Switch to: References

Add citations

You must login to add citations.
  1. The Tools of Metaphysics and the Metaphysics of Science.Theodore Sider - 2020 - Oxford, England and New York, NY, USA: Oxford University Press.
    Metaphysics is sensitive to the conceptual tools we choose to articulate metaphysical problems. Those tools are a lens through which we view metaphysical problems; the same problems look different when we change the lens. There has recently been a shift to "postmodal" conceptual tools: concepts of ground, essence, and fundamentality. This shift transforms the debate over structuralism in the metaphysics of science and philosophy of mathematics. Structuralist theses say that patterns are "prior" to the nodes in the patterns. In modal (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • The Past Hypothesis and the Nature of Physical Laws.Eddy Keming Chen - 2023 - In Barry Loewer, Brad Weslake & Eric B. Winsberg (eds.), The Probability Map of the Universe: Essays on David Albert’s _time and Chance_. Cambridge MA: Harvard University Press. pp. 204-248.
    If the Past Hypothesis underlies the arrows of time, what is the status of the Past Hypothesis? In this paper, I examine the role of the Past Hypothesis in the Boltzmannian account and defend the view that the Past Hypothesis is a candidate fundamental law of nature. Such a view is known to be compatible with Humeanism about laws, but as I argue it is also supported by a minimal non-Humean "governing'' view. Some worries arise from the non-dynamical and time-dependent (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Bell’s Theorem, Quantum Probabilities, and Superdeterminism.Eddy Keming Chen - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    In this short survey article, I discuss Bell’s theorem and some strategies that attempt to avoid the conclusion of non-locality. I focus on two that intersect with the philosophy of probability: (1) quantum probabilities and (2) superdeterminism. The issues they raised not only apply to a wide class of no-go theorems about quantum mechanics but are also of general philosophical interest.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Constructing and constraining wave functions for identical quantum particles.Charles T. Sebens - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 56:48-59.
    Download  
     
    Export citation  
     
    Bookmark  
  • Electron Charge Density: A Clue from Quantum Chemistry for Quantum Foundations.Charles T. Sebens - 2021 - Foundations of Physics 51 (4):1-39.
    Within quantum chemistry, the electron clouds that surround nuclei in atoms and molecules are sometimes treated as clouds of probability and sometimes as clouds of charge. These two roles, tracing back to Schrödinger and Born, are in tension with one another but are not incompatible. Schrödinger’s idea that the nucleus of an atom is surrounded by a spread-out electron charge density is supported by a variety of evidence from quantum chemistry, including two methods that are used to determine atomic and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Wavefunction realism does not ‘privilege position’.David Schroeren - 2022 - Synthese 200 (1):1-14.
    It is common ground among proponents and detractors of wavefunction realism that the view ‘privileges position’, in the sense that it arbitrarily singles out one among a continuum infinity of wavefunction representations as characterizing the fundamental field: the position representation. This paper shows that, properly understood, wavefunction realism does not involve such an arbitrary choice. First, I argue that, though each wavefunction representation gives rise to a different version of wavefunction realism, the difference between these theories amounts to a mere (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Symmetry fundamentalism in quantum mechanics.David Schroeren - 2021 - Philosophical Studies 178 (12):3995-4024.
    Modern particle physics suggests an intriguing vision of physical reality: we are to imagine the symmetries of the world as fundamental, whereas the material constituents of the world are ontologically derivative of them. This paper develops a novel ontology for non-relativistic quantum mechanics which gives precise metaphysical content to this vision.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Grounded Shadows, Groundless Ghosts.Ezra Rubenstein - 2022 - British Journal for the Philosophy of Science 73 (3):723-750.
    According to a radical account of quantum metaphysics that I label ‘high-dimensionalism’, ordinary objects are the ‘shadows’ of high-dimensional fundamental ontology. Critics—especially Maudlin —allege that high-dimensionalism cannot provide a satisfactory explanation of the manifest image. In this paper, I examine the two main ideas behind these criticisms: that high-dimensionalist connections between fundamental and non-fundamental are 1) inscrutable, and 2) arbitrary. In response to the first, I argue that there is no metaphysically significant contrast regarding the scrutability of low- and high-dimensionalist (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Multi-field and Bohm’s theory.Davide Romano - 2020 - Synthese (11):29 June 2020.
    In the recent literature, it has been shown that the wave function in the de Broglie–Bohm theory can be regarded as a new kind of field, i.e., a "multi-field", in three-dimensional space. In this paper, I argue that the natural framework for the multi-field is the original second-order Bohm’s theory. In this context, it is possible: i) to construe the multi-field as a real-valued scalar field; ii) to explain the physical interaction between the multi-field and the Bohmian particles; and iii) (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Fundamental Causation: Physics, Metaphysics, and the Deep Structure of the World.Christopher Gregory Weaver - 2019 - New York: Routledge.
    Fundamental Causation addresses issues in the metaphysics of deterministic singular causation, the metaphysics of events, property instances, facts, preventions, and omissions, as well as the debate between causal reductionists and causal anti-reductionists. The book also pays special attention to causation and causal structure in physics. Weaver argues that causation is a multigrade obtaining relation that is transitive, irreflexive, and asymmetric. When causation is singular, deterministic and such that it relates purely contingent events, the relation is also universal, intrinsic, and well-founded. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • De Broglie-Bohm Theory, Quo Vadis?Vera Matarese - 2022 - Foundations of Physics 53 (1):1-20.
    The purpose of this contribution is to examine the current state of the de Broglie-Bohm theory (dBB) in light of Bohm’s vision as he explicitly set it out in his book Quantum theory [In Bohm, D., Quantum theory, Courier corporation, (1961b)]. In particular, two programmes that differ in many crucial respects are currently being pursued. On the one hand, the Bohmian mechanics school, founded by Dürr Goldstein and Zanghì, considers the theory to be Galilean invariant, regards particles’ motion as determined (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Regularity Comparativism about Mass in Newtonian Gravity.Niels C. M. Martens - 2017 - Philosophy of Science 84 (5):1226-1238.
    Comparativism—the view that mass ratios are not grounded in absolute masses—faces a challenge by Baker which suggests that absolute masses are empirically meaningful. Regularity comparativism uses a liberalized version of the Mill-Ramsey-Lewis Best Systems Account to have both the laws of Newtonian gravity and the absolute mass scale supervene on a comparativist Humean mosaic as a package deal. I discuss three objections to this view and conclude that it is untenable. The most severe problem is that once we have reduced (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Functionalising the wavefunction.Lorenzo Lorenzetti - 2022 - Studies in History and Philosophy of Science Part A 96 (C):141-153.
    Functionalism is the view that being x is to play the role of x. This paper defends a functionalist account of three-dimensional entities in the context of Wave Function Realism (WFR), that can explain in detail how we can recover three-dimensional entities out of the wavefunction. In particular, the essay advocates for a novel version of WFR in terms of a functional reductionist approach in the style of David Lewis. This account entails reduction of the upper entities to the bottom (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Wave-Function as a Multi-Field.Mario Hubert & Davide Romano - 2018 - European Journal for Philosophy of Science 8 (3):521-537.
    It is generally argued that if the wave-function in the de Broglie–Bohm theory is a physical field, it must be a field in configuration space. Nevertheless, it is possible to interpret the wave-function as a multi-field in three-dimensional space. This approach hasn’t received the attention yet it really deserves. The aim of this paper is threefold: first, we show that the wave-function is naturally and straightforwardly construed as a multi-field; second, we show why this interpretation is superior to other interpretations (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • A Puzzle for the Field Ontologists.Shan Gao - 2020 - Foundations of Physics 50 (11):1541-1553.
    It has been widely thought that the wave function describes a real, physical field in a realist interpretation of quantum mechanics. In this paper, I present a new analysis of the field ontology for the wave function. First, I argue that the non-existence of self-interactions for a quantum system such as an electron poses a puzzle for the field ontologists. If the wave function represents a physical field, then it seems odd that there are (electromagnetic and gravitational) interactions between the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Against Radical Quantum Ontologies.Nina Emery - 2017 - Philosophy and Phenomenological Research 95 (3):564-591.
    Some theories of quantum mechanical phenomena endorse wave function realism, according to which the physical space we inhabit is very different from the physical space we appear to inhabit. In this paper I explore an argument against wave function realism that appeals to a type of simplicity that, although often overlooked, plays a crucial role in scientific theory choice. The type of simplicity in question is simplicity of fit between the way a theory says the world is and the way (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The physical salience of non-fundamental local beables.Matthias Egg - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 57:104-110.
    I defend the idea that objects and events in three-dimensional space are part of the derivative ontology of quantum mechanics, rather than its fundamental ontology. The main objection to this idea stems from the question of how it can endow local beables with physical salience, as opposed to mere mathematical definability. I show that the responses to this objection in the previous literature are insufficient, and I provide the necessary arguments to render them successful. This includes demonstrating the legitimacy of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Realism about the wave function.Eddy Keming Chen - 2019 - Philosophy Compass 14 (7):e12611.
    A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this survey article, I review (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast to Wave Function (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • From Time Asymmetry to Quantum Entanglement: The Humean Unification.Eddy Keming Chen - 2022 - Noûs 56 (1):227-255.
    Two of the most difficult problems in the foundations of physics are (1) what gives rise to the arrow of time and (2) what the ontology of quantum mechanics is. I propose a unified 'Humean' solution to the two problems. Humeanism allows us to incorporate the Past Hypothesis and the Statistical Postulate into the best system, which we then use to simplify the quantum state of the universe. This enables us to confer the nomological status to the quantum state in (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Wave-functionalism.Valia Allori - 2021 - Synthese 199 (5-6):12271-12293.
    In this paper I present a new perspective for interpreting the wavefunction as a non-material, non-epistemic, non-representational entity. I endorse a functional view according to which the wavefunction is defined by its roles in the theory. I argue that this approach shares some similarities with the nomological account of the wave function as well as with the pragmatist and epistemic approaches to quantum theory, while avoiding the major objections of these alternatives.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Wave-functionalism.Valia Allori - 2021 - Synthese 199 (199):12271–12293.
    In this paper I present a new perspective for interpreting the wavefunction as a non-material, nonepistemic, non-representational entity. I endorse a functional view according to which the wavefunction is defined by its roles in the theory. I argue that this approach shares some similarities with the nomological account of the wave function as well as with the pragmatist and epistemic approaches to quantum theory, while avoiding the major objections of these alternatives.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Worldly Patterns: Emergence, Functionalism and Pragmatic Reality.R. A. Mulder - 2018 - Dissertation, Utrecht University
    Download  
     
    Export citation  
     
    Bookmark  
  • The Theory of Every Thing: Toward a Symmetry-Based Metaphysics of Matter.David Schroeren - 2020 - Dissertation, Princeton University
    Download  
     
    Export citation  
     
    Bookmark  
  • Essays on the Metaphysics of Quantum Mechanics.Eddy Keming Chen - 2019 - Dissertation, Rutgers University, New Brunswick
    What is the proper metaphysics of quantum mechanics? In this dissertation, I approach the question from three different but related angles. First, I suggest that the quantum state can be understood intrinsically as relations holding among regions in ordinary space-time, from which we can recover the wave function uniquely up to an equivalence class (by representation and uniqueness theorems). The intrinsic account eliminates certain conventional elements (e.g. overall phase) in the representation of the quantum state. It also dispenses with first-order (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Against the field ontology of quantum mechanics.Shan Gao - unknown
    It has been widely thought that the ontology of quantum mechanics is real, physical fields. In this paper, I will present a new argument against the field ontology of quantum mechanics by analyzing one-body systems such as an electron. First, I argue that if the physical entity described by the wave function of an electron is a field, then this field is massive and charged. Next, I argue that if a field is massive and charged, then any two parts of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are two (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental wave function and theories with (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Intrinsic Structure of Quantum Mechanics.Eddy Keming Chen - 2019 - In Essays on the Metaphysics of Quantum Mechanics. New Brunswick, NJ: PhD dissertation, Rutgers University. pp. Chapter 1.
    The wave function in quantum mechanics presents an interesting challenge to our understanding of the physical world. In this paper, I show that the wave function can be understood as four intrinsic relations on physical space. My account has three desirable features that the standard account lacks: it does not refer to any abstract mathematical objects, it is free from the usual arbitrary conventions, and it explains why the wave function has its gauge degrees of freedom, something that are usually (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • To be a realist about quantum theory.Hans Halvorson - 2019 - In Olimpia Lombardi (ed.), Quantum Worlds: Perspectives on the Ontology of Quantum Mechanics.
    I look at the distinction between between realist and antirealist views of the quantum state. I argue that this binary classification should be reconceived as a continuum of different views about which properties of the quantum state are representationally significant. What's more, the extreme cases -- all or none --- are simply absurd, and should be rejected by all parties. In other words, no sane person should advocate extreme realism or antirealism about the quantum state. And if we focus on (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Meaning of the Wave Function–In Search of the Ontology of Quantum Mechanics, Shan Gao, Cambridge University Press (2017). [REVIEW]Ronnie Hermens - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 65:145-147.
    Download  
     
    Export citation  
     
    Bookmark  
  • Understanding quantum mechanics: a review and synthesis in precise language.Brian Drummond - 2019 - Open Physics 17 (1).
    Download  
     
    Export citation  
     
    Bookmark  
  • Representation of the wave function on the three-dimensional space.Cristi Stoica - 2019 - Physical Review A 100 (4).
    Download  
     
    Export citation  
     
    Bookmark  
  • Against Comparativism about Mass in Newtonian Gravity - a Case Study in the Metaphysics of Scale.Niels C. M. Martens - 2017 - Dissertation, University of Oxford
    This thesis concerns the metaphysics of scale. It investigates the implications of a physical determinable being dimensionful. In particular, it considers the case study of mass, as it features within Newtonian Gravity. Nevertheless, most of the terminology, methodology and arguments developed should be relatively straightforwardly applicable to other determinables and theories. -/- Weak Absolutism about mass holds that mass ratios obtain in virtue of absolute masses. Weak Comparativism denies this. In the first five chapters I argue in favour of Weak (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations