View topic on PhilPapers for more information
Related categories

43 found
Order:
More results on PhilPapers
  1. Unification and mathematical explanation in science.Sam Baron - forthcoming - Synthese:1-25.
    Mathematics clearly plays an important role in scientific explanation. Debate continues, however, over the kind of role that mathematics plays. I argue that if pure mathematical explananda and physical explananda are unified under a common explanation within science, then we have good reason to believe that mathematics is explanatory in its own right. The argument motivates the search for a new kind of scientific case study, a case in which pure mathematical facts and physical facts are explanatorily unified. I argue (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  2. Are Infinite Explanations Self-Explanatory?Alexandre Billon - forthcoming - Erkenntnis:1-20.
    Consider an infinite series whose items are each explained by their immediate successor. Does such an infinite explanation explain the whole series or does it leave something to be explained? Hume arguably claimed that it does fully explain the whole series. Leibniz, however, designed a very telling objection against this claim, an objection involving an infinite series of book copies. In this paper, I argue that the Humean claim can, in certain cases, be saved from the Leibnizian “infinite book copies” (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. A New Role for Mathematics in Empirical Sciences.Atoosa Kasirzadeh - forthcoming - Philosophy of Science.
    Mathematics is often taken to play one of two roles in the empirical sciences: either it represents empirical phenomena, or it explains these phenomena by imposing constraints on them. This paper identifies a third and distinct role which has not been fully appreciated in the literature, and may be pervasive in scientific practice. I call this the “bridging” role of mathematics, according to which mathematics acts as a connecting scheme in our explanatory reasoning about why and how two different descriptions (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Mathematical Anti-Realism and Explanatory Structure.Bruno Whittle - forthcoming - Synthese:1-15.
    Plausibly, mathematical claims are true, but the fundamental furniture of the world does not include mathematical objects. This can be made sense of by providing mathematical claims with paraphrases, which make clear how the truth of such claims does not require the fundamental existence of mathematical objects. This paper explores the consequences of this type of position for explanatory structure. There is an apparently straightforward relationship between this sort of structure, and the logical sort: i.e. logically complex claims are explained (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. A Dilemma for Mathematical Constructivism.Samuel Kahn - 2021 - Axiomathes 31 (1):63-72.
    In this paper I argue that constructivism in mathematics faces a dilemma. In particular, I maintain that constructivism is unable to explain (i) the application of mathematics to nature and (ii) the intersubjectivity of mathematics unless (iii) it is conjoined with two theses that reduce it to a form of mathematical Platonism. The paper is divided into five sections. In the first section of the paper, I explain the difference between mathematical constructivism and mathematical Platonism and I outline my argument. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Non-Causal Explanations in Physics.Juha Saatsi - 2021 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. Routledge.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. General Theory of Topological Explanations and Explanatory Asymmetry.Daniel Kostic - 2020 - Philosophical Transactions of the Royal Society B: Biological Sciences 375 (1796):1-8.
    In this paper, I present a general theory of topological explanations, and illustrate its fruitfulness by showing how it accounts for explanatory asymmetry. My argument is developed in three steps. In the first step, I show what it is for some topological property A to explain some physical or dynamical property B. Based on that, I derive three key criteria of successful topological explanations: a criterion concerning the facticity of topological explanations, i.e. what makes it true of a particular system; (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Modality and constitution in distinctively mathematical explanations.Mark Povich - 2020 - European Journal for Philosophy of Science 10 (3):1-10.
    Lange argues that some natural phenomena can be explained by appeal to mathematical, rather than natural, facts. In these “distinctively mathematical” explanations, the core explanatory facts are either modally stronger than facts about ordinary causal law or understood to be constitutive of the physical task or arrangement at issue. Craver and Povich argue that Lange’s account of DME fails to exclude certain “reversals”. Lange has replied that his account can avoid these directionality charges. Specifically, Lange argues that in legitimate DMEs, (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  9. Was bedeuten Parakonsistente, Unentscheidbar, Zufällig, Berechenbar und Unvollständige? Eine Rezension von „Godels Weg: Exploits in eine unentscheidbare Welt“ (Godels Way: Exploits into a unecidable world) von Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160p (2012).Michael Richard Starks - 2020 - In Willkommen in der Hölle auf Erden: Babys, Klimawandel, Bitcoin, Kartelle, China, Demokratie, Vielfalt, Dysgenie, Gleichheit, Hacker, Menschenrechte, Islam, Liberalismus, Wohlstand, Internet, Chaos, Hunger, Krankheit, Gewalt, Künstliche Intelligenz, Krieg. Las Vegas, NV , USA: Reality Press. pp. 1171-185.
    In "Godel es Way" diskutieren drei namhafte Wissenschaftler Themen wie Unentschlossenheit, Unvollständigkeit, Zufälligkeit, Berechenbarkeit und Parakonsistenz. Ich gehe diese Fragen aus Wittgensteiner Sicht an, dass es zwei grundlegende Fragen gibt, die völlig unterschiedliche Lösungen haben. Es gibt die wissenschaftlichen oder empirischen Fragen, die Fakten über die Welt sind, die beobachtungs- und philosophische Fragen untersuchen müssen, wie Sprache verständlich verwendet werden kann (die bestimmte Fragen in Mathematik und Logik beinhalten), die entschieden werden müssen, indem man sich anschaut,wie wir Wörter in bestimmten (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  10. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  11. Non-Naturalistic Moral Explanation.Samuel Baron, Mark Colyvan, Kristie Miller & Michael Rubin - 2019 - Synthese 198 (5):4273-4294.
    It has seemed, to many, that there is an important connection between the ways in which some theoretical posits explain our observations, and our reasons for being ontologically committed to those posits. One way to spell out this connection is in terms of what has become known as the explanatory criterion of ontological commitment. This is, roughly, the view that we ought to posit only those entities that are indispensable to our best explanations. Our primary aim is to argue that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11).
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  13. Teaching and Learning Guide For: Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11).
    This is a teaching and learning guide to accompany "Explanation in Mathematics: Proofs and Practice".
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. Shades of Grey: Granularity, Pragmatics, and Non-Causal Explanation.Hugh Desmond - 2019 - Perspectives on Science 27 (1):68-87.
    Implicit contextual factors mean that the boundary between causal and noncausal explanation is not as neat as one might hope: as the phenomenon to be explained is given descriptions with varying degrees of granularity, the nature of the favored explanation alternates between causal and non-causal. While it is not surprising that different descriptions of the same phenomenon should favor different explanations, it is puzzling why re-describing the phenomenon should make any difference for the causal nature of the favored explanation. I (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Explaining the Behaviour of Random Ecological Networks: The Stability of the Microbiome as a Case of Integrative Pluralism.Roger Deulofeu, Javier Suárez & Alberto Pérez-Cervera - 2019 - Synthese 198 (3):2003-2025.
    Explaining the behaviour of ecosystems is one of the key challenges for the biological sciences. Since 2000, new-mechanicism has been the main model to account for the nature of scientific explanation in biology. The universality of the new-mechanist view in biology has been however put into question due to the existence of explanations that account for some biological phenomena in terms of their mathematical properties (mathematical explanations). Supporters of mathematical explanation have argued that the explanation of the behaviour of ecosystems (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  16. The Enhanced Indispensability Argument, the Circularity Problem, and the Interpretability Strategy.Jan Heylen & Lars Arthur Tump - 2019 - Synthese 198 (4):3033-3045.
    Within the context of the Quine–Putnam indispensability argument, one discussion about the status of mathematics is concerned with the ‘Enhanced Indispensability Argument’, which makes explicit in what way mathematics is supposed to be indispensable in science, namely explanatory. If there are genuine mathematical explanations of empirical phenomena, an argument for mathematical platonism could be extracted by using inference to the best explanation. The best explanation of the primeness of the life cycles of Periodical Cicadas is genuinely mathematical, according to Baker (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Explanatory Abstractions.Lina Jansson & Juha Saatsi - 2019 - British Journal for the Philosophy of Science 70 (3):817–844.
    A number of philosophers have recently suggested that some abstract, plausibly non-causal and/or mathematical, explanations explain in a way that is radically dif- ferent from the way causal explanation explain. Namely, while causal explanations explain by providing information about causal dependence, allegedly some abstract explanations explain in a way tied to the independence of the explanandum from the microdetails, or causal laws, for example. We oppose this recent trend to regard abstractions as explanatory in some sui generis way, and argue (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   17 citations  
  18. Using Corpus Linguistics to Investigate Mathematical Explanation.Juan Pablo Mejía Ramos, Lara Alcock, Kristen Lew, Paolo Rago, Chris Sangwin & Matthew Inglis - 2019 - In Eugen Fischer & Mark Curtis (eds.), Methodological Advances in Experimental Philosophy. London: Bloomsbury Academic. pp. 239–263.
    In this chapter we use methods of corpus linguistics to investigate the ways in which mathematicians describe their work as explanatory in their research papers. We analyse use of the words explain/explanation (and various related words and expressions) in a large corpus of texts containing research papers in mathematics and in physical sciences, comparing this with their use in corpora of general, day-to-day English. We find that although mathematicians do use this family of words, such use is considerably less prevalent (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  19. The Narrow Ontic Counterfactual Account of Distinctively Mathematical Explanation.Mark Povich - 2019 - British Journal for the Philosophy of Science 72 (2):511-543.
    An account of distinctively mathematical explanation (DME) should satisfy three desiderata: it should account for the modal import of some DMEs; it should distinguish uses of mathematics in explanation that are distinctively mathematical from those that are not (Baron [2016]); and it should also account for the directionality of DMEs (Craver and Povich [2017]). Baron’s (forthcoming) deductive-mathematical account, because it is modelled on the deductive-nomological account, is unlikely to satisfy these desiderata. I provide a counterfactual account of DME, the Narrow (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  20. Wolpert, Chaitin y Wittgenstein sobre la imposibilidad, la incompletitud, la paradoja mentirosa, el teísmo, los límites de la computación, un principio de incertidumbre mecánica no cuántica y el universo como computadora, el teorema definitivo en la teoría de la máquina de Turing (revisado en 2019).Michael Richard Starks - 2019 - In Observaciones Sobre Imposibilidad, Incompleta, Paracoherencia,Indecisión,Aleatoriedad, Computabilidad, Paradoja E Incertidumbre En Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, Dacosta, Godel, Searle, Rodych, Berto,Floyd, Moyal-Sharrock Y Yanofsky. Las Vegas, NV USA: Reality Press. pp. 64-70.
    It is commonly thought that Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were mostly resolved by Wittgenstein over 80years ago. -/- “What we are ‘tempted to say’ in such a case is, of course, not philosophy, but it is its raw material. Thus, for example, what a mathematician is (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  21. اظهارات در مورد عدم امکان ، بی کامل بودن ، پاراستشتها، Undecidability ، اتفاقی ، Computability ، پارادوکس ، و عدم قطعیت در Chaitin ، ویتگنشتاین ، Hofstadter ، Wolpert ، doria ، دا کوستا ، گودل ، سرل ، رودیچ ، برتو ، فلوید ، مویال-شرراک و یانفسکی.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    معمولا تصور می شود که عدم امکان ، بی کامل بودن ، پارامونشتها ، Undecidability ، اتفاقی ، قابلیت های مختلف ، پارادوکس ، عدم قطعیت و محدودیت های دلیل ، مسائل فیزیکی و ریاضی علمی و یا با داشتن کمی یا هیچ چیز در مشترک. من پیشنهاد می کنم که آنها تا حد زیادی مشکلات فلسفی استاندارد (به عنوان مثال ، بازی های زبان) که عمدتا توسط ویتگنشتاین بیش از 80 سال پیش حل و فصل شد. -/- "آنچه ما (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  22. O que significa paraconsistente, indecível, aleatório, computável e incompleto?- Uma revisão da ‘Godel’s Way: exploits into an undecidable world’ (Maneira de Godel: façanhas em um mundo indecidível) por Gregory Chaitin, Francisco A Doria, Newton C.A. da costa 160P (2012) (revisão revisada 2019).Michael Richard Starks - 2019 - In Delírios Utópicos Suicidas no Século XXI Filosofia, Natureza Humana e o Colapso da Civilization- Artigos e Comentários 2006-2019 5ª edição. Las Vegas, NV USA: Reality Press. pp. 168-182.
