Switch to: References

Citations of:

The Embedded Neuron, the Enactive Field?

In John Bickle (ed.), The Oxford Handbook of Philosophy and Neuroscience. Oxford University Press (2009)

Add citations

You must login to add citations.
  1. Conceptual Change in Visual Neuroscience: The Receptive Field Concept.A. Nicolás Venturelli - 2021 - International Studies in the Philosophy of Science 34 (1):41-57.
    I focus on the concept of the receptive field of a sensory neuron, taking it as a prominent case to address conceptual change in the history of neuroscience. I argue for an interpretation of its ro...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fictionalism about Neural Representations.Mark Sprevak - 2013 - The Monist 96 (4):539-560.
    This paper explores a novel form of Mental Fictionalism: Fictionalism about talk of neural representations in cognitive science. This type of Fictionalism promises to (i) avoid the hard problem of naturalising representations, without (ii) incurring the high costs of eliminating useful representation talk. In this paper, I motivate and articulate this form of Fictionalism, and show that, despite its apparent advantages, it faces two serious objections. These objections are: (1) Fictionalism about talk of neural representations ultimately does not avoid the (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Making the abstract concrete: The role of norms and values in experimental modeling.Isabelle F. Peschard & Bas C. van Fraassen - 2014 - Studies in History and Philosophy of Science Part A 46:3-10.
    Experimental modeling is the construction of theoretical models hand in hand with experimental activity. As explained in Section 1, experimental modeling starts with claims about phenomena that use abstract concepts, concepts whose conditions of realization are not yet specified; and it ends with a concrete model of the phenomenon, a model that can be tested against data. This paper argues that this process from abstract concepts to concrete models involves judgments of relevance, which are irreducibly normative. In Section 2, we (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Forging Model/World Relations: Relevance and Reliability.Isabelle Peschard - 2012 - Philosophy of Science 79 (5):749-760.
    The relation between models and the world is mediated by experimental procedures generating data that are used as evidence to evaluate the model. Data can serve as empirical evidence, for or against, only if they result from reliable experimental procedures. The aim of this article is to discuss the role of relevance judgments in the evaluation of reliability and to clarify the conditions under which reliability can be a strictly empirical matter. It is argued that reliability is a strictly empirical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Evolving Concepts of Functional Localization.Joseph B. McCaffrey - 2023 - Philosophy Compass 18 (5):e12914.
    Functional localization is a central aim of cognitive neuroscience. But the nature and extent of functional localization in the human brain have been subjects of fierce theoretical debate since the 19th Century. In this essay, I first examine how concepts of functional localization have changed over time. I then analyze contemporary challenges to functional localization drawing from research on neural reuse, neural degeneracy, and the context-dependence of neural functions. I explore the consequences of these challenges for topics in philosophy of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The life of the cortical column: opening the domain of functional architecture of the cortex.Haueis Philipp - 2016 - History and Philosophy of the Life Sciences 38 (3):1-27.
    The concept of the cortical column refers to vertical cell bands with similar response properties, which were initially observed by Vernon Mountcastle’s mapping of single cell recordings in the cat somatic cortex. It has subsequently guided over 50 years of neuroscientific research, in which fundamental questions about the modularity of the cortex and basic principles of sensory information processing were empirically investigated. Nevertheless, the status of the column remains controversial today, as skeptical commentators proclaim that the vertical cell bands are (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Prediction versus understanding in computationally enhanced neuroscience.Mazviita Chirimuuta - 2020 - Synthese 199 (1-2):767-790.
    The use of machine learning instead of traditional models in neuroscience raises significant questions about the epistemic benefits of the newer methods. I draw on the literature on model intelligibility in the philosophy of science to offer some benchmarks for the interpretability of artificial neural networks used as a predictive tool in neuroscience. Following two case studies on the use of ANN’s to model motor cortex and the visual system, I argue that the benefit of providing the scientist with understanding (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Minimal models and canonical neural computations: the distinctness of computational explanation in neuroscience.M. Chirimuuta - 2014 - Synthese 191 (2):127-153.
    In a recent paper, Kaplan (Synthese 183:339–373, 2011) takes up the task of extending Craver’s (Explaining the brain, 2007) mechanistic account of explanation in neuroscience to the new territory of computational neuroscience. He presents the model to mechanism mapping (3M) criterion as a condition for a model’s explanatory adequacy. This mechanistic approach is intended to replace earlier accounts which posited a level of computational analysis conceived as distinct and autonomous from underlying mechanistic details. In this paper I discuss work in (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Extending, changing, and explaining the brain.Mazviita Chirimuuta - 2013 - Biology and Philosophy 28 (4):613-638.
    This paper addresses concerns raised recently by Datteri (Biol Philos 24:301–324, 2009) and Craver (Philos Sci 77(5):840–851, 2010) about the use of brain-extending prosthetics in experimental neuroscience. Since the operation of the implant induces plastic changes in neural circuits, it is reasonable to worry that operational knowledge of the hybrid system will not be an accurate basis for generalisation when modelling the unextended brain. I argue, however, that Datteri’s no-plasticity constraint unwittingly rules out numerous experimental paradigms in behavioural and systems (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Computational neuroscience and localized neural function.Daniel C. Burnston - 2016 - Synthese 193 (12):3741-3762.
    In this paper I criticize a view of functional localization in neuroscience, which I call “computational absolutism”. “Absolutism” in general is the view that each part of the brain should be given a single, univocal function ascription. Traditional varieties of absolutism posit that each part of the brain processes a particular type of information and/or performs a specific task. These function attributions are currently beset by physiological evidence which seems to suggest that brain areas are multifunctional—that they process distinct information (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations