View topic on PhilPapers for more information
Related categories

112 found
Order:
More results on PhilPapers
1 — 50 / 112
  1. Computational Reverse Mathematics and Foundational Analysis.Benedict Eastaugh - manuscript
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. The Power of Naive Truth.Hartry Field - manuscript
    While non-classical theories of truth that take truth to be transparent have some obvious advantages over any classical theory that evidently must take it as non-transparent, several authors have recently argued that there's also a big disadvantage of non-classical theories as compared to their “external” classical counterparts: proof-theoretic strength. While conceding the relevance of this, the paper argues that there is a natural way to beef up extant internal theories so as to remove their proof-theoretic disadvantage. It is suggested that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. A Decision Procedure for Herbrand Formulas Without Skolemization.Timm Lampert - manuscript
    This paper describes a decision procedure for disjunctions of conjunctions of anti-prenex normal forms of pure first-order logic (FOLDNFs) that do not contain V within the scope of quantifiers. The disjuncts of these FOLDNFs are equivalent to prenex normal forms whose quantifier-free parts are conjunctions of atomic and negated atomic formulae (= Herbrand formulae). In contrast to the usual algorithms for Herbrand formulae, neither skolemization nor unification algorithms with function symbols are applied. Instead, a procedure is described that rests on (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Cut Elimination for Systems of Transparent Truth with Restricted Initial Sequents.Carlo Nicolai - manuscript
    The paper studies a cluster of systems for fully disquotational truth based on the restriction of initial sequents. Unlike well-known alternative approaches, such systems display both a simple and intuitive model theory and remarkable proof-theoretic properties. We start by showing that, due to a strong form of invertibility of the truth rules, cut is eliminable in the systems via a standard strategy supplemented by a suitable measure of the number of applications of truth rules to formulas in derivations. Next, we (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Contradiction From the Fixed Point Lemma.T. Parent - manuscript
    Assuming that PRA (primitive recursive arithmetic) is consistent and Church's Thesis is true, the Fixed Point Lemma enables the derivation of a contradiction, in a manner akin to the v-Curry paradox. The derivation could be blocked by excluding certain formulae from the scope of the Lemma, but this would effectively concede that the unrestricted Lemma is false. The resolution of the paradox thus remains an open question.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  6. Contradiction From a Coded Proof Predicate (Very Tentative Draft, Do Not Cite).T. Parent - manuscript
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Aristotle's Theory of the Assertoric Syllogism.Stephen Read - manuscript
    Although the theory of the assertoric syllogism was Aristotle's great invention, one which dominated logical theory for the succeeding two millenia, accounts of the syllogism evolved and changed over that time. Indeed, in the twentieth century, doctrines were attributed to Aristotle which lost sight of what Aristotle intended. One of these mistaken doctrines was the very form of the syllogism: that a syllogism consists of three propositions containing three terms arranged in four figures. Yet another was that a syllogism is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. On the Notion of Validity for the Bilateral Classical Logic.Ukyo Suzuki & Yoriyuki Yamagata - manuscript
    This paper considers Rumfitt’s bilateral classical logic (BCL), which is proposed to counter Dummett’s challenge to classical logic. First, agreeing with several authors, we argue that Rumfitt’s notion of harmony, used to justify logical rules by a purely proof theoretical manner, is not sufficient to justify coordination rules in BCL purely proof-theoretically. For the central part of this paper, we propose a notion of proof-theoretical validity similar to Prawitz for BCL and proves that BCL is sound and complete respect to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Epistemic Multilateral Logic.Luca Incurvati & Julian J. Schlöder - forthcoming - Review of Symbolic Logic:1-44.
    We present epistemic multilateral logic, a general logical framework for reasoning involving epistemic modality. Standard bilateral systems use propositional formulae marked with signs for assertion and rejection. Epistemic multilateral logic extends standard bilateral systems with a sign for the speech act of weak assertion (Incurvati and Schlöder 2019) and an operator for epistemic modality. We prove that epistemic multilateral logic is sound and complete with respect to the modal logic S5 modulo an appropriate translation. The logical framework developed provides the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. Normalisation and Subformula Property for a System of Classical Logic with Tarski’s Rule.Nils Kürbis - forthcoming - Archive for Mathematical Logic:1-25.
    This paper considers a formalisation of classical logic using general introduction rules and general elimination rules. It proposes a definition of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system, and gives reduction procedures for them. It is then shown that deductions in the system convert into normal form, i.e. deductions that contain neither maximal formulas nor maximal segments, and that deductions in normal form satisfy the subformula property. Tarski’s Rule is treated as a general introduction rule for implication. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. Against Harmony.Ian Rumfitt - forthcoming - In Bob Hale, Crispin Wright & Alexander Miller (eds.), The Blackwell Companion to the Philosophy of Language. Blackwell.
    Many prominent writers on the philosophy of logic, including Michael Dummett, Dag Prawitz, Neil Tennant, have held that the introduction and elimination rules of a logical connective must be ‘in harmony ’ if the connective is to possess a sense. This Harmony Thesis has been used to justify the choice of logic: in particular, supposed violations of it by the classical rules for negation have been the basis for arguments for switching from classical to intuitionistic logic. The Thesis has also (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. An Epistemic Interpretation of Paraconsistent Weak Kleene Logic.Damian E. Szmuc - forthcoming - Logic and Logical Philosophy:1.
    This paper extends Fitting's epistemic interpretation of some Kleene logics, to also account for Paraconsistent Weak Kleene logic. To achieve this goal, a dualization of Fitting's "cut-down" operator is discussed, rendering a "track-down" operator later used to represent the idea that no consistent opinion can arise from a set including an inconsistent opinion. It is shown that, if some reasonable assumptions are made, the truth-functions of Paraconsistent Weak Kleene coincide with certain operations defined in this track-down fashion. Finally, further reflections (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  13. A Simple Logical Matrix and Sequent Calculus for Parry’s Logic of Analytic Implication.Damian E. Szmuc - forthcoming - Studia Logica:1-38.
    We provide a logical matrix semantics and a Gentzen-style sequent calculus for the first-degree entailments valid in W. T. Parry's logic of Analytic Implication. We achieve the former by introducing a logical matrix closely related to that inducing paracomplete weak Kleene logic, and the latter by presenting a calculus where the initial sequents and the left and right rules for negation are subject to linguistic constraints.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. The (Greatest) Fragment of Classical Logic That Respects the Variable-Sharing Principle (in the Fmla-Fmla Framework).Damian E. Szmuc - forthcoming - Bulletin of the Section of Logic.
    We examine the set of formula-to-formula valid inferences of Classical Logic, where the premise and the conclusion share at least a propositional variable in common. We review the fact, already proved in the literature, that such a system is identical to the first-degree entailment fragment of R. Epstein's Relatedness Logic, and that it is a non-transitive logic of the sort investigated by S. Frankowski and others. Furthermore, we provide a semantics and a calculus for this logic. The semantics is defined (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. Takeuti's well-ordering proofs revisited.Andrew Arana & Ryota Akiyoshi - 2021 - Mita Philosophy Society 3 (146):83-110.
    Gaisi Takeuti extended Gentzen's work to higher-order case in 1950's–1960's and proved the consistency of impredicative subsystems of analysis. He has been chiefly known as a successor of Hilbert's school, but we pointed out in the previous paper that Takeuti's aimed to investigate the relationships between "minds" by carrying out his proof-theoretic project rather than proving the "reliability" of such impredicative subsystems of analysis. Moreover, as briefly explained there, his philosophical ideas can be traced back to Nishida's philosophy in Kyoto's (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  16. Normalisation for Bilateral Classical Logic with Some Philosophical Remarks.Nils Kürbis - 2021 - Journal of Applied Logics 2 (8):531-556.
    Bilateralists hold that the meanings of the connectives are determined by rules of inference for their use in deductive reasoning with asserted and denied formulas. This paper presents two bilateral connectives comparable to Prior's tonk, for which, unlike for tonk, there are reduction steps for the removal of maximal formulas arising from introducing and eliminating formulas with those connectives as main operators. Adding either of them to bilateral classical logic results in an incoherent system. One way around this problem is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. On the Correspondence Between Nested Calculi and Semantic Systems for Intuitionistic Logics.Tim Lyon - 2021 - Journal of Logic and Computation 31 (1):213-265.
    This paper studies the relationship between labelled and nested calculi for propositional intuitionistic logic, first-order intuitionistic logic with non-constant domains and first-order intuitionistic logic with constant domains. It is shown that Fitting’s nested calculi naturally arise from their corresponding labelled calculi—for each of the aforementioned logics—via the elimination of structural rules in labelled derivations. The translational correspondence between the two types of systems is leveraged to show that the nested calculi inherit proof-theoretic properties from their associated labelled calculi, such as (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  18. The Varieties of Ought-Implies-Can and Deontic STIT Logic.Kees van Berkel & Tim Lyon - 2021 - In Fenrong Liu, Alessandra Marra, Paul Portner & Frederik Van De Putte (eds.), Deontic Logic and Normative Systems: 15th International Conference.
    STIT logic is a prominent framework for the analysis of multi-agent choice-making. In the available deontic extensions of STIT, the principle of Ought-implies-Can (OiC) fulfills a central role. However, in the philosophical literature a variety of alternative OiC interpretations have been proposed and discussed. This paper provides a modular framework for deontic STIT that accounts for a multitude of OiC readings. In particular, we discuss, compare, and formalize ten such readings. We provide sound and complete sequent-style calculi for all of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  19. From Hilbert Proofs to Consecutions and Back.Tore Fjetland Øgaard - 2021 - Australasian Journal of Logic 18 (2):51-72.
    Restall set forth a "consecution" calculus in his "An Introduction to Substructural Logics." This is a natural deduction type sequent calculus where the structural rules play an important role. This paper looks at different ways of extending Restall's calculus. It is shown that Restall's weak soundness and completeness result with regards to a Hilbert calculus can be extended to a strong one so as to encompass what Restall calls proofs from assumptions. It is also shown how to extend the calculus (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. Definite Descriptions in Intuitionist Positive Free Logic.Nils Kürbis - 2020 - Logic and Logical Philosophy 30:1.
    This paper presents rules of inference for a binary quantifier I for the formalisation of sentences containing definite descriptions within intuitionist positive free logic. I binds one variable and forms a formula from two formulas. Ix[F, G] means ‘The F is G’. The system is shown to have desirable proof-theoretic properties: it is proved that deductions in it can be brought into normal form. The discussion is rounded up by comparisons between the approach to the formalisation of definite descriptions recommended (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  21. Sketch of a Proof-Theoretic Semantics for Necessity.Nils Kürbis - 2020 - In Nicola Olivetti, Rineke Verbrugge & Sara Negri (eds.), Advances in Modal Logic 13. Booklet of Short Papers. Helsinki: pp. 37-43.
    This paper considers proof-theoretic semantics for necessity within Dummett's and Prawitz's framework. Inspired by a system of Pfenning's and Davies's, the language of intuitionist logic is extended by a higher order operator which captures a notion of validity. A notion of relative necessary is defined in terms of it, which expresses a necessary connection between the assumptions and the conclusion of a deduction.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  22. On Deriving Nested Calculi for Intuitionistic Logics From Semantic Systems.Tim Lyon - 2020 - In Sergei Artemov & Anil Nerode (eds.), Logical Foundations of Computer Science. Cham: pp. 177-194.
    This paper shows how to derive nested calculi from labelled calculi for propositional intuitionistic logic and first-order intuitionistic logic with constant domains, thus connecting the general results for labelled calculi with the more refined formalism of nested sequents. The extraction of nested calculi from labelled calculi obtains via considerations pertaining to the elimination of structural rules in labelled derivations. Each aspect of the extraction process is motivated and detailed, showing that each nested calculus inherits favorable proof-theoretic properties from its associated (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic Via Nested Sequents.Tim Lyon, Alwen Tiu, Rajeev Gore & Ranald Clouston - 2020 - In Maribel Fernandez & Anca Muscholl (eds.), 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Dagstuhl, Germany: pp. 1-16.
    We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a "converse" modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, without resorting to embeddings, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  24. On Rudimentarity, Primitive Recursivity and Representability.Saeed Salehi - 2020 - Reports on Mathematical Logic 55:73–85.
    It is quite well-known from Kurt G¨odel’s (1931) ground-breaking Incompleteness Theorem that rudimentary relations (i.e., those definable by bounded formulae) are primitive recursive, and that primitive recursive functions are representable in sufficiently strong arithmetical theories. It is also known, though perhaps not as well-known as the former one, that some primitive recursive relations are not rudimentary. We present a simple and elementary proof of this fact in the first part of the paper. In the second part, we review some possible (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. Theories of Truth Based on Four-Valued Infectious Logics.Damian Szmuc, Bruno Da Re & Federico Pailos - 2020 - Logic Journal of the IGPL 28 (5):712-746.
    Infectious logics are systems that have a truth-value that is assigned to a compound formula whenever it is assigned to one of its components. This paper studies four-valued infectious logics as the basis of transparent theories of truth. This take is motivated as a way to treat different pathological sentences differently, namely, by allowing some of them to be truth-value gluts and some others to be truth-value gaps and as a way to treat the semantic pathology suffered by at least (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  26. Takeuti's Proof Theory in the Context of the Kyoto School.Andrew Arana - 2019 - Jahrbuch Für Philosophie Das Tetsugaku-Ronso 46:1-17.
    Gaisi Takeuti (1926–2017) is one of the most distinguished logicians in proof theory after Hilbert and Gentzen. He extensively extended Hilbert's program in the sense that he formulated Gentzen's sequent calculus, conjectured that cut-elimination holds for it (Takeuti's conjecture), and obtained several stunning results in the 1950–60s towards the solution of his conjecture. Though he has been known chiefly as a great mathematician, he wrote many papers in English and Japanese where he expressed his philosophical thoughts. In particular, he used (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Stoic Sequent Logic and Proof Theory.Susanne Bobzien - 2019 - History and Philosophy of Logic 40 (3):234-265.
    This paper contends that Stoic logic (i.e. Stoic analysis) deserves more attention from contemporary logicians. It sets out how, compared with contemporary propositional calculi, Stoic analysis is closest to methods of backward proof search for Gentzen-inspired substructural sequent logics, as they have been developed in logic programming and structural proof theory, and produces its proof search calculus in tree form. It shows how multiple similarities to Gentzen sequent systems combine with intriguing dissimilarities that may enrich contemporary discussion. Much of Stoic (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  28. On Proof-Theoretic Approaches to the Paradoxes: Problems of Undergeneration and Overgeneration in the Prawitz-Tennant Analysis.Seungrak Choi - 2019 - Dissertation, Korea University
    In this dissertation, we shall investigate whether Tennant's criterion for paradoxicality(TCP) can be a correct criterion for genuine paradoxes and whether the requirement of a normal derivation(RND) can be a proof-theoretic solution to the paradoxes. Tennant’s criterion has two types of counterexamples. The one is a case which raises the problem of overgeneration that TCP makes a paradoxical derivation non-paradoxical. The other is one which generates the problem of undergeneration that TCP renders a non-paradoxical derivation paradoxical. Chapter 2 deals with (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  29. Set Existence Principles and Closure Conditions: Unravelling the Standard View of Reverse Mathematics.Benedict Eastaugh - 2019 - Philosophia Mathematica 27 (2):153-176.
    It is a striking fact from reverse mathematics that almost all theorems of countable and countably representable mathematics are equivalent to just five subsystems of second order arithmetic. The standard view is that the significance of these equivalences lies in the set existence principles that are necessary and sufficient to prove those theorems. In this article I analyse the role of set existence principles in reverse mathematics, and argue that they are best understood as closure conditions on the powerset of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  30. A Note on Carnap’s Result and the Connectives.Tristan Haze - 2019 - Axiomathes 29 (3):285-288.
    Carnap’s result about classical proof-theories not ruling out non-normal valuations of propositional logic formulae has seen renewed philosophical interest in recent years. In this note I contribute some considerations which may be helpful in its philosophical assessment. I suggest a vantage point from which to see the way in which classical proof-theories do, at least to a considerable extent, encode the meanings of the connectives (not by determining a range of admissible valuations, but in their own way), and I demonstrate (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Weak Assertion.Luca Incurvati & Julian J. Schlöder - 2019 - Philosophical Quarterly 69 (277):741-770.
    We present an inferentialist account of the epistemic modal operator might. Our starting point is the bilateralist programme. A bilateralist explains the operator not in terms of the speech act of rejection ; we explain the operator might in terms of weak assertion, a speech act whose existence we argue for on the basis of linguistic evidence. We show that our account of might provides a solution to certain well-known puzzles about the semantics of modal vocabulary whilst retaining classical logic. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  32. A Binary Quantifier for Definite Descriptions in Intuitionist Negative Free Logic: Natural Deduction and Normalisation.Nils Kürbis - 2019 - Bulletin of the Section of Logic 48 (2):81-97.
    This paper presents a way of formalising definite descriptions with a binary quantifier ι, where ιx[F, G] is read as ‘The F is G’. Introduction and elimination rules for ι in a system of intuitionist negative free logic are formulated. Procedures for removing maximal formulas of the form ιx[F, G] are given, and it is shown that deductions in the system can be brought into normal form.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  33. Two Treatments of Definite Descriptions in Intuitionist Negative Free Logic.Nils Kürbis - 2019 - Bulletin of the Section of Logic 48 (4):299-317.
    Sentences containing definite descriptions, expressions of the form ‘The F’, can be formalised using a binary quantifier ι that forms a formula out of two predicates, where ιx[F, G] is read as ‘The F is G’. This is an innovation over the usual formalisation of definite descriptions with a term forming operator. The present paper compares the two approaches. After a brief overview of the system INFι of intuitionist negative free logic extended by such a quantifier, which was presented in (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. On the Arithmetical Truth of Self‐Referential Sentences.Kaave Lajevardi & Saeed Salehi - 2019 - Theoria 85 (1):8-17.
    We take an argument of Gödel's from his ground‐breaking 1931 paper, generalize it, and examine its validity. The argument in question is this: "the sentence G says about itself that it is not provable, and G is indeed not provable; therefore, G is true".
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Automating Agential Reasoning: Proof-Calculi and Syntactic Decidability for STIT Logics.Tim Lyon & Kees van Berkel - 2019 - In M. Baldoni, M. Dastani, B. Liao, Y. Sakurai & R. Zalila Wenkstern (eds.), PRIMA 2019: Principles and Practice of Multi-Agent Systems. 93413 Cham, Germany: Springer. pp. 202-218.
    This work provides proof-search algorithms and automated counter-model extraction for a class of STIT logics. With this, we answer an open problem concerning syntactic decision procedures and cut-free calculi for STIT logics. A new class of cut-free complete labelled sequent calculi G3LdmL^m_n, for multi-agent STIT with at most n-many choices, is introduced. We refine the calculi G3LdmL^m_n through the use of propagation rules and demonstrate the admissibility of their structural rules, resulting in auxiliary calculi Ldm^m_nL. In the single-agent case, we (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Cut-Free Calculi and Relational Semantics for Temporal STIT Logics.Tim Lyon & Kees van Berkel - 2019 - In Francesco Calimeri, Nicola Leone & Marco Manna (eds.), Logics in Artificial Intelligence. Springer International Publishing. pp. 803 - 819.
    We present cut-free labelled sequent calculi for a central formalism in logics of agency: STIT logics with temporal operators. These include sequent systems for Ldm , Tstit and Xstit. All calculi presented possess essential structural properties such as contraction- and cut-admissibility. The labelled calculi G3Ldm and G3Tstit are shown sound and complete relative to irreflexive temporal frames. Additionally, we extend current results by showing that also Xstit can be characterized through relational frames, omitting the use of BT+AC frames.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  37. From Display to Labelled Proofs for Tense Logics.Agata Ciabattoni, Tim Lyon & Revantha Ramanayake - 2018 - In Anil Nerode & Sergei Artemov (eds.), Logical Foundations of Computer Science. Springer International Publishing. pp. 120 - 139.
    We introduce an effective translation from proofs in the display calculus to proofs in the labelled calculus in the context of tense logics. We identify the labelled calculus proofs in the image of this translation as those built from labelled sequents whose underlying directed graph possesses certain properties. For the basic normal tense logic Kt, the image is shown to be the set of all proofs in the labelled calculus G3Kt.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  38. Is Incompatibilism Compatible with Fregeanism?Nils Kürbis - 2018 - European Journal of Analytic Philosophy 14 (2):27-46.
    This paper considers whether incompatibilism, the view that negation is to be explained in terms of a primitive notion of incompatibility, and Fregeanism, the view that arithmetical truths are analytic according to Frege’s definition of that term in §3 of Foundations of Arithmetic, can both be upheld simultaneously. Both views are attractive on their own right, in particular for a certain empiricist mind-set. They promise to account for two philosophical puzzling phenomena: the problem of negative truth and the problem of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  39. Wordmorph!: A Word Game to Introduce Natural Deduction.Ian Stoner - 2018 - Teaching Philosophy 41 (2):199-204.
    Some logic students falter at the transition from the mechanical method of truth tables to the less-mechanical method of natural deduction. This short paper introduces a word game intended to ease that transition.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  40. Intertranslatability, Theoretical Equivalence, and Perversion.Jack Woods - 2018 - Thought: A Journal of Philosophy 7 (1):58-68.
    I investigate syntactic notions of theoretical equivalence between logical theories and a recent objection thereto. I show that this recent criticism of syntactic accounts, as extensionally inadequate, is unwarranted by developing an account which is plausibly extensionally adequate and more philosophically motivated. This is important for recent anti-exceptionalist treatments of logic since syntactic accounts require less theoretical baggage than semantic accounts.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  41. Rejection in Łukasiewicz's and Słupecki' Sense.Urszula Wybraniec-Skardowska - 2018 - Lvov-Warsaw School. Past and Present.
    The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Łukasiewicz [20]. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions [22, 23]. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced by Łukasiewicz (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  42. Non-Analytic Tableaux for Chellas's Conditional Logic CK and Lewis's Logic of Counterfactuals VC.Richard Zach - 2018 - Australasian Journal of Logic 15 (3):609-628.
    Priest has provided a simple tableau calculus for Chellas's conditional logic Ck. We provide rules which, when added to Priest's system, result in tableau calculi for Chellas's CK and Lewis's VC. Completeness of these tableaux, however, relies on the cut rule.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. On the Alleged Simplicity of Impure Proof.Andrew Arana - 2017 - In Roman Kossak & Philip Ording (eds.), Simplicity: Ideals of Practice in Mathematics and the Arts. pp. 207-226.
    Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to that theorem. Mathematicians employ a variety of terms to identify pure proofs, saying that a pure proof is one that avoids what is “extrinsic,” “extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem under investigation. In the background of these attributions is the view that there is a distance measure (or a variety of such measures) between mathematical statements and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. The Changing Practices of Proof in Mathematics: Gilles Dowek: Computation, Proof, Machine. Cambridge: Cambridge University Press, 2015. Translation of Les Métamorphoses du Calcul, Paris: Le Pommier, 2007. Translation From the French by Pierre Guillot and Marion Roman, $124.00HB, $40.99PB.Andrew Arana - 2017 - Metascience 26 (1):131-135.
    Review of Dowek, Gilles, Computation, Proof, Machine, Cambridge University Press, Cambridge, 2015. Translation of Les Métamorphoses du calcul, Le Pommier, Paris, 2007. Translation from the French by Pierre Guillot and Marion Roman.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  45. Some Concerns Regarding Ternary-Relation Semantics and Truth-Theoretic Semantics in General.Ross T. Brady - 2017 - IfCoLog Journal of Logics and Their Applications 4 (3):755--781.
    This paper deals with a collection of concerns that, over a period of time, led the author away from the Routley–Meyer semantics, and towards proof- theoretic approaches to relevant logics, and indeed to the weak relevant logic MC of meaning containment.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  46. Commentary and Illocutionary Expressions in Linear Calculi of Natural Deduction.Moritz Cordes & Friedrich Reinmuth - 2017 - Logic and Logical Philosophy 26 (2).
    We argue that the need for commentary in commonly used linear calculi of natural deduction is connected to the “deletion” of illocutionary expressions that express the role of propositions as reasons, assumptions, or inferred propositions. We first analyze the formalization of an informal proof in some common calculi which do not formalize natural language illocutionary expressions, and show that in these calculi the formalizations of the example proof rely on commentary devices that have no counterpart in the original proof. We (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  47. When Structural Principles Hold Merely Locally.Ulf Hlobil - 2017 - In Pavel Arazim & Tomáš Lávička (eds.), The Logica Yearbook 2016. London: College Publications. pp. 53-67.
    In substructural logics, structural principles may hold in some fragments of a consequence relation without holding globally. I look at this phenomenon in my preferred substructural logic, in which Weakening and Cut fail but which is supra-intuitionistic. I introduce object language operators that keep track of the admissibility of Weakening and of intuitionistic implications. I end with some ideas about local transitivity.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  48. Against the Unrestricted Applicability of Disjunction Elimination.Marcel Jahn - 2017 - Rerum Causae 9 (2):92-111.
    In this paper, I argue that the disjunction elimination rule presupposes the principle that a true disjunction contains at least one true disjunct. However, in some contexts such as supervaluationism or quantum logic, we have good reasons to reject this principle. Hence, disjunction elimination is restricted in at least one respect: it is not applicable to disjunctions for which this principle does not hold. The insight that disjunction elimination presupposes the principle that a true disjunction contains at least one true (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  49. Bilateralism: Negations, Implications and Some Observations and Problems About Hypotheses.Nils Kürbis - 2017 - In Thomas Piecha & Jean Fichot (eds.), Beyond Logic. Proceedings of the Conference held in Cerisy-la-Salle, 22-27 May 2017. Tübingen, Germany:
    This short paper has two loosely connected parts. In the first part, I discuss the difference between classical and intuitionist logic in relation to different the role of hypotheses play in each logic. Harmony is normally understood as a relation between two ways of manipulating formulas in systems of natural deduction: their introduction and elimination. I argue, however, that there is at least a third way of manipulating formulas, namely the discharge of assumption, and that the difference between classical and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  50. Natural Deduction for Diagonal Operators.Fabio Lampert - 2017 - In Maria Zack & Dirk Schlimm (eds.), Research in History and Philosophy of Mathematics: The CSHPM 2016 Annual Meeting in Calgary, Alberta. Cham: Birkhäuser. pp. 39-51.
    We present a sound and complete Fitch-style natural deduction system for an S5 modal logic containing an actuality operator, a diagonal necessity operator, and a diagonal possibility operator. The logic is two-dimensional, where we evaluate sentences with respect to both an actual world (first dimension) and a world of evaluation (second dimension). The diagonal necessity operator behaves as a quantifier over every point on the diagonal between actual worlds and worlds of evaluation, while the diagonal possibility quantifies over some point (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 112