Switch to: References

Citations of:

Evidence, Proofs, and Derivations

ZDM 51 (5):825-834 (2019)

Add citations

You must login to add citations.
  1. Virtues Suffice for Argument Evaluation.Andrew Aberdein - 2023 - Informal Logic 44 (1):543-559.
    The virtues and vices of argument are now an established part of argumentation theory. They have helped direct attention to hitherto neglected aspects of how we argue. However, it remains controversial whether a virtue theory can contribute to some of the central questions of argumentation theory. Notably, Harvey Siegel disputes whether what he calls ‘arguments in the abstract propositional sense’ can be evaluated meaningfully within a virtue theory. This paper explores the prospects for grounding an account of argument evaluation in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Price of Mathematical Scepticism.Paul Blain Levy - 2022 - Philosophia Mathematica 30 (3):283-305.
    This paper argues that, insofar as we doubt the bivalence of the Continuum Hypothesis or the truth of the Axiom of Choice, we should also doubt the consistency of third-order arithmetic, both the classical and intuitionistic versions. -/- Underlying this argument is the following philosophical view. Mathematical belief springs from certain intuitions, each of which can be either accepted or doubted in its entirety, but not half-accepted. Therefore, our beliefs about reality, bivalence, choice and consistency should all be aligned.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Are Aesthetic Judgements Purely Aesthetic? Testing the Social Conformity Account.Matthew Inglis & Andrew Aberdein - 2020 - ZDM 52 (6):1127-1136.
    Many of the methods commonly used to research mathematical practice, such as analyses of historical episodes or individual cases, are particularly well-suited to generating causal hypotheses, but less well-suited to testing causal hypotheses. In this paper we reflect on the contribution that the so-called hypothetico-deductive method, with a particular focus on experimental studies, can make to our understanding of mathematical practice. By way of illustration, we report an experiment that investigated how mathematicians attribute aesthetic properties to mathematical proofs. We demonstrate (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Argumentation in Mathematical Practice.Andrew Aberdein & Zoe Ashton - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2665-2687.
    Formal logic has often been seen as uniquely placed to analyze mathematical argumentation. While formal logic is certainly necessary for a complete understanding of mathematical practice, it is not sufficient. Important aspects of mathematical reasoning closely resemble patterns of reasoning in nonmathematical domains. Hence the tools developed to understand informal reasoning, collectively known as argumentation theory, are also applicable to much mathematical argumentation. This chapter investigates some of the details of that application. Consideration is given to the many contrasting meanings (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Audience role in mathematical proof development.Zoe Ashton - 2020 - Synthese 198 (Suppl 26):6251-6275.
    The role of audiences in mathematical proof has largely been neglected, in part due to misconceptions like those in Perelman and Olbrechts-Tyteca which bar mathematical proofs from bearing reflections of audience consideration. In this paper, I argue that mathematical proof is typically argumentation and that a mathematician develops a proof with his universal audience in mind. In so doing, he creates a proof which reflects the standards of reasonableness embodied in his universal audience. Given this framework, we can better understand (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations