View topic on PhilPapers for more information
Related categories

55 found
Order:
More results on PhilPapers
1 — 50 / 55
Material to categorize
  1. Numerical Infinities and Infinitesimals: Methodology, Applications, and Repercussions on Two Hilbert Problems.Yaroslav Sergeyev - 2017 - EMS Surveys in Mathematical Sciences 4 (2):219–320.
    In this survey, a recent computational methodology paying a special attention to the separation of mathematical objects from numeral systems involved in their representation is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework in all the situations requiring these notions. The methodology does not contradict Cantor’s and non-standard analysis views and is based on the Euclid’s Common Notion no. 5 “The whole is greater than the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Subregular Tetrahedra.John Corcoran - 2008 - Bulletin of Symbolic Logic 14 (3):411-2.
    This largely expository lecture deals with aspects of traditional solid geometry suitable for applications in logic courses. Polygons are plane or two-dimensional; the simplest are triangles. Polyhedra [or polyhedrons] are solid or three-dimensional; the simplest are tetrahedra [or triangular pyramids, made of four triangles]. -/- A regular polygon has equal sides and equal angles. A polyhedron having congruent faces and congruent [polyhedral] angles is not called regular, as some might expect; rather they are said to be subregular—a word coined for (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
Logicism in Mathematics
  1. Tuples All the Way Down?Simon Hewitt - manuscript
    We can introduce singular terms for ordered pairs by means of an abstraction principle. Doing so proves useful for a number of projects in the philosophy of mathematics. However there is a question whether we can appeal to the abstraction principle in good faith, since a version of the Caesar Problem can be generated, posing the worry that abstraction fails to introduce expressions which refer determinately to the requisite sort of object. In this short paper I will pose the difficulty, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Meaning, Presuppositions, Truth-Relevance, Gödel's Sentence and the Liar Paradox.X. Y. Newberry - manuscript
    Section 1 reviews Strawson’s logic of presuppositions. Strawson’s justification is critiqued and a new justification proposed. Section 2 extends the logic of presuppositions to cases when the subject class is necessarily empty, such as (x)((Px & ~Px) → Qx) . The strong similarity of the resulting logic with Richard Diaz’s truth-relevant logic is pointed out. Section 3 further extends the logic of presuppositions to sentences with many variables, and a certain valuation is proposed. It is noted that, given this valuation, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Russell on Logicism and Coherence.Conor Mayo-Wilson - 2011 - Russell: The Journal of Bertrand Russell Studies 31 (1):89-106.
    According to Quine, Charles Parsons, Mark Steiner, and others, Russell’s logicist project is important because, if successful, it would show that mathematical theorems possess desirable epistemic properties often attributed to logical theorems, such as aprioricity, necessity, and certainty. Unfortunately, Russell never attributed such importance to logicism, and such a thesis contradicts Russell’s explicitly stated views on the relationship between logic and mathematics. This raises the question: what did Russell understand to be the philosophical importance of logicism? Building on recent work (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Subregular Tetrahedra.John Corcoran - 2008 - Bulletin of Symbolic Logic 14 (3):411-2.
    This largely expository lecture deals with aspects of traditional solid geometry suitable for applications in logic courses. Polygons are plane or two-dimensional; the simplest are triangles. Polyhedra [or polyhedrons] are solid or three-dimensional; the simplest are tetrahedra [or triangular pyramids, made of four triangles]. -/- A regular polygon has equal sides and equal angles. A polyhedron having congruent faces and congruent [polyhedral] angles is not called regular, as some might expect; rather they are said to be subregular—a word coined for (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Neo-Logicism and its Logic.Panu Raatikainen - forthcoming - History and Philosophy of Logic.
    The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions, and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the “logic” assumed rather than from Hume’s principle. It is shown that Hume’s principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only few rudimentary facts of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. What Do I Know With Certainty?Adekanmi Obasa - 2015 - Thoughts on Paper.
    I was faced with a question I thought I could not answer. -/- What do I know, with certainty? -/- I know with absolute certainty that every thought I have is based on my belief system. My beliefs may change and when they do, my thoughts will be directly related to my belief.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  8. Russell on Logicism and Coherence.Conor Mayo-Wilson - 2011 - Journal of Bertrand Russell Studies 31 (1).
    According to Quine, Charles Parsons, Mark Steiner, and others, Russell's logicist project is important because, if successful, it would show that mathematical theorems possess desirable epistemic properties often attributed to logical theorems, such as a prioricity, necessity, and certainty. Unfortunately, Russell never attributed such importance to logicism, and such a thesis contradicts Russell's explicitly stated views on the relationship between logic and mathematics. This raises the question: what did Russell understand to be the philosophical importance of logicism? Building on recent (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Russell: A Guide for the Perplexed.John Ongley & Rosalind Carey - 2013 - Continuum.
    Contents: Introduction / Naïve Logicism / Restricted Logicism / Metaphysics (Early, Middle, Late) / Knowledge (Early, Middle, Late) / Language (Early, Middle, Late) / The Infinite.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Wisdom Mathematics.Nicholas Maxwell - 2010 - Friends of Wisdom Newsletter (6):1-6.
    For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What could mathematics be knowledge (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
Formalism in Mathematics
  1. Numbers and Functions in Hilbert's Finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. A Case Study of Misconceptions Students in the Learning of Mathematics; The Concept Limit Function in High School.Widodo Winarso & Toheri Toheri - 2017 - Jurnal Riset Pendidikan Matematika 4 (1): 120-127.
    This study aims to find out how high the level and trends of student misconceptions experienced by high school students in Indonesia. The subject of research that is a class XI student of Natural Science (IPA) SMA Negeri 1 Anjatan with the subject matter limit function. Forms of research used in this study is a qualitative research, with a strategy that is descriptive qualitative research. The data analysis focused on the results of the students' answers on the test essay subject (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Laplacian Growth Without Surface Tension in Filtration Combustion: Analytical Pole Solution.Oleg Kupervasser - 2016 - Complexity 21 (5):31-42.
    Filtration combustion is described by Laplacian growth without surface tension. These equations have elegant analytical solutions that replace the complex integro-differential motion equations by simple differential equations of pole motion in a complex plane. The main problem with such a solution is the existence of finite time singularities. To prevent such singularities, nonzero surface tension is usually used. However, nonzero surface tension does not exist in filtration combustion, and this destroys the analytical solutions. However, a more elegant approach exists for (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Hilbert's Program Revisited.Panu Raatikainen - 2003 - Synthese 137 (1):157-177.
    After sketching the main lines of Hilbert's program, certain well-known and influential interpretations of the program are critically evaluated, and an alternative interpretation is presented. Finally, some recent developments in logic related to Hilbert's program are reviewed.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Fourteen Arguments in Favour of a Formalist Philosophy of Real Mathematics.Karlis Podnieks - 2015 - Baltic Journal of Modern Computing 3 (1):1-15.
    The formalist philosophy of mathematics (in its purest, most extreme version) is widely regarded as a “discredited position”. This pure and extreme version of formalism is called by some authors “game formalism”, because it is alleged to represent mathematics as a meaningless game with strings of symbols. Nevertheless, I would like to draw attention to some arguments in favour of game formalism as an appropriate philosophy of real mathematics. For the most part, these arguments have not yet been used or (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Consistency Problem and “Unexpected Hanging Paradox” (An Answering to P=NP Problem).Farzad Didehvar - unknown
    Abstract The Theory of Computation in its existed form is based on Church –Turing Thesis. Throughout this paper, we show that the Turing computation model of this theory leads us to a contradiction. In brief, by applying a well-known paradox (Unexpected hanging paradox) we show a contradiction in the Theory when we consider the Turing model as our Computation model.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Waismann's Critique of Wittgenstein.Anthony Birch - 2007 - Analysis and Metaphysics 6 (2007):263-272.
    Friedrich Waismann, a little-known mathematician and onetime student of Wittgenstein's, provides answers to problems that vexed Wittgenstein in his attempt to explicate the foundations of mathematics through an analysis of its practice. Waismann argues in favor of mathematical intuition and the reality of infinity with a Wittgensteinian twist. Waismann's arguments lead toward an approach to the foundation of mathematics that takes into consideration the language and practice of experts.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
Intuitionism and Constructivism
  1. Poincaré on the Foundation of Geometry in the Understanding.Jeremy Shipley - 2017 - In Maria Zack & Dirk Schlimm (eds.), Research in History and Philosophy of Mathematics: The CSHPM 2016 Annual Meeting in Calgary, Alberta. Springer. pp. 19-37.
    This paper is about Poincaré’s view of the foundations of geometry. According to the established view, which has been inherited from the logical positivists, Poincaré, like Hilbert, held that axioms in geometry are schemata that provide implicit definitions of geometric terms, a view he expresses by stating that the axioms of geometry are “definitions in disguise.” I argue that this view does not accord well with Poincaré’s core commitment in the philosophy of geometry: the view that geometry is the study (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Logic of Probability and Conjecture.Harry Crane - unknown
    I introduce a formalization of probability which takes the concept of 'evidence' as primitive. In parallel to the intuitionistic conception of truth, in which 'proof' is primitive and an assertion A is judged to be true just in case there is a proof witnessing it, here 'evidence' is primitive and A is judged to be probable just in case there is evidence supporting it. I formalize this outlook by representing propositions as types in Martin-Lof type theory (MLTT) and defining a (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Intuitionistic Logic and its Philosophy.Panu Raatikainen - 2013 - Al-Mukhatabat. A Trilingual Journal For Logic, Epistemology and Analytical Philosophy (6):114-127.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Differential Calculus Based on the Double Contradiction.Kazuhiko Kotani - 2016 - Open Journal of Philosophy 6 (4):420-427.
    The derivative is a basic concept of differential calculus. However, if we calculate the derivative as change in distance over change in time, the result at any instant is 0/0, which seems meaningless. Hence, Newton and Leibniz used the limit to determine the derivative. Their method is valid in practice, but it is not easy to intuitively accept. Thus, this article describes the novel method of differential calculus based on the double contradiction, which is easier to accept intuitively. Next, the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Wittgenstein And Labyrinth Of ‘Actual Infinity’: The Critique Of Transfinite Set Theory.Valérie Lynn Therrien - 2012 - Ithaque 10:43-65.
    In order to explain Wittgenstein’s account of the reality of completed infinity in mathematics, a brief overview of Cantor’s initial injection of the idea into set- theory, its trajectory and the philosophic implications he attributed to it will be presented. Subsequently, we will first expound Wittgenstein’s grammatical critique of the use of the term ‘infinity’ in common parlance and its conversion into a notion of an actually existing infinite ‘set’. Secondly, we will delve into Wittgenstein’s technical critique of the concept (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Algumas considerações sobre a noção construtiva de verdade.André Porto & Luiz Pereira - 2003 - O Que Nos Faz Pensar:107-123.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  7. Natural Topology.Frank Waaldijk - 2012 - Brouwer Society.
    We develop a simple framework called ‘natural topology’, which can serve as a theoretical and applicable basis for dealing with real-world phenomena.Natural topology is tailored to make pointwise and pointfree notions go together naturally. As a constructive theory in BISH, it gives a classical mathematician a faithful idea of important concepts and results in intuitionism. -/- Natural topology is well-suited for practical and computational purposes. We give several examples relevant for applied mathematics, such as the decision-support system Hawk-Eye, and various (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Modal-Epistemic Arithmetic and the Problem of Quantifying In.Jan Heylen - 2013 - Synthese 190 (1):89-111.
    The subject of this article is Modal-Epistemic Arithmetic (MEA), a theory introduced by Horsten to interpret Epistemic Arithmetic (EA), which in turn was introduced by Shapiro to interpret Heyting Arithmetic. I will show how to interpret MEA in EA such that one can prove that the interpretation of EA is MEA is faithful. Moreover, I will show that one can get rid of a particular Platonist assumption. Then I will discuss models for MEA in light of the problems of logical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  9. A Formalization of Kant's Transcendental Logic.Theodora Achourioti & Michiel van Lambalgen - 2011 - Review of Symbolic Logic 4 (2):254-289.
    Although Kant (1998) envisaged a prominent role for logic in the argumentative structure of his Critique of Pure Reason, logicians and philosophers have generally judged Kantgeneralformaltranscendental logics is a logic in the strict formal sense, albeit with a semantics and a definition of validity that are vastly more complex than that of first-order logic. The main technical application of the formalism developed here is a formal proof that Kants logic is after all a distinguished subsystem of first-order logic, namely what (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Waismann's Critique of Wittgenstein.Anthony Birch - 2007 - Analysis and Metaphysics 6 (2007):263-272.
    Friedrich Waismann, a little-known mathematician and onetime student of Wittgenstein's, provides answers to problems that vexed Wittgenstein in his attempt to explicate the foundations of mathematics through an analysis of its practice. Waismann argues in favor of mathematical intuition and the reality of infinity with a Wittgensteinian twist. Waismann's arguments lead toward an approach to the foundation of mathematics that takes into consideration the language and practice of experts.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
Predicativism in Mathematics
  1. Logic in the Tractatus.Max Weiss - 2017 - Review of Symbolic Logic 10 (1):1-50.
    I present a reconstruction of the logical system of the Tractatus, which differs from classical logic in two ways. It includes an account of Wittgenstein’s “form-series” device, which suffices to express some effectively generated countably infinite disjunctions. And its attendant notion of structure is relativized to the fixed underlying universe of what is named. -/- There follow three results. First, the class of concepts definable in the system is closed under finitary induction. Second, if the universe of objects is countably (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Cantor’s Proof in the Full Definable Universe.Laureano Luna & William Taylor - 2010 - Australasian Journal of Logic 9:10-25.
    Cantor’s proof that the powerset of the set of all natural numbers is uncountable yields a version of Richard’s paradox when restricted to the full definable universe, that is, to the universe containing all objects that can be defined not just in one formal language but by means of the full expressive power of natural language: this universe seems to be countable on one account and uncountable on another. We argue that the claim that definitional contexts impose restrictions on the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. On the Self-Predicative Universals of Category Theory.David Ellerman - manuscript
    This paper shows how the universals of category theory in mathematics provide a model (in the Platonic Heaven of mathematics) for the self-predicative strand of Plato's Theory of Forms as well as for the idea of a "concrete universal" in Hegel and similar ideas of paradigmatic exemplars in ordinary thought. The paper also shows how the always-self-predicative universals of category theory provide the "opposite bookend" to the never-self-predicative universals of iterative set theory and thus that the paradoxes arose from having (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
Mathematical Naturalism
  1. Second Philosophy: A Naturalistic Method. [REVIEW]Eduardo Castro - 2008 - Disputatio 2 (24):349-355.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. On Some Considerations of Mathematical Physics: May We Identify Clifford Algebra as a Common Algebraic Structure for Classical Diffusion and Schrödinger Equations?Elio Conte - 2012 - Advanced Studies in Theoretical Physics 6 (26):1289-1307.
    We start from previous studies of G.N. Ord and A.S. Deakin showing that both the classical diffusion equation and Schrödinger equation of quantum mechanics have a common stump. Such result is obtained in rigorous terms since it is demonstrated that both diffusion and Schrödinger equations are manifestation of the same mathematical axiomatic set of the Clifford algebra. By using both such ( ) i A S and the i,±1 N algebra, it is evidenced, however, that possibly the two basic equations (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  3. Deferentialism.Chris Daly & David Liggins - 2011 - Philosophical Studies 156 (3):321-337.
    There is a recent and growing trend in philosophy that involves deferring to the claims of certain disciplines outside of philosophy, such as mathematics, the natural sciences, and linguistics. According to this trend— deferentialism , as we will call it—certain disciplines outside of philosophy make claims that have a decisive bearing on philosophical disputes, where those claims are more epistemically justified than any philosophical considerations just because those claims are made by those disciplines. Deferentialists believe that certain longstanding philosophical problems (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   10 citations  
  4. Anti-Nominalism Reconsidered.David Liggins - 2007 - Philosophical Quarterly 57 (226):104–111.
    Many philosophers of mathematics are attracted by nominalism – the doctrine that there are no sets, numbers, functions, or other mathematical objects. John Burgess and Gideon Rosen have put forward an intriguing argument against nominalism, based on the thought that philosophy cannot overrule internal mathematical and scientific standards of acceptability. I argue that Burgess and Rosen’s argument fails because it relies on a mistaken view of what the standards of mathematics require.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  5. Is There a Good Epistemological Argument Against Platonism?David Liggins - 2006 - Analysis 66 (2):135–141.
    Platonism in the philosophy of mathematics is the doctrine that there are mathematical objects such as numbers. John Burgess and Gideon Rosen have argued that that there is no good epistemological argument against platonism. They propose a dilemma, claiming that epistemological arguments against platonism either rely on a dubious epistemology, or resemble a dubious sceptical argument concerning perceptual knowledge. Against Burgess and Rosen, I show that an epistemological anti- platonist argument proposed by Hartry Field avoids both horns of their dilemma.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   12 citations  
  6. Second Philosophy: A Naturalistic Method.Penelope Maddy - 2007 - Oxford University Press.
    Many philosophers these days consider themselves naturalists, but it's doubtful any two of them intend the same position by the term. In Second Philosophy, Penelope Maddy describes and practices a particularly austere form of naturalism called "Second Philosophy". Without a definitive criterion for what counts as "science" and what doesn't, Second Philosophy can't be specified directly ("trust only the methods of science" for example), so Maddy proceeds instead by illustrating the behaviors of an idealized inquirer she calls the "Second Philosopher". (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   31 citations  
Mathematical Finitism
  1. Numbers and Functions in Hilbert's Finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. The Physical Foundation of Biology and the Problems of Psychophysics.Alfred Gierer - 1970 - Ratio (Misc.) 12:47-64.
    Full applicability of physics to human biology does not necessarily imply that one can uncover a comprehensive, algorithmic correlation between physical brain states and corresponding mental states. The argument takes into account that information processing is finite in principle in a finite world. Presumbly the brain-mind-relation cannot be resolved in all essential aspects, particularly when high degrees of abstraction or self-analytical processes are involved. Our conjecture plausibly unifies the universal validity of physics and a logical limitation of human thought, and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Brain, Mind and Limitations of a Scientific Theory of Human Consciousness.Alfred Gierer - 2008 - Bioessays 30 (5):499-505.
    In biological terms, human consciousness appears as a feature associated with the func- tioning of the human brain. The corresponding activities of the neural network occur strictly in accord with physical laws; however, this fact does not necessarily imply that there can be a comprehensive scientific theory of conscious- ness, despite all the progress in neurobiology, neuropsychology and neurocomputation. Pre- dictions of the extent to which such a theory may become possible vary widely in the scien- tific community. There are (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
Theories of Mathematics, Misc
  1. Independence of the Grossone-Based Infinity Methodology From Non-Standard Analysis and Comments Upon Logical Fallacies in Some Texts Asserting the Opposite.Yaroslav D. Sergeyev - 2019 - Foundations of Science 24 (1):153-170.
    This paper considers non-standard analysis and a recently introduced computational methodology based on the notion of ①. The latter approach was developed with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework and in all the situations requiring these notions. Non-standard analysis is a classical purely symbolic technique that works with ultrafilters, external and internal sets, standard and non-standard numbers, etc. In its turn, the ①-based methodology does not use any of these (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. The Foundations of Arithmetic?Thomas Donaldson - 2017 - Noûs 51 (4):775-801.
    Gideon Rosen and Robert Schwartzkopff have independently suggested (variants of) the following claim, which is a varian of Hume's Principle: -/- When the number of Fs is identical to the number of Gs, this fact is grounded by the fact that there is a one-to-one correspondence between the Fs and Gs. -/- My paper is a detailed critique of the proposal. I don't find any decisive refutation of the proposal. At the same time, it has some consequences which many will (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  3. Review of The Art of the Infinite by R. Kaplan, E. Kaplan 324p(2003).Michael Starks - 2016 - In Suicidal Utopian Delusions in the 21st Century: Philosophy, Human Nature and the Collapse of Civilization-- Articles and Reviews 2006-2017 2nd Edition Feb 2018. Michael Starks. pp. 619.
    This book tries to present math to the millions and does a pretty good job. It is simple and sometimes witty but often the literary allusions intrude and the text bogs down in pages of relentless math--lovely if you like it and horrid if you don´t. If you already know alot of math you will still probably find the discussions of general math, geometry, projective geometry, and infinite series to be a nice refresher. If you don´t know any and don´t (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. INVENTING LOGIC: THE LÖWENHEIM-SKOLEM THEOREM AND FIRST- AND SECOND-ORDER LOGIC.Valérie Lynn Therrien - 2012 - Pensées Canadiennes 10.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  5. Hilbert's Program Revisited.Panu Raatikainen - 2003 - Synthese 137 (1):157-177.
    After sketching the main lines of Hilbert's program, certain well-known and influential interpretations of the program are critically evaluated, and an alternative interpretation is presented. Finally, some recent developments in logic related to Hilbert's program are reviewed.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Semantical Mutation, Algorithms and Programs.Porto André - 2015 - Dissertatio:44-76.
    This article offers an explanation of perhaps Wittgenstein’s strangest and least intuitive thesis – the semantical mutation thesis – according to which one can never answer a mathematical conjecture because the new proof alters the very meanings of the terms involved in the original question. Instead of basing our justification on the distinction between mere calculation and proofs of isolated propositions, characteristic of Wittgenstein’s intermediary period, we generalize it to include conjectures involving effective procedures as well.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. On Saying What You Really Want to Say: Wittgenstein, Gödel and the Trisection of the Angle.Juliet Floyd - 1995 - In Jaakko Hintikka (ed.), From Dedekind to Gödel: The Foundations of Mathematics in the Early Twentieth Century, Synthese Library Vol. 251 (Kluwer Academic Publishers. pp. 373-426.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  8. Remarks on the Argument From Design.Joseph S. Fulda - manuscript
    Gives two pared-down versions of the argument from design, which may prove more persuasive as to a Creator, discusses briefly the mathematics underpinning disbelief and nonbelief and its misuse and some proper uses, moves to why the full argument is needed anyway, viz., to demonstrate Providence, offers a theory as to how miracles (open and hidden) occur, viz. the replacement of any particular mathematics underlying a natural law (save logic) by its most appropriate nonstandard variant. -/- Note: This is an (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Infinitesimals as an Issue of Neo-Kantian Philosophy of Science.Thomas Mormann & Mikhail Katz - 2013 - Hopos: The Journal of the International Society for the History of Philosophy of Science (2):236-280.
    We seek to elucidate the philosophical context in which one of the most important conceptual transformations of modern mathematics took place, namely the so-called revolution in rigor in infinitesimal calculus and mathematical analysis. Some of the protagonists of the said revolution were Cauchy, Cantor, Dedekind,and Weierstrass. The dominant current of philosophy in Germany at the time was neo-Kantianism. Among its various currents, the Marburg school (Cohen, Natorp, Cassirer, and others) was the one most interested in matters scientific and mathematical. Our (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 55