Number Theory

Edited by William D'Alessandro (University of Oxford, University of Oxford, William & Mary)
Related

Contents
33 found
Order:
  1. Why did Fermat believe he had `a truly marvellous demonstration' of FLT?Bhupinder Singh Anand - manuscript
    Conventional wisdom dictates that proofs of mathematical propositions should be treated as necessary, and sufficient, for entailing `significant' mathematical truths only if the proofs are expressed in a---minimally, deemed consistent---formal mathematical theory in terms of: * Axioms/Axiom schemas * Rules of Deduction * Definitions * Lemmas * Theorems * Corollaries. Whilst Andrew Wiles' proof of Fermat's Last Theorem FLT, which appeals essentially to geometrical properties of real and complex numbers, can be treated as meeting this criteria, it nevertheless leaves two (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Physical Possibility and Determinate Number Theory.Sharon Berry - manuscript
    It's currently fashionable to take Putnamian model theoretic worries seriously for mathematics, but not for discussions of ordinary physical objects and the sciences. But I will argue that (under certain mild assumptions) merely securing determinate reference to physical possibility suffices to rule out nonstandard models of our talk of numbers. So anyone who accepts realist reference to physical possibility should not reject reference to the standard model of the natural numbers on Putnamian model theoretic grounds.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Why Did Thomas Harriot Invent Binary?Lloyd Strickland - 2024 - Mathematical Intelligencer 46 (1):57-62.
    From the early eighteenth century onward, primacy for the invention of binary numeration and arithmetic was almost universally credited to the German polymath Gottfried Wilhelm Leibniz (1646–1716). Then, in 1922, Frank Vigor Morley (1899–1980) noted that an unpublished manuscript of the English mathematician, astronomer, and alchemist Thomas Harriot (1560–1621) contained the numbers 1 to 8 in binary. Morley’s only comment was that this foray into binary was “certainly prior to the usual dates given for binary numeration”. Almost thirty years later, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. F Things You (Probably) Didn't Know About Hexadecimal.Lloyd Strickland & Owain Daniel Jones - 2023 - The Mathematical Intelligencer 45:126-130.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Idéaux de preuve : explication et pureté.Andrew Arana - 2022 - In Andrew Arana & Marco Panza (eds.), Précis de philosophie de la logique et des mathématiques, Volume 2, philosophie des mathématiques. Paris: Editions de la Sorbonne. pp. 387-425.
    Why do mathematics often give several proofs of the same theorem? This is the question raised in this article, introducing the notion of an epistemic ideal and discussing two such ideals, the explanatoriness and purity of proof.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. A Note on Triple Repetition Sequence of Domination Number in Graphs.Leomarich Casinillo, Emily Casinillo & Lanndon Ocampo - 2022 - Inprime: Indonesian Journal of Pure and Applied Mathematics 4 (2):72-81.
    A set D subset of V(G) is a dominating set of a graph G if for all x ϵ V(G)\D, for some y ϵ D such that xy ϵ E(G). A dominating set D subset of V(G) is called a connected dominating set of a graph G if the subgraph <D> induced by D is connected. A connected domination number of G, denoted by γ_c(G), is the minimum cardinality of a connected dominating set D. The triple repetition sequence denoted by (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Unrealistic Models in Mathematics.William D'Alessandro - 2022 - Philosophers' Imprint.
    Models are indispensable tools of scientific inquiry, and one of their main uses is to improve our understanding of the phenomena they represent. How do models accomplish this? And what does this tell us about the nature of understanding? While much recent work has aimed at answering these questions, philosophers' focus has been squarely on models in empirical science. I aim to show that pure mathematics also deserves a seat at the table. I begin by presenting two cases: Cramér’s random (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Two-sorted Frege Arithmetic is not Conservative.Stephen Mackereth & Jeremy Avigad - 2022 - Review of Symbolic Logic:1-34.
    Neo-Fregean logicists claim that Hume's Principle (HP) may be taken as an implicit definition of cardinal number, true simply by fiat. A longstanding problem for neo-Fregean logicism is that HP is not deductively conservative over pure axiomatic second-order logic. This seems to preclude HP from being true by fiat. In this paper, we study Richard Kimberly Heck's Two-sorted Frege Arithmetic (2FA), a variation on HP which has been thought to be deductively conservative over second-order logic. We show that it isn't. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Leibniz on Binary: The Invention of Computer Arithmetic.Lloyd Strickland & Harry R. Lewis - 2022 - Cambridge, MA, USA: The MIT Press.
    The first collection of Leibniz's key writings on the binary system, newly translated, with many previously unpublished in any language. -/- The polymath Gottfried Wilhelm Leibniz (1646–1716) is known for his independent invention of the calculus in 1675. Another major—although less studied—mathematical contribution by Leibniz is his invention of binary arithmetic, the representational basis for today's digital computing. This book offers the first collection of Leibniz's most important writings on the binary system, all newly translated by the authors with many (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Cubic Polynomial for the Series of Consecutive Cubes under Alternating Signs.Leomarich Casinillo - 2021 - Inprime: Indonesian Journal of Pure and Applied Mathematics 3 (2):86-91.
    This paper aims to develop an elegant formula for the series of consecutive cubes of natural numbers under alternating signs. In addition, this paper investigates the formula under odd and even number of terms and discuss some important findings.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. Some Results on a Generalized Version of Congruent Numbers.Leomarich Casinillo & Emily Casinillo - 2021 - Inprime: Indonesian Journal of Pure and Applied Mathematics 3 (1):1-6.
    This paper aims to construct a new formula that generates a generalized version of congruent numbers based on a generalized version of Pythagorean triples. Here, an elliptic curve equation is constructed from the derived generalized version of Pythagorean triples and congruent numbers and gives some new results.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. On Not Saying What We Shouldn't Have to Say.Shay Logan & Leach-Krouse Graham - 2021 - Australasian Journal of Logic 18 (5):524-568.
    In this paper we introduce a novel way of building arithmetics whose background logic is R. The purpose of doing this is to point in the direction of a novel family of systems that could be candidates for being the infamous R#1/2 that Meyer suggested we look for.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. The God-given Naturals, Induction and Recursion.Paulo Veloso & André Porto - 2021 - O Que Nos Faz Pensar 29 (49):115-156.
    We discuss some basic issues underlying the natural numbers: induction and recursion. We examine recursive formulations and their use in establishing universal and particular properties.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth.William D’Alessandro - 2020 - Synthese (9):1-44.
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to Gauss (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  15. Hilbert's 10th Problem for solutions in a subring of Q.Agnieszka Peszek & Apoloniusz Tyszka - 2019 - Scientific Annals of Computer Science 29 (1):101-111.
    Yuri Matiyasevich's theorem states that the set of all Diophantine equations which have a solution in non-negative integers is not recursive. Craig Smoryński's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. Let R be a subring of Q with or without 1. By H_{10}(R), we denote the problem of whether there exists an algorithm which for any given Diophantine equation with integer coefficients, can decide whether (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. On Certain Axiomatizations of Arithmetic of Natural and Integer Numbers.Urszula Wybraniec-Skardowska - 2019 - Axioms 2019 (Deductive Systems).
    The systems of arithmetic discussed in this work are non-elementary theories. In this paper, natural numbers are characterized axiomatically in two di erent ways. We begin by recalling the classical set P of axioms of Peano’s arithmetic of natural numbers proposed in 1889 (including such primitive notions as: set of natural numbers, zero, successor of natural number) and compare it with the set W of axioms of this arithmetic (including the primitive notions like: set of natural numbers and relation of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  18. Husserl’s Early Semiotics and Number Signs: Philosophy of Arithmetic through the Lens of “On the Logic of Signs ”.Thomas Byrne - 2017 - Journal of the British Society for Phenomenology 48 (4):287-303.
    This paper demonstrates that Edmund Husserl’s frequently overlooked 1890 manuscript, “On the Logic of Signs,” when closely investigated, reveals itself to be the hermeneutical touchstone for his seminal 1891 Philosophy of Arithmetic. As the former comprises Husserl’s earliest attempt to account for all of the different kinds of signitive experience, his conclusions there can be directly applied to the latter, which is focused on one particular type of sign; namely, number signs. Husserl’s 1890 descriptions of motivating and replacing signs will (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  19. Purity in Arithmetic: some Formal and Informal Issues.Andrew Arana - 2014 - In Godehard Link (ed.), Formalism and Beyond: On the Nature of Mathematical Discourse. Boston: De Gruyter. pp. 315-336.
    Over the years many mathematicians have voiced a preference for proofs that stay “close” to the statements being proved, avoiding “foreign”, “extraneous”, or “remote” considerations. Such proofs have come to be known as “pure”. Purity issues have arisen repeatedly in the practice of arithmetic; a famous instance is the question of complex-analytic considerations in the proof of the prime number theorem. This article surveys several such issues, and discusses ways in which logical considerations shed light on these issues.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  20. Hilbert's Objectivity.Lydia Patton - 2014 - Historia Mathematica 41 (2):188-203.
    Detlefsen (1986) reads Hilbert's program as a sophisticated defense of instrumentalism, but Feferman (1998) has it that Hilbert's program leaves significant ontological questions unanswered. One such question is of the reference of individual number terms. Hilbert's use of admittedly "meaningless" signs for numbers and formulae appears to impair his ability to establish the reference of mathematical terms and the content of mathematical propositions (Weyl (1949); Kitcher (1976)). The paper traces the history and context of Hilbert's reasoning about signs, which illuminates (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  21. Reference to numbers in natural language.Friederike Moltmann - 2013 - Philosophical Studies 162 (3):499 - 536.
    A common view is that natural language treats numbers as abstract objects, with expressions like the number of planets, eight, as well as the number eight acting as referential terms referring to numbers. In this paper I will argue that this view about reference to numbers in natural language is fundamentally mistaken. A more thorough look at natural language reveals a very different view of the ontological status of natural numbers. On this view, numbers are not primarily treated abstract objects, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   53 citations  
  22. On Infinite Number and Distance.Jeremy Gwiazda - 2012 - Constructivist Foundations 7 (2):126-130.
    Context: The infinite has long been an area of philosophical and mathematical investigation. There are many puzzles and paradoxes that involve the infinite. Problem: The goal of this paper is to answer the question: Which objects are the infinite numbers (when order is taken into account)? Though not currently considered a problem, I believe that it is of primary importance to identify properly the infinite numbers. Method: The main method that I employ is conceptual analysis. In particular, I argue that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. Frege's Changing Conception of Number.Kevin C. Klement - 2012 - Theoria 78 (2):146-167.
    I trace changes to Frege's understanding of numbers, arguing in particular that the view of arithmetic based in geometry developed at the end of his life (1924–1925) was not as radical a deviation from his views during the logicist period as some have suggested. Indeed, by looking at his earlier views regarding the connection between numbers and second-level concepts, his understanding of extensions of concepts, and the changes to his views, firstly, in between Grundlagen and Grundgesetze, and, later, after learning (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  24. Invited book review of Stanislas Debaene, The Number Sense: How the Mind Creates Mathematics (New York: Oxford University Press, 1997). [REVIEW]Stephen Palmquist - 2012 - Journal of Scientific Exploration 26 (4):928-930.
    What Stanislas Debaene dubs "the number sense" is a natural ability humans share with other animals, enabling us to "count" to four virtually instantaneously. This so-called "accumulator" provides "a direct intuition of what numbers mean". Beyond four, our ability to perceive numbers becomes approximate, though concepts enable us to move beyond approximation. Because humans typically learn number concepts in early childhood, we easily forget that our brains retain the number sense throughout life. This book examines the biological basis for this (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. L'infinité des nombres premiers : une étude de cas de la pureté des méthodes.Andrew Arana - 2011 - Les Etudes Philosophiques 97 (2):193.
    Une preuve est pure si, en gros, elle ne réfère dans son développement qu’à ce qui est « proche » de, ou « intrinsèque » à l’énoncé à prouver. L’infinité des nombres premiers, un théorème classique de l’arithmétique, est un cas d’étude particulièrement riche pour les recherches philosophiques sur la pureté. Deux preuves différentes de ce résultat sont ici considérées, à savoir la preuve euclidienne classique et une preuve « topologique » plus récente proposée par Furstenberg. D’un point de vue (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  26. How to Learn the Natural Numbers: Inductive Inference and the Acquisition of Number Concepts.Eric Margolis & Stephen Laurence - 2008 - Cognition 106 (2):924-939.
    Theories of number concepts often suppose that the natural numbers are acquired as children learn to count and as they draw an induction based on their interpretation of the first few count words. In a bold critique of this general approach, Rips, Asmuth, Bloomfield [Rips, L., Asmuth, J. & Bloomfield, A.. Giving the boot to the bootstrap: How not to learn the natural numbers. Cognition, 101, B51–B60.] argue that such an inductive inference is consistent with a representational system that clearly (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   18 citations  
  27. Exact and Approximate Arithmetic in an Amazonian Indigene Group.Pierre Pica, Cathy Lemer, Véronique Izard & Stanislas Dehaene - 2004 - Science 306 (5695):499-503.
    Is calculation possible without language? Or is the human ability for arithmetic dependent on the language faculty? To clarify the relation between language and arithmetic, we studied numerical cognition in speakers of Mundurukú, an Amazonian language with a very small lexicon of number words. Although the Mundurukú lack words for numbers beyond 5, they are able to compare and add large approximate numbers that are far beyond their naming range. However, they fail in exact arithmetic with numbers larger than 4 (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   169 citations  
  28. Objectivity And Proof In A Classical Indian Theory Of Number.Jonardon Ganeri - 2001 - Synthese 129 (3):413-437.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Semantic Arithmetic: A Preface.John Corcoran - 1995 - Agora 14 (1):149-156.
    SEMANTIC ARITHMETIC: A PREFACE John Corcoran Abstract Number theory, or pure arithmetic, concerns the natural numbers themselves, not the notation used, and in particular not the numerals. String theory, or pure syntax, concems the numerals as strings of «uninterpreted» characters without regard to the numbe~s they may be used to denote. Number theory is purely arithmetic; string theory is purely syntactical... in so far as the universe of discourse alone is considered. Semantic arithmetic is a broad subject which begins when (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Structure and the Concept of Number.Mark Eli Kalderon - 1995 - Dissertation, Princeton University
    The present essay examines and critically discusses Paul Benacerraf's antiplatonist argument of "What Numbers Could Not Be." In the course of defending platonism against Benacerraf's semantic skepticism, I develop a novel platonist analysis of the content of arithmetic on the basis of which the necessary existence of the natural numbers and the nature of numerical reference are explained.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  31. A Comprehensive Review of Diamonds and their Incarnations in the Langlands Program. [REVIEW]Dobson Shanna - manuscript
    A comprehensive review of diamonds, in the sense of Scholze, is presented. The diamond formulations of the Fargues-Fontaine curve and Bun_G are stated. Principal results centered on the diamond formalism in the global Langlands correspondence and the geometrization of the local Langlands correspondence are given. We conclude with a discussion of future geometrizations, and conjecture a diamond reformulation of quantum computational complexity towards a diamond ER = EPR.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  32. Infinite numbers are large finite numbers.Jeremy Gwiazda - unknown
    In this paper, I suggest that infinite numbers are large finite numbers, and that infinite numbers, properly understood, are 1) of the structure omega + (omega* + omega)Ө + omega*, and 2) the part is smaller than the whole. I present an explanation of these claims in terms of epistemic limitations. I then consider the importance, part of which is demonstrating the contradiction that lies at the heart of Cantorian set theory: the natural numbers are too large to be counted (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. The Future of the Concept of Infinite Number.Jeremy Gwiazda - unknown
    In ‘The Train Paradox’, I argued that sequential random selections from the natural numbers would grow through time. I used this claim to present a paradox. In response to this proposed paradox, Jon Pérez Laraudogoitia has argued that random selections from the natural numbers do not grow through time. In this paper, I defend and expand on the argument that random selections from the natural numbers grow through time. I also situate this growth of random selections in the context of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark