Switch to: References

Add citations

You must login to add citations.
  1. Exactly True and Non-Falsity Logics Meeting Infectious Ones.Alex Belikov & Yaroslav Petrukhin - 2020 - Journal of Applied Non-Classical Logics 30 (2):93-122.
    In this paper, we study logical systems which represent entailment relations of two kinds. We extend the approach of finding ‘exactly true’ and ‘non-falsity’ versions of four-valued logics that emerged in series of recent works [Pietz & Rivieccio (2013). Nothing but the truth. Journal of Philosophical Logic, 42(1), 125–135; Shramko (2019). Dual-Belnap logic and anything but falsehood. Journal of Logics and their Applications, 6, 413–433; Shramko et al. (2017). First-degree entailment and its relatives. Studia Logica, 105(6), 1291–1317] to the case (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Normality Operators and Classical Recapture in Many-Valued Logic.Roberto Ciuni & Massimiliano Carrara - forthcoming - Logic Journal of the IGPL.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Theories of Truth Based on Four-Valued Infectious Logics.Damian Szmuc, Bruno Da Re & Federico Pailos - forthcoming - Logic Journal of the IGPL.
    Infectious logics are systems which have a truth-value that is assigned to a compound formula whenever it is assigned to one of its components. This paper studies four-valued infectious logics as the basis of transparent theories of truth. This take is motivated (i) as a way to treat different pathological sentences (like the Liar and the Truth-Teller) differently, namely, by allowing some of them to be truth-value gluts and some others to be truth-value gaps, and (ii) as a way to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logics of Left Variable Inclusion and Płonka Sums of Matrices.S. Bonzio, T. Moraschini & M. Pra Baldi - forthcoming - Archive for Mathematical Logic:1-28.
    The paper aims at studying, in full generality, logics defined by imposing a variable inclusion condition on a given logic \. We prove that the description of the algebraic counterpart of the left variable inclusion companion of a given logic \ is related to the construction of Płonka sums of the matrix models of \. This observation allows to obtain a Hilbert-style axiomatization of the logics of left variable inclusion, to describe the structure of their reduced models, and to locate (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Semantical Analysis of Weak Kleene Logics.Roberto Ciuni & Massimiliano Carrara - 2019 - Journal of Applied Non-Classical Logics 29 (1):1-36.
    This paper presents a semantical analysis of the Weak Kleene Logics Kw3 and PWK from the tradition of Bochvar and Halldén. These are three-valued logics in which a formula takes the third value if at least one of its components does. The paper establishes two main results: a characterisation result for the relation of logical con- sequence in PWK – that is, we individuate necessary and sufficient conditions for a set.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • From Logics of Formal Inconsistency to Logics of Formal Classicality.Hitoshi Omori - forthcoming - Logic Journal of the IGPL.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Keisler–Shelah Theorem for $\Mathsf{QmbC}$ Through Semantical Atomization.Thomas Macaulay Ferguson - forthcoming - Logic Journal of the IGPL.
    In this paper, we consider some contributions to the model theory of the logic of formal inconsistency $\mathsf{QmbC}$ as a reply to Walter Carnielli, Marcelo Coniglio, Rodrigo Podiacki and Tarcísio Rodrigues’ call for a ‘wider model theory.’ This call demands that we align the practices and techniques of model theory for logics of formal inconsistency as closely as possible with those employed in classical model theory. The key result is a proof that the Keisler–Shelah isomorphism theorem holds for $\mathsf{QmbC}$, i.e. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Two-Valued Weak Kleene Logics.Bruno da Ré & Damian Szmuc - 2019 - Manuscrito 42 (1):1-43.
    In the literature, Weak Kleene logics are usually taken as three-valued logics. However, Suszko has challenged the main idea of many-valued logic claiming that every logic can be presented in a two-valued fashion. In this paper, we provide two-valued semantics for the Weak Kleene logics and for a number of four-valued subsystems of them. We do the same for the so-called Logics of Nonsense, which are extensions of the Weak Kleene logics with unary operators that allow looking at them as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Duality for Involutive Bisemilattices.Stefano Bonzio, Andrea Loi & Luisa Peruzzi - 2019 - Studia Logica 107 (2):423-444.
    We establish a duality between the category of involutive bisemilattices and the category of semilattice inverse systems of Stone spaces, using Stone duality from one side and the representation of involutive bisemilattices as Płonka sum of Boolean algebras, from the other. Furthermore, we show that the dual space of an involutive bisemilattice can be viewed as a GR space with involution, a generalization of the spaces introduced by Gierz and Romanowska equipped with an involution as additional operation.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Dualities for Płonka Sums.Stefano Bonzio - 2018 - Logica Universalis 12 (3-4):327-339.
    Płonka sums consist of an algebraic construction similar, in some sense, to direct limits, which allows to represent classes of algebras defined by means of regular identities. Recently, Płonka sums have been connected to logic, as they provide algebraic semantics to logics obtained by imposing a syntactic filter to given logics. In this paper, I present a very general topological duality for classes of algebras admitting a Płonka sum representation in terms of dualisable algebras.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Generalized Correspondence Analysis for Three-Valued Logics.Yaroslav Petrukhin - 2018 - Logica Universalis 12 (3-4):423-460.
    Correspondence analysis is Kooi and Tamminga’s universal approach which generates in one go sound and complete natural deduction systems with independent inference rules for tabular extensions of many-valued functionally incomplete logics. Originally, this method was applied to Asenjo–Priest’s paraconsistent logic of paradox LP. As a result, one has natural deduction systems for all the logics obtainable from the basic three-valued connectives of LP -language) by the addition of unary and binary connectives. Tamminga has also applied this technique to the paracomplete (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation