Switch to: References

Add citations

You must login to add citations.
  1. Cultural Bias in Explainable AI Research.Uwe Peters & Mary Carman - forthcoming - Journal of Artificial Intelligence Research.
    For synergistic interactions between humans and artificial intelligence (AI) systems, AI outputs often need to be explainable to people. Explainable AI (XAI) systems are commonly tested in human user studies. However, whether XAI researchers consider potential cultural differences in human explanatory needs remains unexplored. We highlight psychological research that found significant differences in human explanations between many people from Western, commonly individualist countries and people from non-Western, often collectivist countries. We argue that XAI research currently overlooks these variations and that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Challenges for an Ontology of Artificial Intelligence.Scott H. Hawley - 2019 - Perspectives on Science and Christian Faith 71 (2):83-95.
    Of primary importance in formulating a response to the increasing prevalence and power of artificial intelligence (AI) applications in society are questions of ontology. Questions such as: What “are” these systems? How are they to be regarded? How does an algorithm come to be regarded as an agent? We discuss three factors which hinder discussion and obscure attempts to form a clear ontology of AI: (1) the various and evolving definitions of AI, (2) the tendency for pre-existing technologies to be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Towards Transparency by Design for Artificial Intelligence.Heike Felzmann, Eduard Fosch-Villaronga, Christoph Lutz & Aurelia Tamò-Larrieux - 2020 - Science and Engineering Ethics 26 (6):3333-3361.
    In this article, we develop the concept of Transparency by Design that serves as practical guidance in helping promote the beneficial functions of transparency while mitigating its challenges in automated-decision making environments. With the rise of artificial intelligence and the ability of AI systems to make automated and self-learned decisions, a call for transparency of how such systems reach decisions has echoed within academic and policy circles. The term transparency, however, relates to multiple concepts, fulfills many functions, and holds different (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Transparency you can trust: Transparency requirements for artificial intelligence between legal norms and contextual concerns.Aurelia Tamò-Larrieux, Christoph Lutz, Eduard Fosch Villaronga & Heike Felzmann - 2019 - Big Data and Society 6 (1).
    Transparency is now a fundamental principle for data processing under the General Data Protection Regulation. We explore what this requirement entails for artificial intelligence and automated decision-making systems. We address the topic of transparency in artificial intelligence by integrating legal, social, and ethical aspects. We first investigate the ratio legis of the transparency requirement in the General Data Protection Regulation and its ethical underpinnings, showing its focus on the provision of information and explanation. We then discuss the pitfalls with respect (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations