Contents
29 found
Order:
  1. Are Large Cardinal Axioms Restrictive?Neil Barton - manuscript
    The independence phenomenon in set theory, while pervasive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper, I argue that whether or not large cardinal axioms count as maximality principles depends on prior commitments concerning the richness of the subset forming operation. In particular I argue that there is a conception of maximality through absoluteness, on which large cardinal axioms are restrictive. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Countabilism and Maximality Principles.Neil Barton & Sy-David Friedman - manuscript
    It is standard in set theory to assume that Cantor's Theorem establishes that the continuum is an uncountable set. A challenge for this position comes from the observation that through forcing one can collapse any cardinal to the countable and that the continuum can be made arbitrarily large. In this paper, we present a different take on the relationship between Cantor's Theorem and extensions of universes, arguing that they can be seen as showing that every set is countable and that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Mathematical Infinity, Its Inventors, Discoverers, Detractors, Defenders, Masters, Victims, Users, and Spectators.Edward G. Belaga - manuscript
    "The definitive clarification of the nature of the infinite has become necessary, not merely for the special interests of the individual sciences, but rather for the honour of the human understanding itself. The infinite has always stirred the emotions of mankind more deeply than any other question; the infinite has stimulated and fertilized reason as few other ideas have ; but also the infinite, more than other notion, is in need of clarification." (David Hilbert 1925).
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. The construction of transfinite equivalence algorithms.Han Geurdes - manuscript
    Context: Consistency of mathematical constructions in numerical analysis and the application of computerized proofs in the light of the occurrence of numerical chaos in simple systems. Purpose: To show that a computer in general and a numerical analysis in particular can add its own peculiarities to the subject under study. Hence the need of thorough theoretical studies on chaos in numerical simulation. Hence, a questioning of what e.g. a numerical disproof of a theorem in physics or a prediction in numerical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Conceptions of infinity and set in Lorenzen’s operationist system.Carolin Antos - forthcoming - In Logic, Epistemology and the Unity of Science. Springer.
    In the late 1940s and early 1950s Lorenzen developed his operative logic and mathematics, a form of constructive mathematics. Nowadays this is mostly seen as the precursor to the more well-known dialogical logic and one could assumed that the same philosophical motivations were present in both works. However we want to show that this is not always the case. In particular, we claim, that Lorenzen’s well-known rejection of the actual infinite as stated in Lorenzen (1957) was not a major motivation (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Wand/Set Theories: A realization of Conway's mathematicians' liberation movement, with an application to Church's set theory with a universal set.Tim Button - forthcoming - Journal of Symbolic Logic:1-46.
    Here is a template for introducing mathematical objects: “Objects are found in stages. For every stage S: (1) for any things found before S, you find at S the bland set whose members are exactly those things; (2) for anything, x, which was found before S, you find at S the result of tapping x with any magic wand (provided that the result is not itself a bland set); you find nothing else at S.” -/- This Template has rich applications, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. What is Logical Monism?Justin Clarke-Doane - forthcoming - In Christopher Peacocke & Paul Boghossian (eds.), Normative Realism. Oxford University Press.
    Logical monism is the view that there is ‘One True Logic’. This is the default position, against which pluralists react. If there were not ‘One True Logic’, it is hard to see how there could be one true theory of anything. A theory is closed under a logic! But what is logical monism? In this article, I consider semantic, logical, modal, scientific, and metaphysical proposals. I argue that, on no ‘factualist’ analysis (according to which ‘there is One True Logic’ expresses (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. The iterative conception of function and the iterative conception of set.Tim Button - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    Hilary Putnam once suggested that “the actual existence of sets as ‘intangible objects’ suffers… from a generalization of a problem first pointed out by Paul Benacerraf… are sets a kind of function or are functions a sort of set?” Sadly, he did not elaborate; my aim, here, is to do so on his behalf. There are well-known methods for treating sets as functions and functions as sets. But these do not raise any obvious philosophical or foundational puzzles. For that, we (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Level Theory, Part 3: A Boolean Algebra of Sets Arranged in Well-Ordered Levels.Tim Button - 2022 - Bulletin of Symbolic Logic 28 (1):1-26.
    On a very natural conception of sets, every set has an absolute complement. The ordinary cumulative hierarchy dismisses this idea outright. But we can rectify this, whilst retaining classical logic. Indeed, we can develop a boolean algebra of sets arranged in well-ordered levels. I show this by presenting Boolean Level Theory, which fuses ordinary Level Theory (from Part 1) with ideas due to Thomas Forster, Alonzo Church, and Urs Oswald. BLT neatly implement Conway’s games and surreal numbers; and a natural (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. Mathematical Internal Realism.Tim Button - 2022 - In Sanjit Chakraborty & James Ferguson Conant (eds.), Engaging Putnam. Berlin, Germany: De Gruyter. pp. 157-182.
    In “Models and Reality” (1980), Putnam sketched a version of his internal realism as it might arise in the philosophy of mathematics. Here, I will develop that sketch. By combining Putnam’s model-theoretic arguments with Dummett’s reflections on Gödelian incompleteness, we arrive at (what I call) the Skolem-Gödel Antinomy. In brief: our mathematical concepts are perfectly precise; however, these perfectly precise mathematical concepts are manifested and acquired via a formal theory, which is understood in terms of a computable system of proof, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  11. The entanglement of logic and set theory, constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather than classical logic. In (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Level theory, part 2: Axiomatizing the bare idea of a potential hierarchy.Tim Button - 2021 - Bulletin of Symbolic Logic 27 (4):461-484.
    Potentialists think that the concept of set is importantly modal. Using tensed language as an heuristic, the following bar-bones story introduces the idea of a potential hierarchy of sets: 'Always: for any sets that existed, there is a set whose members are exactly those sets; there are no other sets.' Surprisingly, this story already guarantees well-foundedness and persistence. Moreover, if we assume that time is linear, the ensuing modal set theory is almost definitionally equivalent with non-modal set theories; specifically, with (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. Level theory, part 1: Axiomatizing the bare idea of a cumulative hierarchy of sets.Tim Button - 2021 - Bulletin of Symbolic Logic 27 (4):436-460.
    The following bare-bones story introduces the idea of a cumulative hierarchy of pure sets: 'Sets are arranged in stages. Every set is found at some stage. At any stage S: for any sets found before S, we find a set whose members are exactly those sets. We find nothing else at S.' Surprisingly, this story already guarantees that the sets are arranged in well-ordered levels, and suffices for quasi-categoricity. I show this by presenting Level Theory, a simplification of set theories (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  14. Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, I argue (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  15. The Gödel Incompleteness Theorems (1931) by the Axiom of Choice.Vasil Penchev - 2020 - Econometrics: Mathematical Methods and Programming eJournal (Elsevier: SSRN) 13 (39):1-4.
    Those incompleteness theorems mean the relation of (Peano) arithmetic and (ZFC) set theory, or philosophically, the relation of arithmetical finiteness and actual infinity. The same is managed in the framework of set theory by the axiom of choice (respectively, by the equivalent well-ordering "theorem'). One may discuss that incompleteness form the viewpoint of set theory by the axiom of choice rather than the usual viewpoint meant in the proof of theorems. The logical corollaries from that "nonstandard" viewpoint the relation of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. Maddy On The Multiverse.Claudio Ternullo - 2019 - In Deniz Sarikaya, Deborah Kant & Stefania Centrone (eds.), Reflections on the Foundations of Mathematics. Berlin: Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  17. On Certain Axiomatizations of Arithmetic of Natural and Integer Numbers.Urszula Wybraniec-Skardowska - 2019 - Axioms 2019 (Deductive Systems).
    The systems of arithmetic discussed in this work are non-elementary theories. In this paper, natural numbers are characterized axiomatically in two di erent ways. We begin by recalling the classical set P of axioms of Peano’s arithmetic of natural numbers proposed in 1889 (including such primitive notions as: set of natural numbers, zero, successor of natural number) and compare it with the set W of axioms of this arithmetic (including the primitive notions like: set of natural numbers and relation of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  18. A naturalistic justification of the generic multiverse with a core.Matteo de Ceglie - 2018 - Contributions of the Austrian Ludwig Wittgenstein Society 26:34-36.
    In this paper, I argue that a naturalist approach in philosophy of mathematics justifies a pluralist conception of set theory. For the pluralist, there is not a Single Universe, but there is rather a Multiverse, composed by a plurality of universes generated by various set theories. In order to justify a pluralistic approach to sets, I apply the two naturalistic principles developed by Penelope Maddy (cfr. Maddy (1997)), UNIFY and MAXIMIZE, and analyze through them the potential of the set theoretic (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  19. Ipotesi del Continuo.Claudio Ternullo - 2017 - Aphex 16.
    L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle ragioni (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. Multiversism and Concepts of Set: How Much Relativism Is Acceptable?Neil Barton - 2016 - In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Cham, Switzerland: Springer International Publishing. pp. 189-209.
    Multiverse Views in set theory advocate the claim that there are many universes of sets, no-one of which is canonical, and have risen to prominence over the last few years. One motivating factor is that such positions are often argued to account very elegantly for technical practice. While there is much discussion of the technical aspects of these views, in this paper I analyse a radical form of Multiversism on largely philosophical grounds. Of particular importance will be an account of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  21. UN SEMPLICE MODO PER TRATTARE LE GRANDEZZE INFINITE ED INFINITESIME.Yaroslav Sergeyev - 2015 - la Matematica Nella Società E Nella Cultura: Rivista Dell’Unione Matematica Italiana, Serie I 8:111-147.
    A new computational methodology allowing one to work in a new way with infinities and infinitesimals is presented in this paper. The new approach, among other things, gives the possibility to calculate the number of elements of certain infinite sets, avoids indeterminate forms and various kinds of divergences. This methodology has been used by the author as a starting point in developing a new kind of computer – the Infinity Computer – able to execute computations and to store in its (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Logic of paradoxes in classical set theories.Boris Čulina - 2013 - Synthese 190 (3):525-547.
    According to Cantor (Mathematische Annalen 21:545–586, 1883 ; Cantor’s letter to Dedekind, 1899 ) a set is any multitude which can be thought of as one (“jedes Viele, welches sich als Eines denken läßt”) without contradiction—a consistent multitude. Other multitudes are inconsistent or paradoxical. Set theoretical paradoxes have common root—lack of understanding why some multitudes are not sets. Why some multitudes of objects of thought cannot themselves be objects of thought? Moreover, it is a logical truth that such multitudes do (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  23. To be or to be not, that is the dilemma.Juan José Luetich - 2012 - Identification Transactions of The Luventicus Academy (ISSN 1666-7581) 1 (1):4.
    A set is precisely defined. A given element either belongs or not to a set. However, since all of the elements being considered belong to the universe, if the element does not belong to the set, it belongs to its complement, that is, what remains after all of the elements from the set are removed from the universe.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  24. INVENTING LOGIC: THE LÖWENHEIM-SKOLEM THEOREM AND FIRST- AND SECOND-ORDER LOGIC.Valérie Lynn Therrien - 2012 - Pensées Canadiennes 10.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. Теоремата на Мартин Льоб във философска интерпретация.Vasil Penchev - 2011 - Philosophical Alternatives 20 (4):142-152.
    А necessary and sllmcient condilion that а given proposition (о Ье provable in such а theory that allows (о Ье assigned to the proposition а Gödеl пunbег fог containing Реanо arithmetic is that Gödеl number itself. This is tlle sense о[ Martin LöЬ's theorem (1955). Now wе сan рut several philosophpllical questions. Is the Gödеl numbег of а propositional formula necessarily finite or onthe contrary? What would the Gödel number of а theorem be containing Реanо arithmetic itself? That is the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  26. Counting systems and the First Hilbert problem.Yaroslav Sergeyev - 2010 - Nonlinear Analysis Series A 72 (3-4):1701-1708.
    The First Hilbert problem is studied in this paper by applying two instruments: a new methodology distinguishing between mathematical objects and mathematical languages used to describe these objects; and a new numeral system allowing one to express different infinite numbers and to use these numbers for measuring infinite sets. Several counting systems are taken into consideration. It is emphasized in the paper that different mathematical languages can describe mathematical objects (in particular, sets and the number of their elements) with different (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Traditional logic and the early history of sets, 1854-1908.José Ferreirós - 1996 - Archive for History of Exact Sciences 50 (1):5-71.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   12 citations  
  28. Foundations without Sets.George Bealer - 1981 - American Philosophical Quarterly 18 (4):347 - 353.
    The dominant school of logic, semantics, and the foundation of mathematics construct its theories within the framework of set theory. There are three strategies by means of which a member of this school might attempt to justify his ontology of sets. One strategy is to show that sets are already included in the naturalistic part of our everyday ontology. If they are, then one may assume that whatever justifies the everyday ontology justifies the ontology of sets. Another strategy is to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  29. Philosophy of Logic. Hilary Putnam. [REVIEW]John Corcoran - 1973 - Philosophy of Science 40 (1):131-133.
    Putnam, Hilary FPhilosophy of logic. Harper Essays in Philosophy. Harper Torchbooks, No. TB 1544. Harper & Row, Publishers, New York-London, 1971. v+76 pp. The author of this book has made highly regarded contributions to mathematics, to philosophy of logic and to philosophy of science, and in this book he brings his ideas in these three areas to bear on the traditional philosophic problem of materialism versus (objective) idealism. The book assumes that contemporary science (mathematical and physical) is largely correct as (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark