theorem reads, “If p then ¢,” you start your proof with “assume
p” and at the end you should have proved g¢.

Conditionals may be stated in different ways. So instead of “If
p then ¢,” a theorem may state that “p only if ¢,” “g if p,” or “gq,
provided p.” These all mean the same and require assuming p
and proving ¢ from that assumption. Recall that a biconditional
(“p if and only if (iff) ¢”) is really two conditionals put together:
if p then ¢, and if ¢ then p. All you have to do, then, is two
instances of conditional proof: one for the first conditional and
another one for the second. Sometimes, however, it is possible
to prove an “iff” statement by chaining together a bunch of other
“iff” statements so that you start with “¢” an end with “¢”—but
in that case you have to make sure that each step really is an “iff.”

Universal Claims

Using a universal claim is simple: if something is true for any-
thing, it’s true for each particular thing. So if, say, the hypothesis
of your proof is 4 C B, that means (unpacking the definition



of C), that, for every x € 4, x € B. Thus, if you already know
that z € 4, you can conclude z € B.

Proving a universal claim may seem a little bit tricky. Usually
these statements take the following form: “If x has P, then it
has Q” or “All Ps are Qs.” Of course, it might not fit this form
perfectly, and it takes a bit of practice to figure out what you’re
asked to prove exactly. But: we often have to prove that all objects
with some property have a certain other property.

The way to prove a universal claim is to introduce names
or variables, for the things that have the one property and then
show that they also have the other property. We might put this
by saying that to prove something for all Ps you have to prove
it for an arbitrary P. And the name introduced is a name for an
arbitrary P. We typically use single letters as these names for
arbitrary things, and the letters usually follow conventions: e.g.,
we use n for natural numbers, 4 for formulas, 4 for sets, f for
functions, etc.

The trick is to maintain generality throughout the proof. You
start by assuming that an arbitrary object (“x”) has the prop-
erty P, and show (based only on definitions or what you are al-
lowed to assume) that x has the property Q. Because you have
not stipulated what x is specifically, other that it has the property
P, then you can assert that all every P has the property Q. In
short, x is a stand-in for all things with property P.

Proposition A.4. For all sets A and B, A C AU B.

Proof Let A and B be arbitrary sets. We want to show that 4 C
A U B. By definition of C, this amounts to: for every x, if x € 4
then x € 4U B. So let x € A be an arbitrary element of 4. We
have to show that x € AU B. Since x € A, x € A or x € B. Thus,
x € {x : x € AV x € B}. But that, by definition of U, means
x€ AU B. O



Proof by Cases

Suppose you have a disjunction as an assumption or as an already
established conclusion—you have assumed or proved that p or ¢
is true. You want to prove r. You do this in two steps: first you
assume that p is true, and prove r, then you assume that ¢ is true
and prove r again. This works because we assume or know that
one of the two alternatives holds. The two steps establish that
either one is sufficient for the truth of r. (If both are true, we
have not one but two reasons for why r is true. It is not neces-
sary to separately prove that r is true assuming both p and g¢.)
To indicate what we’re doing, we announce that we “distinguish
cases.” For instance, suppose we know that x e BUC. BUC is
defined as {x : x € B or x € C}. In other words, by definition,
x € Bor x € C. We would prove that x € 4 from this by first
assuming that x € B, and proving x € A4 from this assumption,
and then assume x € C, and again prove x € 4 from this. You
would write “We distinguish cases” under the assumption, then
“Case (1): ¥ € B” underneath, and “Case (2): x € C halfway
down the page. Then youd proceed to fill in the top half and the
bottom half of the page.

Proof by cases is especially useful if what you’re proving is
itself disjunctive. Here’s a simple example:

Proposition A.5. Suppose B C D andC C E. Then BUC C DUE.

Proof: Assume (a) that B € D and (b) C C E. By definition, any
x € Bisalso € D (c) and any x € C is also € £ (d). To show that
BUC C DUE, we have to show thatif x € BUC thenx € DUE
(by definition of C). x € BU C iff x € B or x € C (by definition
of U). Similarly, x € DUE iff x € D or x € E. So, we have to
show: for any x, if x € Bor x € C, then x € D or x € E.

So far we’ve only unpacked definitions! We’ve refor-
mulated our proposition without C and U and are left
with trying to prove a universal conditional claim. By
what we’ve discussed above, this is done by assuming



that x is something about which we assume the “if”
part is true, and we’ll go on to show that the “then”
part is true as well. In other words, we’ll assume that
x € Bor x € C and show that x e Dor x € E.*

Suppose that x € B or x € C. We have to show that x € D or
x € E. We distinguish cases.

Case 1: x € B. By (c), x € D. Thus, x € D or x € E. (Here
we’ve made the inference discussed in the preceding subsection!)

Case2: x€ C.By (d), x € E. Thus,x € Dor x € E. O

Proving an Existence Claim

When asked to prove an existence claim, the question will usually
be of the form “prove that there is an x such that ...x...”, i.e,
that some object that has the property described by “...x...”. In
this case you’ll have to identify a suitable object show that is has
the required property. This sounds straightforward, but a proof
of this kind can be tricky. Typically it involves constructing or
defining an object and proving that the object so defined has the
required property. Finding the right object may be hard, proving
that it has the required property may be hard, and sometimes it’s
even tricky to show that you’ve succeeded in defining an object
at all!

Generally, youd write this out by specifying the object, e.g.,
“let x be ...” (where ... specifies which object you have in mind),
possibly proving that ... in fact describes an object that exists,
and then go on to show that x has the property Q. Here’s a simple
example.

Proposition A.6. Suppose that x € B. Then there is an A such that
AC BandA+0.

Proof. Assume x € B. Let A = {x}.

2This paragraph just explains what we’re doing—it’s not part of the proof,
and you don’t have to go into all this detail when you write down your own
proofs.



Here we’ve defined the set 4 by enumerating its ele-
ments. Since we assume that x is an object, and we
can always form a set by enumerating its elements,
we don’t have to show that we’ve succeeded in defin-
ing a set 4 here. However, we still have to show that
A has the properties required by the proposition. The
proof isn’t complete without that!

Since x € 4, A # 0.

This relies on the definition of 4 as {x} and the ob-
vious facts that x € {x} and x ¢ 0.

Since x is the only element of {x}, and x € B, every element of 4
is also an element of B. By definition of C, 4 C B. |

Using Existence Claims

Suppose you know that some existence claim is true (you’ve
proved it, or it’s a hypothesis you can use), say, “for some x,
x € A” or “there is an x € A.” If you want to use it in your proof,
you can just pretend that you have a name for one of the things
which your hypothesis says exist. Since 4 contains at least one
thing, there are things to which that name might refer. You might
of course not be able to pick one out or describe it further (other
than that it is € A4). But for the purpose of the proof, you can
pretend that you have picked it out and give a name to it. It’s
important to pick a name that you haven’t already used (or that
appears in your hypotheses), otherwise things can go wrong. In
your proof, you indicate this by going from “for some x, x € 4”
to “Let a € A.” Now you can reason about a, use some other hy-
potheses, etc., until you come to a conclusion, p. If p no longer
mentions a, p is independent of the asusmption that a € 4, and
you’ve shown that it follows just from the assumption “for some
x,x€A”



Proposition A.7. If A +# 0, then AU B # 0.

Proof. Suppose A # (0. So for some x, x € A.

Let a

Here we first just restated the hypothesis of the propo-
sition. This hypothesis, i.e., 4 # 0, hides an existen-
tial claim, which you get to only by unpacking a few
definitions. The definition of = tells us that 4 = 0 iff
every x € A is also € 0 and every x € 0 is also € A.
Negating both sides, we get: A4 # 0 iff either some
x € Ais ¢ 0 or some x € 0 is ¢ A. Since nothing is
€ 0, the second disjunct can never be true, and “x € 4
and x ¢ 0” reduces to just x € A. So x # 0 iff for some
x, x € A. That’s an existence claim. Now we use that
existence claim by introducing a name for one of the
elements of A:

e A.

Now we’ve introduced a name for one of the things €
A. We’ll continue to argue about a, but we’ll be care-
ful to only assume that @ € 4 and nothing else:

Since a € 4, a € AUB, by definition of U. So for some x, x € AUB,
ie, AUB # 0.

It’s maybe good practice to keep bound variables like

In that last step, we went from “a € 4 U B” to “for
some x, x € AUB.” That doesn’t mention a anymore,
so we know that “for some x, x € A U B” follows
from “for some x, x € 4 alone.” But that means that
AU B #0.

«,.»

x” sep-

O

arate from hypothetical names like a, like we did. In practice,
however, we often don’t and just use x, like so:

Suppose 4 # 0, i.e., there is an x € 4. By definition
of Uyx e AUB. So AUB # (.



However, when you do this, you have to be extra careful that
you use different x’s and y’s for different existential claims. For
instance, the following is not a correct proof of “If 4 # 0 and
B # () then AN B # 0” (which is not true).

Suppose 4 # 0 and B # 0. So for some x, x € 4
and also for some x, x € B. Since x € A and x € B,
x € AN B, by definition of N. So AN B # 0.

Can you spot where the incorrect step occurs and explain why
the result does not hold?

A.5 An Example

Our first example is the following simple fact about unions and in-
tersections of sets. It will illustrate unpacking definitions, proofs
of conjunctions, of universal claims, and proof by cases.

Proposition A.8. For any sets A, B, and C, AU (BN C) = (AU
B)Nn(4uU Q)

Let’s prove it!

Proof. We want to show that for any sets 4, B, and C, AU(BNC) =
(AUuB)N (AU C)

«_»

First we unpack the definition o in the statement
of the proposition. Recall that proving sets identical
means showing that the sets have the same elements.
That is, all elements of AU (BN C) are also elements
of (AUB)N (AU C), and vice versa. The “vice versa”
means that also every element of (4 U B) N (4U C)
must be an element of AU(BNC). So in unpacking the
definition, we see that we have to prove a conjunction.

Let’s record this:



By definition, AU (BN C) = (AU B) N (4U C) iff every element
of AU (BNC) is also an element of (AU B)N (AU C), and every
element of (AU B) N (AU C) is an element of 4 U (BN C).

Since this is a conjunction, we must prove each con-
junct separately. Lets start with the first: let’s prove
that every element of 4 U (B N C) is also an element
of (AUB)N (AU ().

This is a universal claim, and so we consider an ar-
bitrary element of 4U (B N C) and show that it must
also be an element of (AU B) N (4U C). We'll pick a
variable to call this arbitrary element by, say, z. Our
proof continues:

First, we prove that every element of AU(BNC) is also an element
of (AUB)N(AUC). Let z€ AU (BN C). We have to show that
z€ (AUB)N (AU Q).

Now it is time to unpack the definition of U and N.
For instance, the definition of U is: AU B = {z :
z € Aor z € B}. When we apply the definition to
“AU (BN C),” the role of the “B” in the definition
is now played by “B N C,” so AU (BNC) = {z:
z € Aorz € BN C}. So our assumption that z €
AU(BNC)amountsto: z€ {z:2z€ 4dor ze€e BNC}.
And z € {z:...z...}iff ...z ..., ie., in this case,
z€edAorzeBnC.

By the definition of U, either z € 4 or z € BN C.

Since this is a disjunction, it will be useful to apply
proof by cases. We take the two cases, and show that
in each one, the conclusion we’re aiming for (namely,

“2€ (AUB)N (AU C)”) obtains.

Case 1: Suppose that z € 4.



There’s not much more to work from based on our
assumptions. So let’s look at what we have to work
with in the conclusion. We want to show that z €
(AU B) N (AU C). Based on the definition of N, if
we want to show that z € (AU B) N (AU C), we have
to show that it’s in both (4 U B) and (4 U C). But
z€ AUBIff z € A or z € B, and we already have
(as the assumption of case 1) that z € 4. By the
same reasoning—switching C for B—z € 4UC. This
argument went in the reverse direction, so let’s record
our reasoning in the direction needed in our proof.

Since z € 4, z € A or z € B, and hence, by definition of U, z € 4U
B. Similarly, z € AU C. But this means that z € (AUB)N(4UC),
by definition of N.

This completes the first case of the proof by cases.
Now we want to derive the conclusion in the second
case, where z € BN C.

Case 2: Suppose that z € BN C.

Again, we are working with the intersection of two
sets. Let’s apply the definition of N:

Since z € BN C, z must be an element of both B and C, by
definition of N.

It’s time to look at our conclusion again. We have to
show that z is in both (AU B) and (AUC). And again,
the solution is immediate.

Since z € B, z € (AU B). Since z € C, also z € (4U C). So,
z€e (AUB)N (AU ().

Here we applied the definitions of U and N again,
but since we’ve already recalled those definitions, and
already showed that if z is in one of two sets it is in



their union, we don’t have to be as explicit in what
we’ve done.

We’ve completed the second case of the proof by
cases, so now we can assert our first conclusion.

So,if ze AU(BNC)thenze (AUB)N(4U Q).

Now we just want to show the other direction, that
every element of (AU B) N (4 U C) is an element of
AU (BN C). As before, we prove this universal claim
by assuming we have an arbitrary element of the first
set and show it must be in the second set. Let’s state
what we’re about to do.

Now, assume that z € (AU B) N (AU C). We want to show that
z€e AU(BNCQC).

We are now working from the hypothesis that z €
(AU B) N (AU C). It hopefully isn’t too confusing
that we’re using the same z here as in the first part
of the proof. When we finished that part, all the as-
sumptions we’ve made there are no longer in effect,
so now we can make new assumptions about what z
is. If that is confusing to you, just replace z with a
different variable in what follows.

We know that z is in both AU B and AU C, by defini-
tion of N. And by the definition of U, we can further
unpack this to: either z € 4 or z € B, and also either
z € Aor z € C. This looks like a proof by cases
again—except the “and” makes it confusing. You
might think that this amounts to there being three
possibilities: z is either in 4, B or C. But that would
be a mistake. We have to be careful, so let’s consider
each disjunction in turn.

By definition of N, 2 € AU B and z € 4 U C. By definition of U,
z € A or z € B. We distinguish cases.



Since we’re focusing on the first disjunction, we
haven’t gotten our second disjunction (from unpack-
ing AU C) yet. In fact, we don’t need it yet. The
first case is z € A, and an element of a set is also
an element of the union of that set with any other. So
case 1 is easy:

Case 1: Suppose that z € 4. It follows that z € AU (BN C).

Now for the second case, z € B. Here we’ll unpack
the second U and do another proof-by-cases:

Case 2: Suppose that z € B. Since z € 4 U C, either z € 4 or
z € C. We distinguish cases further:
Case 2a: z € A. Then, again, z € 4U (BN C).

Ok, this was a bit weird. We didn’t actually need the
assumption that z € B for this case, but that’s ok.

Case 2b: z € C. Then z € Band z € C, so z € BN C, and
consequently, z € 4U (BN C).

This concludes both proofs-by-cases and so we’re
done with the second half.

So,if ze (AUB)N(AUC) thenze AU (BN Q). O

A.6 Another Example
Proposition A.g9. IfAC C, then AU (C\ 4) = C.

Proof. Suppose that A C C. We want to show that AU(C\ 4) = C.

We begin by observing that this is a conditional state-
ment. It is tacitly universally quantified: the proposi-
tion holds for all sets 4 and C. So 4 and C are vari-
ables for arbitrary sets. To prove such a statement,
we assume the antecedent and prove the consequent.



We continue by using the assumption that 4 C C.
Let’s unpack the definition of C: the assumption
means that all elements of 4 are also elements of C.
Let’s write this down—it’s an important fact that we’ll
use throughout the proof.

By the definition of C, since 4 C C, for all z, if z € 4, then z € C.

We’ve unpacked all the definitions that are given to
us in the assumption. Now we can move onto the
conclusion. We want to show that 4 U (C \ 4) = C,
and so we set up a proof similarly to the last example:
we show that every element of AU (C \ 4) is also
an element of C and, conversely, every element of C
is an element of AU (C \ 4A). We can shorten this to:
AU(C\A) C Cand C C AU (C\ 4). (Here we're
doing the opposite of unpacking a definition, but it
makes the proof a bit easier to read.) Since this is a
conjunction, we have to prove both parts. To show the
first part, i.e., that every element of AU (C\ 4) is also
an element of C, we assume that z € AU (C \ 4) for
an arbitrary z and show that z € C. By the definition
of U, we can conclude that z € 4 or z € C \ 4 from
z€ AU (C\ 4). You should now be getting the hang
of this.

AU(C\NA) =Cif AU(C\A) S Cand C S (AU (C\ 4). First
we prove that AU (C \ 4) € C. Let z € AU (C \ 4). So, either
zeAorze (C\A).

We’ve arrived at a disjunction, and from it we want
to prove that z € C. We do this using proof by cases.

Case 1: z € A. Since for all z, if z € 4, z € C, we have that z € C.

Here we’ve used the fact recorded earlier which fol-
lowed from the hypothesis of the proposition that
A € C. The first case is complete, and we turn to



the second case, z € (C \ 4). Recall that C \ 4 de-
notes the difference of the two sets, i.e., the set of all
elements of C which are not elements of 4. But any
element of C not in 4 is in particular an element of C.

Case 2: z € (C \ A). This means that z € C and z ¢ 4. So, in
particular, z € C.

Great, we’ve proved the first direction. Now for the
second direction. Here we prove that C € AU (C\ 4).
So we assume that z € C and prove that z € 4U (C'\
A).

Now let z € C. We want to show that z € Aor z € C \ A.

Since all elements of 4 are also elements of C, and
C\ A is the set of all things that are elements of C but
not A, it follows that z is either in 4 or in C \ 4. This
may be a bit unclear if you don’t already know why
the result is true. It would be better to prove it step-
by-step. It will help to use a simple fact which we can
state without proof: z € 4 or z ¢ A. This is called the
“principle of excluded middle:” for any statement p,
either p is true or its negation is true. (Here, p is the
statement that z € 4.) Since this is a disjunction, we
can again use proof-by-cases.

Either z € 4 or z ¢ A. In the former case, z € AU (C \ 4). In the
latter case, z € Cand z ¢ 4,s0 2z € C\A. But then z € AU(C\ A).

Our proof is complete: we have shown that 4 U (C \
A) =C. O

A.7 Proof by Contradiction

In the first instance, proof by contradiction is an inference pat-
tern that is used to prove negative claims. Suppose you want to



show that some claim p is false, i.e., you want to show —p. The
most promising strategy is to (a) suppose that p is true, and (b)
show that this assumption leads to something you know to be
false. “Something known to be false” may be a result that con-
flicts with—contradicts—p itself, or some other hypothesis of the
overall claim you are considering. For instance, a proof of “if ¢
then —p” involves assuming that ¢ is true and proving —p from
it. If you prove —p by contradiction, that means assuming p in
addition to ¢. If you can prove —¢ from p, you have shown that
the assumption p leads to something that contradicts your other
assumption ¢, since ¢ and —¢ cannot both be true. Of course,
you have to use other inference patterns in your proof of the con-
tradiction, as well as unpacking definitions. Let’s consider an
example.

Proposition A.10. IfA C B and B = 0, then A has no elements.

Proof Suppose A C B and B = (. We want to show that 4 has
no elements.

Since this is a conditional claim, we assume the an-
tecedent and want to prove the consequent. The con-
sequent is: 4 has no elements. We can make that a bit
more explicit: it’s not the case that there is an x € 4.

A has no elements iff it’s not the case that there is an x such that
x € A.

So we’ve determined that what we want to prove is
really a negative claim —p, namely: it’s not the case
that there is an x € 4. To use proof by contradic-
tion, we have to assume the corresponding positive
claim p, i.e., there is an x € 4, and prove a contra-
diction from it. We indicate that we’re doing a proof
by contradiction by writing “by way of contradiction,
assume” or even just “suppose not,” and then state
the assumption p.



Suppose not: there is an x € 4.

This is now the new assumption we’ll use to obtain a
contradiction. We have two more assumptions: that
A C B and that B = (. The first gives us that x € B:

Since A C B, x € B.

But since B = 0, every element of B (e.g., x) must
also be an element of 0.

Since B = 0, x € 0. This is a contradiction, since by definition 0
has no elements.

This already completes the proof: we’ve arrived at
what we need (a contradiction) from the assumptions
we’ve set up, and this means that the assumptions
can’t all be true. Since the first two assumptions (4 C
B and B = () are not contested, it must be the last
assumption introduced (there is an x € A4) that must
be false. But if we want to be thorough, we can spell
this out.

Thus, our assumption that there is an x € 4 must be false, hence,
4 has no elements by proof by contradiction. |

Every positive claim is trivially equivalent to a negative claim:
p iff =—p. So proofs by contradiction can also be used to establish
positive claims “indirectly,” as follows: To prove p, read it as the
negative claim ——p. If we can prove a contradiction from —p,
we’ve established ——p by proof by contradiction, and hence p.

In the last example, we aimed to prove a negative claim,
namely that 4 has no elements, and so the assumption we made
for the purpose of proof by contradiction (i.e., that there is an
x € A) was a positive claim. It gave us something to work with,
namely the hypothetical x € 4 about which we continued to rea-
son until we got to x € 0.



When proving a positive claim indirectly, the assumption
youd make for the purpose of proof by contradiction would be
negative. But very often you can easily reformulate a positive
claim as a negative claim, and a negative claim as a positive
claim. Our previous proof would have been essentially the same
had we proved “4 = 0” instead of the negative consequent “4
has no elements.” (By definition of =, “4 = 0” is a general claim,
since it unpacks to “every element of 4 is an element of @ and
vice versa”.) But it is easily seen to be equivalent to the negative
claim “not: there is an x € 4.”

So it is sometimes easier to work with —p as an assumption
than it is to prove p directly. Even when a direct proof is just
as simple or even simpler (as in the next example), some people
prefer to proceed indirectly. If the double negation confuses you,
think of a proof by contradiction of some claim as a proof of a
contradiction from the opposite claim. So, a proof by contradic-
tion of —p is a proof of a contradiction from the assumption p; and
proof by contradiction of p is a proof of a contradiction from —p.

Proposition A.11. 4 C AU B.

Proof- We want to show that 4 C AU B.

On the face of it, this is a positive claim: every x € 4
is also in 4 U B. The negation of that is: some x €
Ais ¢ AU B. So we can prove the claim indirectly
by assuming this negated claim, and showing that it
leads to a contradiction.

Suppose not, i.e., 4 £ AU B.

We have a definition of 4 € 4 U B: every x € A4 is
also € AU B. To understand what A ¢ A U B means,
we have to use some elementary logical manipulation
on the unpacked definition: it’s false that every x € 4
is also € AU B iff there is some x € A that is ¢ C.
(This is a place where you want to be very careful:



many students’ attempted proofs by contradiction fail
because they analyze the negation of a claim like “all
As are Bs” incorrectly.) In other words, 4 € AU B iff
there is an x such that x € 4 and x ¢ 4 U B. From
then on, it’s easy.

So, there is an x € A4 such that x ¢ 4 U B. By definition of U,
x € AUBiff x € A or x € B. Since x € A, we have x € AU B.
This contradicts the assumption that x ¢ AU B. m|

Proposition A.12. IfAC B and BC C then AC C.

Proof. Suppose A C B and B C C. We want to show 4 C C.

Let’s proceed indirectly: we assume the negation of
what we want to etablish.

Suppose not, i.e., 4 £ C.

As before, we reason that 4 ¢ C iff not every x € 4
is also € C, i.e.,, some x € 4is ¢ C. Don’t worry,
with practice you won’t have to think hard anymore
to unpack negations like this.

In other words, there is an x such that x € 4 and x ¢ C.

Now we can use this to get to our contradiction. Of
course, we’ll have to use the other two assumptions
to do it.

Since A C B, x € B. Since B C C, x € C. But this contradicts
x¢C. O



Proposition A.13. [fAUB =ANB then A=B.

Proof. Suppose AU B = AN B. We want to show that 4 = B.
The beginning is now routine:
Assume, by way of contradiction, that 4 # B.

Our assumption for the proof by contradiction is that
A # B. Since A= Biff AC B an B C A, we get that
A+ Biff AZ B or B £ A. (Note how important it is
to be careful when manipulating negations!) To prove
a contradiction from this disjunction, we use a proof
by cases and show that in each case, a contradiction
follows.

A+ Bift AZ B or B ¢ A. We distinguish cases.

In the first case, we assume A ¢ B, i.e., for some x,
x € Abut ¢ B. AN B is defined as those elements
that 4 and B have in common, so if something isn’t
in one of them, it’s not in the intersection. 4 U B is
4 together with B, so anything in either is also in the
union. This tells us that x € AUB but x ¢ AN B, and
hence that AN B # BN A.

Case 1: A ¢ B. Then for some x, x € A but x ¢ B. Since
x¢ B,thenx ¢ ANB. Since x € A, x € AUB. So, ANB # BN A,
contradicting the assumption that AN B =4 U B.

Case 2: B ¢ A. Then for some y, y € B but y ¢ A. As before,
we have y € AUBbut y ¢ AN B, and so AN B # AU B, again
contradicting AN B =AU B. O

A.8 Reading Proofs

Proofs you find in textbooks and articles very seldom give all the
details we have so far included in our examples. Authors often



do not draw attention to when they distinguish cases, when they
give an indirect proof, or don’t mention that they use a definition.
So when you read a proof in a textbook, you will often have to
fill in those details for yourself in order to understand the proof.
Doing this is also good practice to get the hang of the various
moves you have to make in a proof. Let’s look at an example.

Proposition A.14 (Absorption). For all sets A, B,
AN (AUB)=4

Proof If 2z € AN (AU B), then z € 4, so AN (AU B) C A.
Now suppose z € A. Then also 2z € AU B, and therefore also
z€e AN(AU B). O

The preceding proof of the absorption law is very condensed.
There is no mention of any definitions used, no “we have to prove
that” before we prove it, etc. Let’s unpack it. The proposition
proved is a general claim about any sets 4 and B, and when the
proof mentions 4 or B, these are variables for arbitrary sets. The
general claims the proof establishes is what’s required to prove
identity of sets, i.e., that every element of the left side of the
identity is an element of the right and vice versa.

“fze AN(AUB),thenze€ A, so AN(AUB) C A.”

This is the first half of the proof of the identity: it estabishes
that if an arbitrary z is an element of the left side, it is also
an element of the right, i.e., AN (4 U B) C A. Assume that
z € AN (AU B). Since z is an element of the intersection of two
sets iff it is an element of both sets, we can conclude that z € 4
and also z € AU B. In particular, z € 4, which is what we wanted
to show. Since that’s all that has to be done for the first half, we
know that the rest of the proof must be a proof of the second half,
i.e., a proof that A € AN (4 U B).

“Now suppose z € A. Then also z € AU B, and
therefore also z € AN (AU B).”



We start by assuming that z € 4, since we are showing that,
forany z, if z € A then z € AN(AUB). To show that z € AN(AUB),
we have to show (by definition of “N”) that (i) z € 4 and also (ii)
z € AU B. Here (i) is just our assumption, so there is nothing
further to prove, and that’s why the proof does not mention it
again. For (ii), recall that z is an element of a union of sets
iff it is an element of at least one of those sets. Since z € A4,
and A U B is the union of 4 and B, this is the case here. So
z € AU B. We've shown both (i) z € 4 and (ii) z € AU B, hence,
by definition of “N,” 2 € AN (AU B). The proof doesn’t mention
those definitions; it’s assumed the reader has already internalized
them. If you haven’t, you’ll have to go back and remind yourself
what they are. Then you’ll also have to recognize why it follows
from z € A that 2z € AU B, and from z € 4 and z € AU B that
z€e AN(AU B).

Here’s another version of the proof above, with everything
made explicit:

Proof. [By definition of = for sets, AN (AU B) = A we have to show
(@) AN(AUB) C Aand (b) AN (AU B) C A. (a): By definition
of C, we have to show that if z € AN (4 U B), then z € A.] If
z € AN(AUB), then z € A [since by definition of N, z € AN(AUB)
iff ze Aand 2z € AUB],s0 AN (AU B) C A. [(b): By definition
of C, we have to show that if z € 4, then z € AN (4 U B).] Now
suppose [(1)] z € A. Then also [(2)] z € AU B [since by (1) z € 4
or z € B, which by definition of U means z € AU B], and therefore
also z € AN (AU B) [since the definition of N requires that z € 4,
ie, (1), and z € AU B), i.e, (2)]. O

A.9 ICarn’t Do It!

We all get to a point where we feel like giving up. But you caz do
it. Your instructor and teaching assistant, as well as your fellow
students, can help. Ask them for help! Here are a few tips to help
you avoid a crisis, and what to do if you feel like giving up.



To make sure you can solve problems successfully, do the fol-
lowing:

1. Start as far in advance as possible. We get busy throughout
the semester and many of us struggle with procrastination,
one of the best things you can do is to start your homework
assignments early. That way;, if you’re stuck, you have time
to look for a solution (that isn’t crying).

2. Talk to your classmates. You are not alone. Others in the
class may also struggle—but the may struggle with differ-
ent things. Talking it out with your peers can give you
a different perspective on the problem that might lead to
a breakthrough. Of course, don’t just copy their solution:
ask them for a hint, or explain where you get stuck and ask
them for the next step. And when you do get it, recipro-
cate. Helping someone else along, and explaining things
will help you understand better, too.

3. Ask for help. You have many resources available to you—
your instructor and teaching assistant are there for you
and want you to succeed. They should be able to help
you work out a problem and identify where in the process
you're struggling.

4. Take a break. If you're stuck, it might be because you’ve been
staring at the problem for too long. Take a short break,
have a cup of tea, or work on a different problem for a
while, then return to the problem with a fresh mind. Sleep
on it.

Notice how these strategies require that you’ve started to work
on the proof well in advance? If you’ve started the proof at 2am
the day before it’s due, these might not be so helpful.

This might sound like doom and gloom, but solving a proof
is a challenge that pays off in the end. Some people do this as
a career—so there must be something to enjoy about it. Like



basically everything, solving problems and doing proofs is some-
thing that requires practice. You might see classmates who find
this easy: they’ve probably just had lots of practice already. Try
not to give in too easily.

If you do run out of time (or patience) on a particular prob-
lem: that’s ok. It doesn’t mean you’re stupid or that you will never
get it. Find out (from your instructor or another student) how it
is done, and identify where you went wrong or got stuck, so you
can avoid doing that the next time you encounter a similar issue.
Then try to do it without looking at the solution. And next time,
start (and ask for help) earlier.

A.10 Other Resources

There are many books on how to do proofs in mathematics which
may be useful. Check out How to Read and do Proofs: An Intro-
duction to Mathematical Thought Processes (Solow, 2013) and How
to Prove It: A Structured Approach (Velleman, 2019) in particular.
The Book of Proof (Hammack, 2013) and Mathematical Reasoning
(Sandstrum, 2019g) are books on proof that are freely available
online. Philosophers might find More Precisely: The Math you need
to do Philosophy (Steinhart, 2018) to be a good primer on mathe-
matical reasoning.

There are also various shorter guides to proofs available on
the internet; e.g., “Introduction to Mathematical Arguments”
(Hutchings, 2003) and “How to write proofs” (Cheng, 2004).

Motivational Videos

Feel like you have no motivation to do your homework? Feeling
down? These videos might help!

e https://www.youtube.com/watch?v=ZXsQAXx_ao0
e https://www.youtube.com/watch?v=BQ4yd2W50No

e https://www.youtube.com/watch?v=StTqXEQ21-Y


http://www.people.vcu.edu/~rhammack/BookOfProof/BookOfProof.pdf
https://scholarworks.gvsu.edu/books/7/
https://math.berkeley.edu/~hutching/teach/proofs.pdf
http://http://eugeniacheng.com/wp-content/uploads/2017/02/cheng-proofguide.pdf
https://www.youtube.com/watch?v=ZXsQAXx_ao0
https://www.youtube.com/watch?v=BQ4yd2W50No
https://www.youtube.com/watch?v=StTqXEQ2l-Y

Problems

Problem A.1. Suppose you are asked to prove that AN B +# 0.
Unpack all the definitions occuring here, i.e., restate this in a way
that does not mention “N”, “=”, or “0.

Problem A.2. Prove indirectly that AN B C A.

Problem A.3. Expand the following proof of 4 U (4N B) = 4,
where you mention all the inference patterns used, why each step
follows from assumptions or claims established before it, and
where we have to appeal to which definitions.

Proof f z€¢ AU(ANB)thenze Aorze ANB. If z€ ANB,
z€A. Any z € Ais also € AU (4N B). O



APPENDIX B

B.1 Introduction

Induction is an important proof technique which is used, in dif-
ferent forms, in almost all areas of logic, theoretical computer
science, and mathematics. It is needed to prove many of the re-
sults in logic.

Induction is often contrasted with deduction, and character-
ized as the inference from the particular to the general. For in-
stance, if we observe many green emeralds, and nothing that we
would call an emerald that’s not green, we might conclude that
all emeralds are green. This is an inductive inference, in that it
proceeds from many particlar cases (this emerald is green, that
emerald is green, etc.) to a general claim (all emeralds are green).
Mathematical induction is also an inference that concludes a gen-
eral claim, but it is of a very different kind that this “simple in-
duction.”

Very roughly, an inductive proof in mathematics concludes
that all mathematical objects of a certain sort have a certain prop-
erty. In the simplest case, the mathematical objects an inductive
proof is concerned with are natural numbers. In that case an in-
ductive proof is used to establish that all natural numbers have
some property, and it does this by showing that

1. 0 has the property, and (2)
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2. whenever a number £ has the property, so does £ + 1.

Induction on natural numbers can then also often be used to
prove general about mathematical objects that can be assigned
numbers. For instance, finite sets each have a finite number zn of
elements, and if we can use induction to show that every num-
ber n has the property “all finite sets of size n are ...” then we
will have shown something about all finite sets.

Induction can also be generalized to mathematical objects
that are inductively defined. For instance, expressions of a formal
language such as those of first-order logic are defined inductively.
Structural induction is a way to prove results about all such expres-
sions. Structural induction, in particular, is very useful—and
widely used—in logic.

B.2 Induction on N

In its simplest form, induction is a technique used to prove results
for all natural numbers. It uses the fact that by starting from 0
and repeatedly adding 1 we eventually reach every natural num-
ber. So to prove that something is true for every number, we can
(1) establish that it is true for 0 and (2) show that whenever it is
true for a number =, it is also true for the next number n+1. If we
abbreviate “number 7z has property P” by P(n) (and “number £
has property P” by P(k), etc.), then a proof by induction that
P(n) for all n € N consists of:

1. a proof of P(0), and
2. a proof that, for any £, if P(k) then P(k +1).

To make this crystal clear, suppose we have both (1) and (2).
Then (1) tells us that P(0) is true. If we also have (2), we know
in particular that if P(0) then P(0+1), i.e.,, P(1). This follows
from the general statement “for any £, if P(k) then P(k +1)” by
putting O for £. So by modus ponens, we have that P(1). From (2)
again, now taking 1 for n, we have: if P(1) then P(2). Since we’ve



just established P (1), by modus ponens, we have P(2). And so
on. For any number z, after doing this n times, we eventually
arrive at P(n). So (1) and (2) together establish P(n) for any
n € N.

Let’s look at an example. Suppose we want to find out how
many different sums we can throw with z dice. Although it might
seem silly, let’s start with O dice. If you have no dice there’s only
one possible sum you can “throw”: no dots at all, which sums
to 0. So the number of different possible throws is 1. If you have
only one die, i.e., n = 1, there are six possible values, 1 through 6.
With two dice, we can throw any sum from 2 through 12, that’s 11
possibilities. With three dice, we can throw any number from 3 to
18, i.e., 16 different possibilities. 1, 6, 11, 16: looks like a pattern:
maybe the answer is 5z +1? Of course, 5n + 1 is the maximum
possible, because there are only 5z + 1 numbers between #, the
lowest value you can throw with z dice (all 1’s) and 6z, the highest
you can throw (all 6’s).

Theorem B.1. With n dice one can throw all 5n + 1 possible values
between n and 6n.

Proof. Let P(n) be the claim: “It is possible to throw any number
between n and 62 using n dice.” To use induction, we prove:

1. The induction basis P(1), i.e., with just one die, you can
throw any number between 1 and 6.

2. The induction step, for all k, if P(k) then P(k +1).

(1) Is proved by inspecting a 6-sided die. It has all 6 sides,
and every number between 1 and 6 shows up one on of the sides.
So it is possible to throw any number between 1 and 6 using a
single die.

To prove (2), we assume the antecedent of the conditional,
i.e., P(k). This assumption is called the inductive hypothesis. We
use it to prove P(k+1). The hard part is to find a way of thinking
about the possible values of a throw of £ +1 dice in terms of the



possible values of throws of £ dice plus of throws of the extra
k +1-st die—this is what we have to do, though, if we want to use
the inductive hypothesis.

The inductive hypothesis says we can get any number between
k and 6k using £ dice. If we throw a 1 with our (£ +1)-st die, this
adds 1 to the total. So we can throw any value between £ +1 and
6k + 1 by throwing 5 dice and then rolling a 1 with the (£ +1)-st
die. What’s left? The values 6& + 2 through 6% + 6. We can get
these by rolling £ 6s and then a number between 2 and 6 with
our (k +1)-st die. Together, this means that with £ +1 dice we
can throw any of the numbers between £ +1 and 6(£ + 1), i.e.,
we’ve proved P(k + 1) using the assumption P(k), the inductive
hypothesis. o

Very often we use induction when we want to prove something
about a series of objects (numbers, sets, etc.) that is itself defined
“inductively,” i.e., by defining the (n+1)-st object in terms of the z-
th. For instance, we can define the sum s, of the natural numbers
up to n by

S()=O

Sit1 = sp+ (n+1)

This definition gives:

so =0,

81=S()+1 =1,

So =51 +2 =1+2=3

3= +3 =1+2+3 =06, etc.

Now we can prove, by induction, that s, = n(n +1)/2.
Proposition B.2. 5, = n(n+1)/2.

Proof. We have to prove (1) that sp = 0- (0 +1)/2 and (2) if
sg = k(k+1)/2 then sz, = (E+1)(k+2)/2. (1) is obvious. To



prove (2), we assume the inductive hypothesis: s; = k(k +1)/2.
Using it, we have to show that sz, = (K +1)(k +2)/2.

What is sz1? By the definition, sz = s¢ + (£ +1). By in-
ductive hypothesis, s = £(k +1)/2. We can substitute this into
the previous equation, and then just need a bit of arithmetic of
fractions:

s = SEED 4 (kv1) =
_k(k+1)  2(k+1)
= 5 + 7 =
_k(E+1)+2(k+1)
= 5 =
_(k+2)(k+1)
_f.

O

The important lesson here is that if you’re proving something
about some inductively defined sequence a,, induction is the ob-
vious way to go. And even if it isn’t (as in the case of the possibil-
ities of dice throws), you can use induction if you can somehow
relate the case for £ + 1 to the case for £.

B.3 Strong Induction

In the principle of induction discussed above, we prove P(0) and
also if P(k), then P(k +1). In the second part, we assume that
P(k) is true and use this assumption to prove P(k +1). Equiva-
lently, of course, we could assume P(k — 1) and use it to prove
P(k)—the important part is that we be able to carry out the in-
ference from any number to its successor; that we can prove the
claim in question for any number under the assumption it holds
for its predecessor.

There is a variant of the principle of induction in which we
don’t just assume that the claim holds for the predecessor £ — 1
of k, but for all numbers smaller than k£, and use this assump-
tion to establish the claim for £. This also gives us the claim
P(n) for all n € N. For once we have established P(0), we have



thereby established that P holds for all numbers less than 1. And
if we know that if P(/) for all [ < k, then P(k), we know this
in particular for £ = 1. So we can conclude P(1). With this we
have proved P(0) and P(1), i.e., P(l) for all [ < 2, and since we
have also the conditional, if P(/) for all / < 2, then P(2), we can
conclude P(2), and so on.

In fact, if we can establish the general conditional “for all £,
if P(l) for all [/ < k, then P(k),” we do not have to establish P(0)
anymore, since it follows from it. For remember that a general
claim like “for all [/ < k, P(l)” is true if there are no / < k. This
is a case of vacuous quantification: “all 4s are Bs” is true if there
are no A4s, Vx (A(x) — B(x)) is true if no x satisfies A(x). In this
case, the formalized version would be “VI (I < £ — P(l))”—and
that is true if there are no / < k. And if £ = 0 that’s exactly the
case: no [ < 0, hence “for all / < 0, P(0)” is true, whatever P is.
A proof of “if P(l) for all / < k, then P(k)” thus automatically
establishes P(0).

This variant is useful if establishing the claim for £ can’t be
made to just rely on the claim for £ — 1 but may require the
assumption that it is true for one or more / < k.

B.4 Inductive Definitions

In logic we very often define kinds of objects inductively, i.e., by
specifying rules for what counts as an object of the kind to be
defined which explain how to get new objects of that kind from
old objects of that kind. For instance, we often define special
kinds of sequences of symbols, such as the terms and formulas of
a language, by induction. For a simple example, consider strings
of consisting of letters a, b, ¢, d, the symbol o, and brackets [ and
], such as “[[cod][”, “[a[]e]”, “a” or “[[acb] od]”. You probably
feel that there’s something “wrong” with the first two strings: the
brackets don’t “balance” at all in the first, and you might feel that
the “o” should “connect” expressions that themselves make sense.
The third and fourth string look better: for every “[” there’s a



closing “]” (if there are any at all), and for any o we can find “nice”
expressions on either side, surrounded by a pair of parentheses.

We would like to precisely specify what counts as a “nice
term.” First of all, every letter by itself is nice. Anything that’s
not just a letter by itself should be of the form “[¢ o 5]” where s
and ¢ are themselves nice. Conversely, if ¢ and s are nice, then we
can form a new nice term by putting a o between them and sur-
round them by a pair of brackets. We might use these operations
to define the set of nice terms. This is an inductive definition.

Definition B.3 (Nice terms). The set of nice terms is inductively
defined as follows:

1. Any letter a, b, c, d is a nice term.
2. If 57 and s9 are nice terms, then so is [s1 o 59].

3. Nothing else is a nice term.

This definition tells us that something counts as a nice term iff
it can be constructed according to the two conditions (1) and (2)
in some finite number of steps. In the first step, we construct all
nice terms just consisting of letters by themselves, i.e.,

a,b,c,d

In the second step, we apply (2) to the terms we’ve constructed.
We'll get
[acal,[aob],[boal,....[dod]

for all combinations of two letters. In the third step, we apply
(2) again, to any two nice terms we’ve constructed so far. We get
new nice term such as [ao [aca]]—where ¢ is a from step 1 and s
is [aca] from step 2—and [[boc] o [dob]] constructed out of the
two terms [b o c] and [d o b] from step 2. And so on. Clause (3)
rules out that anything not constructed in this way sneaks into
the set of nice terms.



Note that we have not yet proved that every sequence of sym-
bols that “feels” nice is nice according to this definition. However,
it should be clear that everything we can construct does in fact
“feel nice”: brackets are balanced, and o connects parts that are
themselves nice.

The key feature of inductive definitions is that if you want
to prove something about all nice terms, the definition tells you
which cases you must consider. For instance, if you are told that
¢ is a nice term, the inductive definition tells you what ¢ can look
like: ¢ can be a letter, or it can be [s1 o s9] for some pair of
nice terms s; and sy. Because of clause (3), those are the only
possibilities.

When proving claims about all of an inductively defined set,
the strong form of induction becomes particularly important. For
instance, suppose we want to prove that for every nice term of
length z, the number of [ in it is < #/2. This can be seen as a
claim about all z: for every z, the number of [ in any nice term
of length n is < n/2.

Proposition B.4. Foranyn, the number of | in a nice term of length n
is<mn/2.

Proof. To prove this result by (strong) induction, we have to show
that the following conditional claim is true:

If for every [ < k, any nice term of length / has //2
[’s, then any nice term of length £ has £/2 [’s.

To show this conditional, assume that its antecedent is true, i.e.,
assume that for any / < £, nice terms of length / contain < //2
[’s. We call this assumption the inductive hypothesis. We want
to show the same is true for nice terms of length £.

So suppose ¢ is a nice term of length £. Because nice terms
are inductively defined, we have two cases: (1) ¢ is a letter by
itself, or (2) ¢ is [s1 o so] for some nice terms s; and so.

1. ¢ is a letter. Then £ = 1, and the number of [ in ¢ is 0.
Since 0 < 1/2, the claim holds.



2. t1is [s1059] for some nice terms s; and so. Let’s let /; be the
length of s; and /y be the length of so. Then the length £ of
tis 1 + o + 3 (the lengths of s; and sy plus three symbols
[, o, ]). Since /; + [y + 3 is always greater than /1, /; < k.
Similarly, /; < n. That means that the induction hypothesis
applies to the terms s; and so: the number m; of [ in s is
< [1/2, and the number my of [ in sy is < lo/2.

The number of [ in ¢ is the number of [ in s;, plus the
number of [ in sp, plus 1, i.e., it is m; + mg + 1. Since
m1 < [1/2 and m9 < ly/2 we have:

lQ _ll+lg+2 ll+l—2+3

[
m1+m2+1<§1+§+1 9 < 5

- k/2.

In each case, we’ve shown that the number of [ in ¢ is < £/2 (on
the basis of the inductive hypothesis). By strong induction, the
proposition follows. |

B.5 Structural Induction

So far we have used induction to establish results about all natural
numbers. But a corresponding principle can be used directly to
prove results about all elements of an inductively defined set.
This often called structural induction, because it depends on the
structure of the inductively defined objects.

Generally, an inductive definition is given by (a) a list of “ini-
tial” elements of the set and (b) a list of operations which produce
new elements of the set from old ones. In the case of nice terms,
for instance, the initial objects are the letters. We only have one
operation: the operations are

0(s1,89) =[s1 0 59]

You can even think of the natural numbers N themselves as being
given be an inductive definition: the initial object is 0, and the
operation is the successor function x + 1.



In order to prove something about all elements of an induc-
tively defined set, i.e., that every element of the set has a prop-
erty P, we must:

1. Prove that the initial objects have P

2. Prove that for each operation o, if the arguments have P,
so does the result.

For instance, in order to prove something about all nice terms,
we would prove that it is true about all letters, and that it is true
about [s1 o s9] provided it is true of s; and sy individually.

Proposition B.5. The number of | equals the number of | in any nice
term t.

Proof- We use structural induction. Nice terms are inductively
defined, with letters as initial objects and the operations o for
constructing new nice terms out of old ones.

1. The claim is true for every letter, since the number of [ in
a letter by itself is 0 and the number of | in it is also 0.

2. Suppose the number of [ in s; equals the number of |, and
the same is true for s9. The number of [ in o(s1,59), i.e., in
[s1 © so], is the sum of the number of [ in s; and s9. The
number of | in o(s1,s9) is the sum of the number of | in s
and sg. Thus, the number of [ in o(s1,s2) equals the number
of | in o(s1,59). m|

Let’s give another proof by structural induction: a proper
initial segment of a string ¢ of symbols is any string s that agrees
with ¢ symbol by symbol, read from the left, but ¢ is longer. So,
e.g., [a o is a proper initial segment of [a o 4], but neither are
[6 o (they disagree at the second symbol) nor [a o ] (they are
the same length).



Proposition B.6. Every proper initial segment of a nice term ¢ has
more s than | ’s.

Proof. By induction on ¢:

1. tis a letter by itself: Then ¢ has no proper initial segments.

2. t = [s1 o s9] for some nice terms s; and sg. If r is a proper
initial segment of ¢, there are a number of possibilities:

a)
b)

7 is just [: Then r has one more [ than it does ].

r is [r; where 71 is a proper initial segment of s;: Since
s1 is a nice term, by induction hypothesis, r; has more
[ than ] and the same is true for [r;.

r is [s1 or [s1 o: By the previous result, the number
of [ and | in s; are equal; so the number of [ in [s; or
[s1 o is one more than the number of ].

r is [s1 o 1o where 79 is a proper initial segment of so:
By induction hypothesis, o contains more [ than ]. By
the previous result, the number of [ and of | in s; are
equal. So the number of [ in [s; o ry is greater than
the number of |.

7 is [s1 o so: By the previous result, the number of [
and ] in s1 are equal, and the same for s. So there is
one more [ in [s1 o 5o than there are ]. O

B.6 Relations and Functions

When we have defined a set of objects (such as the natural num-
bers or the nice terms) inductively, we can also define relations on
these objects by induction. For instance, consider the following
idea: a nice term # is a subterm of a nice term &y if it occurs as
a part of it. Let’s use a symbol for it: #; C #. Every nice term

is a subterm of itself, of course: ¢ C . We can give an inductive
definition of this relation as follows:



Definition B.7. The relation of a nice term ¢; being a subterm
of &, t1 C 1y, is defined by induction on ¢, as follows:

1. If # is a letter, then #; C & iff 41 = &o.

o. If tyis [sp 0 s9], then ty C &y iff t = 49, {; T 51, or £ C 9.

This definition, for instance, will tell us that a C [b o a]. For
(2) saysthat aC [boa] iffa=[boa],oraE b, oraC a. The
first two are false: a clearly isn’t identical to [b o a], and by (1),
a C b iff a = b, which is also false. However, also by (1), a C a iff
a = a, which is true.

It’s important to note that the success of this definition de-
pends on a fact that we haven’t proved yet: every nice term ¢ is
either a letter by itself, or there are uniquely determined nice terms
s1 and s such that ¢ = [s1 0 s9]. “Uniquely determined” here
means that if £ = [s1 o so] it isn’t also = [r; o ro] with sy # r; or
so # r9. If this were the case, then clause (2) may come in conflict
with itself: reading # as [s; o so] we might get #; T &, but if we
read #y as [r] o r9] we might get not #; E #. Before we prove that
this can’t happen, let’s look at an example where it can happen.

Definition B.8. Define bracketless terms inductively by
1. Every letter is a bracketless term.

2. If 51 and sy are bracketless terms, then sy 059 is a bracketless
term.

3. Nothing else is a bracketless term.

Bracketless terms are, e.g., a, bod, boaob. Now if we defined
“subterm” for bracketless terms the way we did above, the second
clause would read

If t9 =51 059, then 1 C &y iff &7 = £y, {1 C s1, or #1 C s9.



Now b oaobis of the form s o 59 with
s1 =b and s9=aob.
It is also of the form r{ o ry with

r1=boaand r9 = b.

Now is aob a subterm of boaob? The answer is yes if we go by
the first reading, and no if we go by the second.

The property that the way a nice term is built up from other
nice terms is unique is called unique readability. Since inductive
definitions of relations for such inductively defined objects are
important, we have to prove that it holds.

Proposition B.9. Suppose t is a nice term. Then either t is a letter
by itself, or there are uniquely determined nice terms s1, so such that t =
[s1 0 52].

Proof. 1f ¢t is a letter by itself, the condition is satisfied. So assume
¢ isn’t a letter by itself. We can tell from the inductive definition
that then ¢ must be of the form [s; o s9] for some nice terms s;
and sy. It remains to show that these are uniquely determined,
ie, if £ = [ry or], then s; = r; and s9 = 7o.

So suppose ¢ = [s1 0s52] and also ¢ = [r] o r9] for nice terms s,
59, 11, 7o. We have to show that s; = r; and sy = ro. First, s; and r;
must be identical, for otherwise one is a proper initial segment of
the other. But by Proposition B.6, that is impossible if s; and r
are both nice terms. But if s; = 7, then clearly also s3 = r9. O

We can also define functions inductively: e.g., we can define
the function f that maps any nice term to the maximum depth
of nested [...] in it as follows:



Definition B.10. The depth of a nice term, f(¢), is defined in-
ductively as follows:

0 if ¢ is a letter
f()= e
max(f(s1),f(s2)) +1 if £ = [51059].

For instance
f([aob]) =max(f(a),f(b))+1=

=max(0,0) +1 =1, and

max(f ([acb]),f(c)) +1=
=max(1,0) +1=2.

f([laob]oc])

Here, of course, we assume that s; an sy are nice terms, and
make use of the fact that every nice term is either a letter or of
the form [s; o so]. It is again important that it can be of this form
in only one way. To see why, consider again the bracketless terms
we defined earlier. The corresponding “definition” would be:

if ¢ is a letter

¢ {max(g(s)’g(s')) +1 it =[s105]

Now consider the bracketless term aob o cod. It can be read in
more than one way, e.g., as s1 o 53 with

s1 =aand s9=bocod,
or as ry o r9 with
r1=aoband ro=cod.
Calculating g according to the first way of reading it would give

g(s105) =max(g(a),g(bocod))+1=
=max(0,2)+1=3



while according to the other reading we get
g(rpor) =max(g(aob),g(cod))+1=

=max(1,1)+1=2

But a function must always yield a unique value; so our “defini-
tion” of g doesn’t define a function at all.

Problems

Problem B.1. Define the set of supernice terms by
1. Any letter a, b, c, d is a supernice term.
2. If s is a supernice term, then so is [s].
3. If 51 and sy are supernice terms, then so is [s1 o s2].
4. Nothing else is a supernice term.

Show that the number of [ in a supernice term ¢ of length = is
<n/2+1.

Problem B.2. Prove by structural induction that no nice term
starts with ].

Problem B.3. Give an inductive definition of the function /,
where /(¢) is the number of symbols in the nice term ¢.

Problem B.4. Prove by structural induction on nice terms ¢ that
f(¢) <I(¢) (where [(¢) is the number of symbols in ¢ and f(¢) is
the depth of ¢ as defined in Definition B.10).



APPENDIX C

Biographies

C.1 Georg Cantor

An early biography of Georg
Cantor (GAY-org KAHN-tor)
claimed that he was born and
found on a ship that was sail-
ing for Saint Petersburg, Rus-
sia, and that his parents were
unknown. This, however, is
not true; although he was
born in Saint Petersburg in
1845.

Cantor received his doc-
torate in mathematics at the
University of Berlin in 1867.
He is known for his work in
set theory, and is credited
with founding set theory as a
distinctive research discipline.
He was the first to prove that
there are infinite sets of different sizes. His theories, and espe-
cially his theory of infinities, caused much debate among mathe-
maticians at the time, and his work was controversial.

I1g. C.7: Georg Cantor
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Cantor’s religious beliefs and his mathematical work were in-
extricably tied; he even claimed that the theory of transfinite num-
bers had been communicated to him directly by God. In later
life, Cantor suffered from mental illness. Beginning in 1894, and
more frequently towards his later years, Cantor was hospitalized.
The heavy criticism of his work, including a falling out with the
mathematician Leopold Kronecker, led to depression and a lack
of interest in mathematics. During depressive episodes, Cantor
would turn to philosophy and literature, and even published a
theory that Francis Bacon was the author of Shakespeare’s plays.

Cantor died on January 6, 1918, in a sanatorium in Halle.

Further Reading For full biographies of Cantor, see Dauben
(1990) and Grattan-Guinness (1971). Cantor’s radical views are
also described in the BBC Radio 4 program A Brief History of
Mathematics (du Sautoy, 2014). If youd like to hear about Can-
tor’s theories in rap form, see Rose (2012).

C.2 Alonzo Church

Alonzo Church was born in
Washington, DC on June 14,
1903. In early childhood, an
air gun incident left Church
blind in one eye. He fin-
ished preparatory school in
Connecticut in 1920 and be-
gan his university education
at Princeton that same year.
He completed his doctoral
studies in 1927. After a cou-
ple years abroad, Church re-
turned to Princeton. Church
was known exceedingly polite Alonzo Church
and careful. His blackboard




writing was immaculate, and he would preserve important pa-
pers by carefully covering them in Duco cement (a clear glue).
Outside of his academic pursuits, he enjoyed reading science fic-
tion magazines and was not afraid to write to the editors if he
spotted any inaccuracies in the writing.

Church’s academic achievements were great. Together with
his students Stephen Kleene and Barkley Rosser, he developed
a theory of effective calculability, the lambda calculus, indepen-
dently of Alan Turing’s development of the Turing machine. The
two definitions of computability are equivalent, and give rise to
what is now known as the Church-Turing Thesis, that a function
of the natural numbers is effectively computable if and only if
it is computable via Turing machine (or lambda calculus). He
also proved what is now known as Church’s Theorem: The deci-
sion problem for the validity of first-order formulas is unsolvable.

Church continued his work into old age. In 1967 he left
Princeton for UCLA, where he was professor until his retirement
in 19go. Church passed away on August 1, 1995 at the age of g2.

Further Reading For a brief biography of Church, see En-
derton (2019). Church’s original writings on the lambda calcu-
lus and the Entscheidungsproblem (Church’s Thesis) are Church
(1936a,b). Aspray (1984) records an interview with Church about
the Princeton mathematics community in the 1g30s. Church
wrote a series of book reviews of the Journal of Symbolic Logic from
1936 until 1979. They are all archived on John MacFarlane’s web-
site (MacFarlane, 2015).

C.3 Gerhard Gentzen

Gerhard Gentzen is known primarily as the creator of structural
proof theory, and specifically the creation of the natural deduc-
tion and sequent calculus derivation systems. He was born on
November 24, 19og in Greifswald, Germany. Gerhard was home-
schooled for three years before attending preparatory school,



where he was behind most of his classmates in terms of educa-
tion. Despite this, he was a brilliant student and showed a strong
aptitude for mathematics. His interests were varied, and he, for
instance, also write poems for his mother and plays for the school
theatre.

Gentzen began his uni-
versity studies at the Univer-
sity of Greifswald, but moved
around to Gottingen, Munich,
and Berlin. He received his
doctorate in 1933 from the
University of Gottingen un-
der Hermann Weyl. (Paul
Bernays supervised most of
his work, but was dismissed Gerhard Gentzen
from the university by the
Nazis.) In 1934, Gentzen began work as an assistant to David
Hilbert. That same year he developed the sequent calculus and
natural deduction derivation systems, in his papers Untersuchun-
gen diber das logische Schliefen I-II [Investigations Into Logical De-
duction I-II]. He proved the consistency of the Peano axioms in
1936.

Gentzen’s relationship with the Nazis is complicated. At the
same time his mentor Bernays was forced to leave Germany,
Gentzen joined the university branch of the SA, the Nazi paramil-
itary organization. Like many Germans, he was a member of
the Nazi party. During the war, he served as a telecommunica-
tions officer for the air intelligence unit. However, in 1942 he was
released from duty due to a nervous breakdown. It is unclear
whether or not Gentzen’s loyalties lay with the Nazi party, or
whether he joined the party in order to ensure academic success.

In 1943, Gentzen was offered an academic position at the
Mathematical Institute of the German University of Prague,
which he accepted. However, in 1945 the citizens of Prague re-
volted against German occupation. Soviet forces arrived in the
city and arrested all the professors at the university. Because of




his membership in Nazi organizations, Gentzen was taken to a
forced labour camp. He died of malnutrition while in his cell on
August 4, 1945 at the age of 35.

Further Reading For a full biography of Gentzen, see Menzler-
Trott (2007). An interesting read about mathematicians under
Nazi rule, which gives a brief note about Gentzen’s life, is given by
Segal (2014). Gentzen’s papers on logical deduction are available
in the original german (Gentzen, 1935a,b). English translations
of Gentzen’s papers have been collected in a single volume by
Szabo (196¢), which also includes a biographical sketch.

C.4 Kurt Godel

Kurt Godel (GEr-dle) was
born on April 28, 1906
in Briinn in the Austro-
Hungarian empire (now Brno
in the Czech Republic). Due
to his inquisitive and bright
nature, young Kurtele was
often called “Der kleine Herr
Warum” (Little Mr. Why)
by his family. He excelled
in academics from primary
school onward, where he got
less than the highest grade
only in mathematics. Godel
was often absent from school
due to poor health and was
exempt from physical educa- Kurt Godel

tion. He was diagnosed with

rheumatic fever during his childhood. Throughout his life, he
believed this permanently affected his heart despite medical
assessment saying otherwise.




Godel began studying at the University of Vienna in 1924
and completed his doctoral studies in 1929. He first intended to
study physics, but his interests soon moved to mathematics and
especially logic, in part due to the influence of the philosopher
Rudolf Carnap. His dissertation, written under the supervision
of Hans Hahn, proved the completeness theorem of first-order
predicate logic with identity (Godel, 1929). Only a year later, he
obtained his most famous results—the first and second incom-
pleteness theorems (published in G6del 1931). During his time
in Vienna, Godel was heavily involved with the Vienna Circle,
a group of scientifically-minded philosophers that included Car-
nap, whose work was especially influenced by Godel’s results.

In 1938, G6del married Adele Nimbursky. His parents were
not pleased: not only was she six years older than him and al-
ready divorced, but she worked as a dancer in a nightclub. Social
pressures did not affect Godel, however, and they remained hap-
pily married until his death.

After Nazi Germany annexed Austria in 1938, Godel and
Adele emigrated to the United States, where he took up a po-
sition at the Institute for Advanced Study in Princeton, New Jer-
sey. Despite his introversion and eccentric nature, Gédel’s time
at Princeton was collaborative and fruitful. He published essays
in set theory, philosophy and physics. Notably, he struck up a par-
ticularly strong friendship with his colleague at the IAS, Albert
Einstein.

In his later years, Goédel’s mental health deteriorated. His
wife’s hospitalization in 1977 meant she was no longer able to
cook his meals for him. Having suffered from mental health issues
throughout his life, he succumbed to paranoia. Deathly afraid of
being poisoned, Godel refused to eat. He died of starvation on
January 14, 1978, in Princeton.

Further Reading For a complete biography of Goédel’s life is
available, see John Dawson (1997). For further biographical
pieces, as well as essays about G6del’s contributions to logic and



philosophy, see Wang (199o), Baaz et al. (2011), Takeuti et al.
(2003), and Sigmund et al. (2007).

Godel’s PhD thesis is available in the original German (Godel,
1929). The original text of the incompleteness theorems is
(Godel, 1931). All of Godel’s published and unpublished writ-
ings, as well as a selection of correspondence, are available in
English in his Collected Papers Feferman et al. (1986, 1990).

For a detailed treatment of Godel’s incompleteness theorems,
see Smith (2013). For an informal, philosophical discussion
of Godel’s theorems, see Mark Linsenmayer’s podcast (Linsen-
mayer, 2014).

C.5 Emmy Noether

Emmy Noether (NER-ter) was
born in Erlangen, Germany,
on March 23, 1882, to an
upper-middle class scholarly
family. Hailed as the “mother
of modern algebra,” Noether
made groundbreaking contri-
butions to both mathemat-
ics and physics, despite sig-
nificant barriers to women’s
education. In Germany at
the time, young girls were
meant to be educated in
arts and were not allowed
to attend college preparatory
schools. However, after au-
diting classes at the Universi- Emmy Noether

ties of Gottingen and Erlan-

gen (where her father was professor of mathematics), Noether
was eventually able to enroll as a student at Erlangen in 1904,




when their policy was updated to allow female students. She re-
ceived her doctorate in mathematics in 19o7.

Despite her qualifications, Noether experienced much resis-
tance during her career. From 1908-1915, she taught at Erlangen
without pay. During this time, she caught the attention of David
Hilbert, one of the world’s foremost mathematicians of the time,
who invited her to Gottingen. However, women were prohibited
from obtaining professorships, and she was only able to lecture
under Hilbert’s name, again without pay. During this time she
proved what is now known as Noether’s theorem, which is still
used in theoretical physics today. Noether was finally granted
the right to teach in 1919. Hilbert’s response to continued resis-
tance of his university colleagues reportedly was: “Gentlemen,
the faculty senate is not a bathhouse.”

In the later 1920s, she concentrated on work in abstract alge-
bra, and her contributions revolutionized the field. In her proofs
she often made use of the so-called ascending chain condition,
which states that there is no infinite strictly increasing chain of
certain sets. For instance, certain algebraic structures now known
as Noetherian rings have the property that there are no infinite
sequences of ideals 1 € Iy € .... The condition can be general-
ized to any partial order (in algebra, it concerns the special case
of ideals ordered by the subset relation), and we can also con-
sider the dual descending chain condition, where every strictly
decreasing sequence in a partial order eventually ends. If a par-
tial order satisfies the descending chain condition, it is possible
to use induction along this order in a similar way in which we
can use induction along the < order on N. Such orders are called
well-founded or Noetherian, and the corresponding proof principle
Nocetherian induction.

Noether was Jewish, and when the Nazis came to power in
1933, she was dismissed from her position. Luckily, Noether was
able to emigrate to the United States for a temporary position at
Bryn Mawr, Pennsylvania. During her time there she also lectured
at Princeton, although she found the university to be unwelcom-
ing to women (Dick, 1981, 81). In 1935, Noether underwent an



operation to remove a uterine tumour. She died from an infection
as a result of the surgery, and was buried at Bryn Mawr.

Further Reading For a biography of Noether, see Dick (1981).
The Perimeter Institute for Theoretical Physics has their lectures
on Noether’s life and influence available online (Institute, 2015).
If you’re tired of reading, Stuff You Missed in History Class has a
podcast on Noether’s life and influence (Frey and Wilson, 2015).
The collected works of Noether are available in the original Ger-
man (Jacobson, 1983).

C.6 Bertrand Russell

Bertrand Russell is hailed as
one of the founders of mod-
ern analytic philosophy. Born
May 18, 1872, Russell was
not only known for his work
in philosophy and logic, but
wrote many popular books in
various subject areas. He was
also an ardent political ac-
tivist throughout his life.
Russell was born in Trel-
lech, Monmouthshire, Wales.
His parents were members of
the British nobility.  They
were free-thinkers, and even
made friends with the radicals
in Boston at the time. Unfor-
tunately, Russell’s parents died when he was young, and Russell
was sent to live with his grandparents. There, he was given a
religious upbringing (something his parents had wanted to avoid
at all costs). His grandmother was very strict in all matters of

Bertrand Russell



morality. During adolescence he was mostly homeschooled by
private tutors.

Russell’s influence in analytic philosophy, and especially
logic, is tremendous. He studied mathematics and philosophy at
Trinity College, Cambridge, where he was influenced by the math-
ematician and philosopher Alfred North Whitehead. In 1910,
Russell and Whitehead published the first volume of Principia
Mathematica, where they championed the view that mathematics
is reducible to logic. He went on to publish hundreds of books,
essays and political pamphlets. In 1950, he won the Nobel Prize
for literature.

Russell’s was deeply entrenched in politics and social ac-
tivism. During World War I he was arrested and sent to prison for
six months due to pacifist activities and protest. While in prison,
he was able to write and read, and claims to have found the ex-
perience “quite agreeable.” He remained a pacifist throughout
his life, and was again incarcerated for attending a nuclear dis-
armament rally in 1961. He also survived a plane crash in 1948,
where the only survivors were those sitting in the smoking sec-
tion. As such, Russell claimed that he owed his life to smoking.
Russell was married four times, but had a reputation for carrying
on extra-marital affairs. He died on February 2, 1970 at the age
of 97 in Penrhyndeudraeth, Wales.

Further Reading Russell wrote an autobiography in three
parts, spanning his life from 1872-1967 (Russell, 1967, 1968,
1969). The Bertrand Russell Research Centre at McMaster Uni-
versity is home of the Bertrand Russell archives. See their website
at Duncan (2015), for information on the volumes of his collected
works (including searchable indexes), and archival projects. Rus-
sell’s paper On Denoting (Russell, 19op) is a classic of 2oth century
analytic philosophy.

The Stanford Encyclopedia of Philosophy entry on Russell
(Irvine, 2015) has sound clips of Russell speaking on Desire and
Political theory. Many video interviews with Russell are available



online. To see him talk about smoking and being involved in a
plane crash, e.g., see Russell (n.d.). Some of Russell’s works,
including his Introduction to Mathematical Philosophy are available
as free audiobooks on LibriVox (n.d.).

C.7 Alfred Tarski

Alfred Tarski was born on
January 14, 19o1 in War
saw, Poland (then part of the
Russian Empire). Described
as “Napoleonic,” Tarski was
boisterous, talkative, and in-
tense. His energy was often
reflected in his lectures—he
once set fire to a wastebasket
while disposing of a cigarette
during a lecture, and was for-
bidden from lecturing in that
building again.

Tarski had a thirst for
knowledge from a young age.
Although later in life he would Alfred Tarski
tell students that he studied
logic because it was the only class in which he got a B, his high
school records show that he got A’s across the board—even in
logic. He studied at the University of Warsaw from 1918 to 1924.
Tarski first intended to study biology, but became interested in
mathematics, philosophy, and logic, as the university was the
center of the Warsaw School of Logic and Philosophy. Tarski
earned his doctorate in 1924 under the supervision of Stanistaw
Lesniewski.

Before emigrating to the United States in 1939, Tarski com-
pleted some of his most important work while working as a sec-
ondary school teacher in Warsaw. His work on logical conse-




quence and logical truth were written during this time. In 1939,
Tarski was visiting the United States for a lecture tour. During
his visit, Germany invaded Poland, and because of his Jewish her-
itage, Tarski could not return. His wife and children remained in
Poland until the end of the war, but were then able to emigrate to
the United States as well. Tarski taught at Harvard, the College
of the City of New York, and the Institute for Advanced Study
at Princeton, and finally the University of California, Berkeley.
There he founded the multidisciplinary program in Logic and
the Methodology of Science. Tarski died on October 26, 1983 at
the age of 82.

Further Reading For more on Tarski’s life, see the biogra-
phy Alfred Tarski: Life and Logic (Feferman and Feferman, 2004).
Tarski’s seminal works on logical consequence and truth are avail-
able in English in (Corcoran, 1983). All of Tarski’s original works
have been collected into a four volume series, (Tarski, 1981).

C.8 Alan Turing

Alan Turing was born in Maida Vale, London, on June 23, 1912.
He is considered the father of theoretical computer science. Tur-
ing’s interest in the physical sciences and mathematics started at
a young age. However, as a boy his interests were not represented
well in his schools, where emphasis was placed on literature and
classics. Consequently, he did poorly in school and was repri-
manded by many of his teachers.

Turing attended King’s College, Cambridge as an undergrad-
uate, where he studied mathematics. In 1936 Turing developed
(what is now called) the Turing machine as an attempt to pre-
cisely define the notion of a computable function and to prove
the undecidability of the decision problem. He was beaten to
the result by Alonzo Church, who proved the result via his own
lambda calculus. Turing’s paper was still published with reference



to Church’s result. Church invited Turing to Princeton, where he
spent 1936-1938, and obtained a doctorate under Church.

Despite his interest in
logic, Turing’s earlier inter-
ests in physical sciences re-
mained prevalent. His prac-
tical skills were put to work
during his service with the
British cryptanalytic depart-
ment at Bletchley Park dur
ing World War II. Turing was
a central figure in cracking
the cypher used by German
Naval communications—the
Enigma code. Turing’s exper-
tise in statistics and cryptog-
raphy, together with the intro- Alan Turing
duction of electronic machin-
ery, gave the team the ability to crack the code by creating a de-
crypting machine called a “bombe.” His ideas also helped in the
creation of the world’s first programmable electronic computer,
the Colossus, also used at Bletchley park to break the German
Lorenz cypher.

Turing was gay. Nevertheless, in 1942 he proposed to Joan
Clarke, one of his teammates at Bletchley Park, but later broke off
the engagement and confessed to her that he was homosexual. He
had several lovers throughout his lifetime, although homosexual
acts were then criminal offences in the UK. In 1952, Turing’s
house was burgled by a friend of his lover at the time, and when
filing a police report, Turing admitted to having a homosexual
relationship, under the impression that the government was on
their way to legalizing homosexual acts. This was not true, and
he was charged with gross indecency. Instead of going to prison,
Turing opted for a hormone treatment that reduced libido. Turing
was found dead on June 8, 1954, of a cyanide overdose—most




likely suicide. He was given a royal pardon by Queen Elizabeth II
in 2013.

Further Reading For a comprehensive biography of Alan Tur-
ing, see Hodges (2014). Turing’s life and work inspired a play,
Breaking the Code, which was produced in 1996 for TV starring
Derek Jacobi as Turing. The Imitation Game, an Academy Award
nominated film starring Bendict Cumberbatch and Kiera Knight-
ley, is also loosely based on Alan Turing’s life and time at Bletch-
ley Park (Tyldum, 2014).

Radiolab (2012) has several podcasts on Turing’s life and
work. BBC Horizon’s documentary The Strange Life and Death
of Dr. Turing is available to watch online (Sykes, 1992). (Theelen,
2012) is a short video of a working LEGO Turing Machine—
made to honour Turing’s centenary in 2012.

Turing’s original paper on Turing machines and the decision
problem is Turing (1937).

C.9 Ernst Zermelo

Ernst Zermelo was born on July 27, 1871 in Berlin, Germany.
He had five sisters, though his family suffered from poor health
and only three survived to adulthood. His parents also passed
away when he was young, leaving him and his siblings orphans
when he was seventeen. Zermelo had a deep interest in the arts,
and especially in poetry. He was known for being sharp, witty,
and critical. His most celebrated mathematical achievements in-
clude the introduction of the axiom of choice (in 1904), and his
axiomatization of set theory (in 19o8).

Zermelo’s interests at university were varied. He took courses
in physics, mathematics, and philosophy. Under the supervision
of Hermann Schwarz, Zermelo completed his dissertation Inves-
tigations in the Calculus of Variations in 1894 at the University of
Berlin. In 1897, he decided to pursue more studies at the Univer-
sity of Gottigen, where he was heavily influenced by the founda-



tional work of David Hilbert. In 1899 he became eligible for pro-
fessorship, but did not get one until eleven years later—possibly
due to his strange demeanour and “nervous haste.”

Zermelo finally received a
paid professorship at the Uni-
versity of Zurich in 1910, but
was forced to retire in 1916
due to tuberculosis. After his
recovery, he was given an hon-
ourary professorship at the
University of Freiburg in 1921.
During this time he worked
on foundational mathematics.
He became irritated with the
works of Thoralf Skolem and
Kurt Godel, and publicly crit-
icized their approaches in his
papers. He was dismissed
from his position at Freiburg
in 1935, due to his unpopular-
ity and his opposition to Hitler’s rise to power in Germany.

The later years of Zermelo’s life were marked by isolation. Af-
ter his dismissal in 1935, he abandoned mathematics. He moved
to the country where he lived modestly. He married in 1944, and
became completely dependent on his wife as he was going blind.
Zermelo lost his sight completely by 1951. He passed away in
Giinterstal, Germany, on May 21, 1953.

Ernst Zermelo

Further Reading For a full biography of Zermelo, see Ebbing-
haus (2015). Zermelo’s seminal 1904 and 1908 papers are avail-
able to read in the original German (Zermelo, 1904, 1908). Zer-
melo’s collected works, including his writing on physics, are avail-
able in English translation in (Ebbinghaus et al., 2010; Ebbing-
haus and Kanamori, 2013).



APPENDIX D

The Greek
Alphabet

Alpha
Beta
Gamma
Delta
Epsilon
Zeta
Eta
Theta
Iota
Kappa
Lambda
Mu
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Nu

Xi
Omicron
Pi

Rho
Sigma
Tau
Upsilon
Phi

Chi

Psi
Omega
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anti-symmetric R is anti-symmetric iff, whenever both Rxy and
Ryx, then x = y; in other words: if x # y then not Rxy
or not Ryx (see section 2.2).

assumption A formula that stands topmost in a derivation, also
called an initial formula. It may be discharged or undis-
charged (see section 11.1).

asymmetric R is asymmetric if for no pair x,y € 4 we have Rxy
and Ryx (see section 2.4).

bijection A function that is both surjective and injective (see
section 3.2).

binary relation A subset of 4%; we write Rxy (or xRy) for (x,y) €
R (see section 2.1).

bound Occurrence of a variable within the scope of a quantifier
that uses the same variable (see section 6.7).

Cartesian product (4 x B) Set of all pairs of elements of 4 and
B; Ax B ={(x,9):x € Aand y € B} (see section 1.5).

Church-Turing Theorem States that there is no Turing machine
which decides if a given sentence of first-order logic is
valid or not (see section 15.8).

Church-Turing Thesis states that anything computable via
an effective procedure is Turing computable (see sec-
tion 14.10).
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closed A set of sentences I" is closed iff, whenever I £ A then
A € I'. The set {A : I' £ A} is the closure of I" (see
section 8.1).

compactness theorem States that every finitely satisfiable set of
sentences is satisfiable (see section 12.9).

complete consistent set A set of sentences is complete and con-
sistent iff it is consistent, and for every sentence 4 either
A or =4 is in the set (see section 12.3).

completeness Property of a derivation system; it is complete if,
whenever I" entails A4, then there is also a derivation that
establishes I" + 4; equivalently, iff every consistent set of
sentences is satisfiable (see section 12.1).

completeness theorem States that first-order logic is complete:
every consistent set of sentences is satisfiable.

composition (g o ) The function resulting from “chaining to-
gether” f and g; (go f)(x) = g(f(x)) (see section 3.5).

connected R is connected if for all x,y € 4 with x # y, then
either Rxy or Ryx (see section 2.2).

consistent In the sequent calculus, a set of sentences /" is consis-
tent iff there is no derivation of a sequent /) =  with
Iy C I' (see section 10.8). In natural deduction, I” is con-
sistent iff I" ¥ L (see section 11.7). If I" is not consistent,
it is inconsistent..

covered A structure in which every element of the domain is the
value of some closed term (see section 7.2).

decision problem Problem of deciding if a given sentence of first-
order logic is valid or not (see Church-Turing Theorem).
deduction theorem Relates entailment and provability of a sen-
tence from an assumption with that of a corresponding
conditional. In the semantic form (Theorem 7.29), it
states that I" U {4} £ Biff ' ¥ A — B. In the proof-
theoretic form, it states that " U {4} + Biff ' + A — B.
derivability (I" + A) In the sequent calculus, 4 is derivable
from I if there is a derivation of a sequent Iy = A4 where
Iy € I' is a finite sequence of sentences in I" (see sec-



tion 10.8). In natural deduction, A4 is derivable from I"
if there is a derivation with end-formula 4 and in which
every assumption is either discharged or is in I" (see sec-
tion 11.7).

derivation In the sequent calculus, a tree of sequents in which
every sequent is either an initial sequent or follows from
the sequents immediately above it by a rule of inference
(see section 10.1). In natural deduction, a tree of for-
mulas in which every formula is either an assumption or
follows from the formulas immediately above it by a rule
of inference (see section 11.1).

difference (A4 \ B) the set of all elements of 4 which are not also
elements of B: A\ B = {x : x € Aand x ¢ B} (see
section 1.4).

discharged An assumption in a derivation may be discharged by
an inference rule below it (the rule and the assumption
are then assigned a matching label, e.g., [4]?). If it is not
discharged, it is called undischarged (see section 11.1).

disjoint two sets with no elements in common (see section 1.4).

domain (of a function) (dom(f)) The set of objects for which
a (partial) function is defined (see section 3.1).

domain (of a structure) (|M|) Non-empty set from from which a
structure takes assignments and values of variables (see
section 7.2).

eigenvariable In the sequent calculus, a special constant sym-
bol in a premise of a 3L or VR inference which may
not appear in the conclusion (see section 10.1). In nat-
ural deduction, a special constant symbol in a premise
of a JElim or VIntro inference which may not appear
in the conclusion or any undischarged assumption (see
section 11.1).

entailment (I £ A) A set of sentences I" entails a sentence 4
iff for every structure M with M £ I'y M £ A (see sec-

tion 7.7).



enumeration A possibly infinite list of all elements of a set 4; for-
mally a surjective function f: N — A4 (see section 4.2).

equinumerous 4 and B are equinumerous iff there is a total bi-
jection from 4 to B (see section 4.8).

equivalence relation a reflexive, symmetric, and transitive rela-
tion (see section 2.2).

extensionality (of satisfaction) Whether or not a formula 4 is
satisfied depends only on the assignments to the non-
logical symbols and free variables that actually occur
in 4.

extensionality (of sets) Sets 4 and B are identical, 4 = B, iff
every element of 4 is also an element of B, and vice
versa (see section 1.1).

finitely satisfiable /" is finitely satisfiable iff every finite Iy C I
is satisfiable (see section 12.9).

formula Expressions of a first-order language & which express
relations or properties, or are true or false (see sec-
tion 6.3).

free An occurrence of a variable that is not bound (see sec-
tion 6.7).

free for A term ¢ is free for x in 4 if none of the free occurrences
of x in A4 occur in the scope of a quantifier that binds a
variable in ¢ (see section 6.8).

function (f: A — B) A mapping of each element of a domain
(of a function) 4 to an element of the codomain B (see
section 3.1).

graph (of a function) the relation Ry C 4 X B defined by R, =
{(x,9): f(x) =y}, if f: A+ B (see section 3.3).

halting problem The problem of determining (for any e, n)
whether the Turing machine M, halts for an input of »
strokes (see section 15.4).

inconsistent see consistent.



injective f: A — B is injective iff for each y € B there is at most
one x € A4 such that f(x) = y; equivalently if whenever
x # x’ then f(x) # f(x’) (see section 3.2).

intersection (4 N B) The set of all things which are elements
of both A and B: ANB ={x:x € AAx € B} (see
section 1.4).

inverse function If f: 4 — B is a bijection, f~1: B — 4 is the
function with f~1(y) = whatever unique x € 4 is such
that f(x) = y (see section 3.4).

inverse relation (R™!) The relation R “turned around”; R~! =
{(9,x) : (x,9) € R} (see section 2.6).

irreflexive R is irreflexive if, for no x € A, Rxx (see section 2.4).

Lowenheim-Skolem Theorem States that every satisfiable set
of sentences has a countable model (see section 12.11).
linear order A connected partial order (see section 2.4).

model A structure in which every sentence in I” is true is a model
of I' (see section 8.2).

partial function (f: 4 - B) A partial function is a mapping
which assigns to every element of 4 at most one element
of B. If f assigns an element of B to x € 4, f(x) is
defined, and otherwise undefined (see section 3.6).

partial order A reflexive, anti-symmetric, transitive relation (see
section 2.4).

power set (p(A4)) The set consisting of all subsets of a set A4,
9(A4) = {x: x C A} (see section 1.2).

preorder A reflexive and transitive relation (see section 2.4).

range (ran(f)) the subset of the codomain that is actually output
by f; ran(f) = {y € B: f(x) = y for some x € A} (see

section 3.1).
reflexive R is reflexive iff, for every x € 4, Rxx (see section 2.2).

satisfiable A set of sentences I is satisfiable if M £ I for
some structure M, otherwise it is unsatisfiable (see sec-

tion 7.7).



sentence A formula with no free variable. (see section 6.7).

sequence (finite) (4*) A finite string of elements of 4; an ele-
ment of A" for some n (see section 1.3).

sequence (infinite) (A4“) A gapless, unending sequence of el-
ements of 4; formally, a function s: Z* — 4 (see sec-
tion 1.3).

sequent An expression of the form I" = 4 where I and 4 are
finite sequences of sentences (see section 10.1).

set A collection of objects, considered independently of the way
it is specified, of the order of the objects in the set, and
of their multiplicity (see section 1.1).

soundness Property of a derivation system: it is sound if when-
ever I' + A then I' £ A (see section 10.12 and sec-
tion 11.11).

strict linear order A connected strict order (see section 2.4).

strict order An irreflexive, asymmetric, and transitive relation
(see section 2.4).

structure (M) An interpretation of a first-order language, con-
sisting of a domain (of a structure) and assignments of
the constant, predicate and function symbols of the lan-
guage (see section 7.2).

subformula Part of a formula which is itself a formula (see sec-
tion 6.6).

subset (4 C B) A set every element of which is an element of a
given set B (see section 1.2).

surjective f: A — B is surjective iff the range of f is all of B,
i.e., for every y € B there is at least one x € 4 such
that f(x) =y (see section 3.2).

symmetric R is symmetric iff, whenever Rxy then also Ryx (see
section 2.2).

theorem (- 4) In the sequent calculus, a formula 4 is a theorem
(of logic) if there is a derivation of the sequent = A4
(see section 10.8). In natural deduction, a formula 4 is a
theorem if there is a derivation of 4 with all assumptions



discharged (see section 11.7). We also say that 4 is a
theorem of a theory I if I' + A.

total order see linear order.

transitive R is transitive iff, whenever Rxy and Ryz, then also
Rxz (see section 2.2).

transitive closure (R*) the smallest transitive relation contain-
ing R (see section 2.0).

undischarged see discharged.
union (AUB) The set of all elements of 4 and B together: AUB =
{x :x € AV x € B} (see section 1.4).

valid (k 4) A sentence A4 is valid iff M £ A for every structure M
(see section 7.7).

variable assignment A function which maps each variable to an
element of |[M| (see section 7.4).

x-variant Two variable assignments are x-variants, s ~ s’, if they
differ at most in what they assign to x (see section 7.4).
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