    Em "Godel's Way", três cientistas eminentes discutem questões como a undecidability, incompletude, aleatoriedade, computabilidade e paraconsistência. Eu abordar estas questões do ponto de vista Wittgensteinian que existem duas questões básicas que têm soluções completamente diferentes. Há as questões científicas ou empíricas, que são fatos sobre o mundo que precisam ser investigados observacionalmente e questões filosóficas sobre como a linguagem pode ser usada inteligìvelmente (que incluem certas questões em matemática e lógica), que precisam ser decidido por olhar uma como nós realmente (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  23. ¿Qué significa paraconsistente, indescifrable, aleatorio, computable e incompleto? Una revisión de la Manera de Godel: explota en un mundo indecible (Godel’s Way: exploits into an undecidable world) por Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160P (2012) (revisión revisada 2019).Michael Richard Starks - 2019 - In Observaciones Sobre Imposibilidad, Incompleta, Paracoherencia,Indecisión,Aleatoriedad, Computabilidad, Paradoja E Incertidumbre En Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, Dacosta, Godel, Searle, Rodych, Berto,Floyd, Moyal-Sharrock Y Yanofsky. Las Vegas, NV USA: Reality Press. pp. 44-63.
    En ' Godel’s Way ', tres eminentes científicos discuten temas como la indecisión, la incompleta, la aleatoriedad, la computabilidad y la paraconsistencia. Me acerco a estas cuestiones desde el punto de vista de Wittgensteinian de que hay dos cuestiones básicas que tienen soluciones completamente diferentes. Existen las cuestiones científicas o empíricas, que son hechos sobre el mundo que necesitan ser investigados observacionalmente y cuestiones filosóficas en cuanto a cómo el lenguaje se puede utilizar inteligiblemente (que incluyen ciertas preguntas en matemáticas (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  24. Universality Caused: The Case of Renormalization Group Explanation.Emily Sullivan - 2019 - European Journal for Philosophy of Science 9 (3):36.
    Recently, many have argued that there are certain kinds of abstract mathematical explanations that are noncausal. In particular, the irrelevancy approach suggests that abstracting away irrelevant causal details can leave us with a noncausal explanation. In this paper, I argue that the common example of Renormalization Group explanations of universality used to motivate the irrelevancy approach deserves more critical attention. I argue that the reasons given by those who hold up RG as noncausal do not stand up to critical scrutiny. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  25. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  26. Tuples All the Way Down?Simon Thomas Hewitt - 2018 - Thought: A Journal of Philosophy 7 (3):161-169.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Minimal Models and the Generalized Ontic Conception of Scientific Explanation.Mark Povich - 2018 - British Journal for the Philosophy of Science 69 (1):117-137.
    Batterman and Rice ([2014]) argue that minimal models possess explanatory power that cannot be captured by what they call ‘common features’ approaches to explanation. Minimal models are explanatory, according to Batterman and Rice, not in virtue of accurately representing relevant features, but in virtue of answering three questions that provide a ‘story about why large classes of features are irrelevant to the explanandum phenomenon’ ([2014], p. 356). In this article, I argue, first, that a method (the renormalization group) they propose (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   12 citations  
  28. Because Without Cause: Non-Causal Explanations in Science and Mathematics.Mark Povich & Carl F. Craver - 2018 - Philosophical Review 127 (3):422-426.
    Lange’s collection of expanded, mostly previously published essays, packed with numerous, beautiful examples of putatively non-causal explanations from biology, physics, and mathematics, challenges the increasingly ossified causal consensus about scientific explanation, and, in so doing, launches a new field of philosophic investigation. However, those who embraced causal monism about explanation have done so because appeal to causal factors sorts good from bad scientific explanations and because the explanatory force of good explanations seems to derive from revealing the relevant causal (or (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Reconstruction in Philosophy of Mathematics.Davide Rizza - 2018 - Dewey Studies 2 (2):31-53.
    Throughout his work, John Dewey seeks to emancipate philosophical reflection from the influence of the classical tradition he traces back to Plato and Aristotle. For Dewey, this tradition rests upon a conception of knowledge based on the separation between theory and practice, which is incompatible with the structure of scientific inquiry. Philosophical work can make progress only if it is freed from its traditional heritage, i.e. only if it undergoes reconstruction. In this study I show that implicit appeals to the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  30. On Explanations From Geometry of Motion.Juha Saatsi - 2018 - British Journal for the Philosophy of Science 69 (1):253–273.
    This paper examines explanations that turn on non-local geometrical facts about the space of possible configurations a system can occupy. I argue that it makes sense to contrast such explanations from "geometry of motion" with causal explanations. I also explore how my analysis of these explanations cuts across the distinction between kinematics and dynamics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   14 citations  
  31. Can We Have Mathematical Understanding of Physical Phenomena?Gabriel Târziu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (1):91-109.
    Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Importance and Explanatory Relevance: The Case of Mathematical Explanations.Gabriel Târziu - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (3):393-412.
    A way to argue that something plays an explanatory role in science is by linking explanatory relevance with importance in the context of an explanation. The idea is deceptively simple: a part of an explanation is an explanatorily relevant part of that explanation if removing it affects the explanation either by destroying it or by diminishing its explanatory power, i.e. an important part is an explanatorily relevant part. This can be very useful in many ontological debates. My aim in this (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Mathematical Explanations and the Piecemeal Approach to Thinking About Explanation.Gabriel Târziu - 2018 - Logique Et Analyse 61 (244):457-487.
    A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Complements, Not Competitors: Causal and Mathematical Explanations.Holly Andersen - 2017 - British Journal for the Philosophy of Science:axw023.
    A finer-grained delineation of a given explanandum reveals a nexus of closely related causal and non- causal explanations, complementing one another in ways that yield further explanatory traction on the phenomenon in question. By taking a narrower construal of what counts as a causal explanation, a new class of distinctively mathematical explanations pops into focus; Lange’s characterization of distinctively mathematical explanations can be extended to cover these. This new class of distinctively mathematical explanations is illustrated with the Lotka-Volterra equations. There (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   13 citations  
  35. The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal structure of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  36. The Directionality of Distinctively Mathematical Explanations.Carl F. Craver & Mark Povich - 2017 - Studies in History and Philosophy of Science Part A 63:31-38.
    In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This inadequacy is remediable in each (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   16 citations  
  37. The Difference Between Epistemic and Metaphysical Necessity.Martin Glazier - 2017 - Synthese 198 (Suppl 6):1409-1424.
    Philosophers have observed that metaphysical necessity appears to be a true or real or genuine form of necessity while epistemic necessity does not. Similarly, natural necessity appears genuine while deontic necessity does not. But what is it for a form of necessity to be genuine? I defend an account of genuine necessity in explanatory terms. The genuine forms of necessity, I argue, are those that provide what I call necessitarianexplanation. I discuss the relationship of necessitarian explanation to ground.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  38. Taking Reductionism to the Limit: How to Rebut the Antireductionist Argument From Infinite Limits.Juha Saatsi & Alexander Reutlinger - 2017 - Philosophy of Science (3):455-482.
    This paper analyses the anti-reductionist argument from renormalisation group explanations of universality, and shows how it can be rebutted if one assumes that the explanation in question is captured by the counterfactual dependence account of explanation.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  39. Multi-Level Selection and the Explanatory Value of Mathematical Decompositions.Christopher Clarke - 2016 - British Journal for the Philosophy of Science 67 (4):1025-1055.
    Do multi-level selection explanations of the evolution of social traits deepen the understanding provided by single-level explanations? Central to the former is a mathematical theorem, the multi-level Price decomposition. I build a framework through which to understand the explanatory role of such non-empirical decompositions in scientific practice. Applying this general framework to the present case places two tasks on the agenda. The first task is to distinguish the various ways of suppressing within-collective variation in fitness, and moreover to evaluate their (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  40. Mathematical Representation: Playing a Role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead explains the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  41. Argument and Explanation in Mathematics.Michel Dufour - 2013 - In Dima Mohammed and Marcin Lewiński (ed.), Virtues of Argumentation. Proceedings of the 10th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 22-26 May 2013. pp. pp. 1-14..
    Are there arguments in mathematics? Are there explanations in mathematics? Are there any connections between argument, proof and explanation? Highly controversial answers and arguments are reviewed. The main point is that in the case of a mathematical proof, the pragmatic criterion used to make a distinction between argument and explanation is likely to be insufficient for you may grant the conclusion of a proof but keep on thinking that the proof is not explanatory.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Inference to the Best Explanation and Mathematical Realism.Sorin Ioan Bangu - 2008 - Synthese 160 (1):13-20.
    Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   47 citations  
  43. In Education We Trust.Venkata Rayudu Posina -
    Beginning with an examination of the deep history of making things and thinking about making things made-up in our minds, I argue that the resultant declarative understanding of the procedural knowledge of abstracting theories and building models—the essence(s) of the practice of science—embodied in Conceptual Mathematics is worth learning beginning with high school, along with grammar and calculus. One of the many profound scientific insights introduced—in a manner accessible to total beginners—in Lawvere and Schanuel's Conceptual Mathematics textbook is: the way (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark