View topic on PhilPapers for more information
Related categories

7 found
Order:
More results on PhilPapers
  1. added 2020-01-03
    Rational Analysis, Intractability, and the Prospects of ‘as If’-Explanations.Iris van Rooij, Cory D. Wright, Johan Kwisthout & Todd Wareham - 2018 - Synthese 195 (2):491-510.
    Despite their success in describing and predicting cognitive behavior, the plausibility of so-called ‘rational explanations’ is often contested on the grounds of computational intractability. Several cognitive scientists have argued that such intractability is an orthogonal pseudoproblem, however, since rational explanations account for the ‘why’ of cognition but are agnostic about the ‘how’. Their central premise is that humans do not actually perform the rational calculations posited by their models, but only act as if they do. Whether or not the problem (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  2. added 2019-12-06
    Reseña de ' Los Límites Exteriores de la Razón '(The Outer Limits of Reason) por Noson Yanofsky 403p (2013) (revision revisada 2019).Michael Richard Starks - 2019 - In Delirios Utópicos Suicidas en el Siglo 21 La filosofía, la naturaleza humana y el colapso de la civilización Artículos y reseñas 2006-2019 4a Edición. Las Vegas, NV USA: Reality Press. pp. 283-298.
    Doy una revisión detallada de ' los límites externos de la razón ' por Noson Yanofsky desde una perspectiva unificada de Wittgenstein y la psicología evolutiva. Yo indiqué que la dificultad con cuestiones como la paradoja en el lenguaje y las matemáticas, la incompletitud, la indeterminación, la computabilidad, el cerebro y el universo como ordenadores, etc., surgen de la falta de mirada cuidadosa a nuestro uso del lenguaje en el adecuado contexto y, por tanto, el Error al separar los problemas (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  3. added 2019-12-05
    Wolpert, Chaitin y Wittgenstein sobre la imposibilidad, la incompletitud, la paradoja mentirosa, el teísmo, los límites de la computación, un principio de incertidumbre mecánica no cuántica y el universo como computadora, el teorema definitivo en la teoría de la máquina de Turing (revisado en 2019).Michael Richard Starks - 2019 - In Delirios Utópicos Suicidas en el Siglo 21 La filosofía, la naturaleza humana y el colapso de la civilización Artículos y reseñas 2006-2019 4a Edición. Las Vegas, NV USA: Reality Press. pp. 278-282.
    He leído muchas discusiones recientes sobre los límites de la computación y el universo como computadora, con la esperanza de encontrar algunos comentarios sobre el increíble trabajo del físico polimatemático y teórico de la decisión David Wolpert pero no han encontrado una sola citación y así que presento esta muy breve Resumen. Wolpert demostró algunos teoremas sorprendentes de imposibilidad o incompletos (1992 a 2008-ver arxiv dot org) en los límites de la inferencia (computación) que son tan generales que son independientes (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  4. added 2018-04-10
    The Mathematical Theory of Categories in Biology and the Concept of Natural Equivalence in Robert Rosen.Franck Varenne - 2013 - Revue d'Histoire des Sciences 66 (1):167-197.
    The aim of this paper is to describe and analyze the epistemological justification of a proposal initially made by the biomathematician Robert Rosen in 1958. In this theoretical proposal, Rosen suggests using the mathematical concept of “category” and the correlative concept of “natural equivalence” in mathematical modeling applied to living beings. Our questions are the following: According to Rosen, to what extent does the mathematical notion of category give access to more “natural” formalisms in the modeling of living beings? Is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. added 2018-02-17
    Three Concepts of Decidability for General Subsets of Uncountable Spaces.Matthew W. Parker - 2003 - Theoretical Computer Science 351 (1):2-13.
    There is no uniquely standard concept of an effectively decidable set of real numbers or real n-tuples. Here we consider three notions: decidability up to measure zero [M.W. Parker, Undecidability in Rn: Riddled basins, the KAM tori, and the stability of the solar system, Phil. Sci. 70(2) (2003) 359–382], which we abbreviate d.m.z.; recursive approximability [or r.a.; K.-I. Ko, Complexity Theory of Real Functions, Birkhäuser, Boston, 1991]; and decidability ignoring boundaries [d.i.b.; W.C. Myrvold, The decision problem for entanglement, in: R.S. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  6. added 2016-06-13
    David Wolpert on Impossibility, Incompleteness, the Liar Paradox, the Limits of Computation, a Non-Quantum Mechanical Uncertainty Principle and the Universe as Computer—the Ultimate Theorem in Turing Machine Theory.Michael Starks - manuscript
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and even (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. added 2014-03-14
    Undecidability in Rn: Riddled Basins, the KAM Tori, and the Stability of the Solar System.Matthew W. Parker - 2003 - Philosophy of Science 70 (2):359-382.
    Some have suggested that certain classical physical systems have undecidable long-term behavior, without specifying an appropriate notion of decidability over the reals. We introduce such a notion, decidability in (or d- ) for any measure , which is particularly appropriate for physics and in some ways more intuitive than Ko's (1991) recursive approximability (r.a.). For Lebesgue measure , d- implies r.a. Sets with positive -measure that are sufficiently "riddled" with holes are never d- but are often r.a. This explicates Sommerer (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations