Switch to: References

Add citations

You must login to add citations.
  1. On coding uncountable sets by reals.Joan Bagaria & Vladimir Kanovei - 2010 - Mathematical Logic Quarterly 56 (4):409-424.
    If A ⊆ ω1, then there exists a cardinal preserving generic extension [MATHEMATICAL DOUBLE-STRUCK CAPITAL L][A ][x ] of [MATHEMATICAL DOUBLE-STRUCK CAPITAL L][A ] by a real x such that1) A ∈ [MATHEMATICAL DOUBLE-STRUCK CAPITAL L][x ] and A is Δ1HC in [MATHEMATICAL DOUBLE-STRUCK CAPITAL L][x ];2) x is minimal over [MATHEMATICAL DOUBLE-STRUCK CAPITAL L][A ], that is, if a set Y belongs to [MATHEMATICAL DOUBLE-STRUCK CAPITAL L][x ], then either x ∈ [MATHEMATICAL DOUBLE-STRUCK CAPITAL L][A, Y ] or Y (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Preserving levels of projective determinacy by tree forcings.Fabiana Castiblanco & Philipp Schlicht - 2021 - Annals of Pure and Applied Logic 172 (4):102918.
    We prove that various classical tree forcings—for instance Sacks forcing, Mathias forcing, Laver forcing, Miller forcing and Silver forcing—preserve the statement that every real has a sharp and hence analytic determinacy. We then lift this result via methods of inner model theory to obtain level-by-level preservation of projective determinacy (PD). Assuming PD, we further prove that projective generic absoluteness holds and no new equivalence classes are added to thin projective transitive relations by these forcings.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Absoluteness via resurrection.Giorgio Audrito & Matteo Viale - 2017 - Journal of Mathematical Logic 17 (2):1750005.
    The resurrection axioms are forcing axioms introduced recently by Hamkins and Johnstone, developing on ideas of Chalons and Veličković. We introduce a stronger form of resurrection axioms for a class of forcings Γ and a given ordinal α), and show that RAω implies generic absoluteness for the first-order theory of Hγ+ with respect to forcings in Γ preserving the axiom, where γ = γΓ is a cardinal which depends on Γ. We also prove that the consistency strength of these axioms (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Parameterized partition relations on the real numbers.Joan Bagaria & Carlos A. Di Prisco - 2009 - Archive for Mathematical Logic 48 (2):201-226.
    We consider several kinds of partition relations on the set ${\mathbb{R}}$ of real numbers and its powers, as well as their parameterizations with the set ${[\mathbb{N}]^{\mathbb{N}}}$ of all infinite sets of natural numbers, and show that they hold in some models of set theory. The proofs use generic absoluteness, that is, absoluteness under the required forcing extensions. We show that Solovay models are absolute under those forcing extensions, which yields, for instance, that in these models for every well ordered partition (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Determinacy and regularity properties for idealized forcings.Daisuke Ikegami - 2022 - Mathematical Logic Quarterly 68 (3):310-317.
    We show under that every set of reals is I‐regular for any σ‐ideal I on the Baire space such that is proper. This answers the question of Khomskii [7, Question 2.6.5]. We also show that the same conclusion holds under if we additionally assume that the set of Borel codes for I‐positive sets is. If we do not assume, the notion of properness becomes obscure as pointed out by Asperó and Karagila [1]. Using the notion of strong properness similar to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Forcing absoluteness and regularity properties.Daisuke Ikegami - 2010 - Annals of Pure and Applied Logic 161 (7):879-894.
    For a large natural class of forcing notions, we prove general equivalence theorems between forcing absoluteness statements, regularity properties, and transcendence properties over and the core model . We use our results to answer open questions from set theory of the reals.
    Download  
     
    Export citation  
     
    Bookmark   12 citations