Switch to: References

Citations of:

Elementary Canonical Formulae: A Survey on Syntactic, Algorithmic, and Modeltheoretic Aspects

In Renate Schmidt, Ian Pratt-Hartmann, Mark Reynolds & Heinrich Wansing (eds.), Advances in Modal Logic, Volume 5. Kings College London Publ.. pp. 17-51 (2005)

Add citations

You must login to add citations.
  1. A Computational Learning Semantics for Inductive Empirical Knowledge.Kevin T. Kelly - 2014 - In Alexandru Baltag & Sonja Smets (eds.), Johan van Benthem on Logic and Information Dynamics. Springer International Publishing. pp. 289-337.
    This chapter presents a new semantics for inductive empirical knowledge. The epistemic agent is represented concretely as a learner who processes new inputs through time and who forms new beliefs from those inputs by means of a concrete, computable learning program. The agent’s belief state is represented hyper-intensionally as a set of time-indexed sentences. Knowledge is interpreted as avoidance of error in the limit and as having converged to true belief from the present time onward. Familiar topics are re-examined within (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Extension of Kracht's Theorem to Generalized Sahlqvist Formulas.Stanislav Kikot - 2009 - Journal of Applied Non-Classical Logics 19 (2):227-251.
    Sahlqvist formulas are a syntactically specified class of modal formulas proposed by Hendrik Sahlqvist in 1975. They are important because of their first-order definability and canonicity, and hence axiomatize complete modal logics. The first-order properties definable by Sahlqvist formulas were syntactically characterized by Marcus Kracht in 1993. The present paper extends Kracht's theorem to the class of ‘generalized Sahlqvist formulas' introduced by Goranko and Vakarelov and describes an appropriate generalization of Kracht formulas.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Algorithmic Correspondence and Completeness in Modal Logic. V. Recursive Extensions of SQEMA.Willem Conradie, Valentin Goranko & Dimitar Vakarelov - 2010 - Journal of Applied Logic 8 (4):319-333.
    The previously introduced algorithm \sqema\ computes first-order frame equivalents for modal formulae and also proves their canonicity. Here we extend \sqema\ with an additional rule based on a recursive version of Ackermann's lemma, which enables the algorithm to compute local frame equivalents of modal formulae in the extension of first-order logic with monadic least fixed-points \mffo. This computation operates by transforming input formulae into locally frame equivalent ones in the pure fragment of the hybrid mu-calculus. In particular, we prove that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modal and Temporal Extensions of Non-Distributive Propositional Logics.Chrysafis Hartonas - 2016 - Logic Journal of the IGPL 24 (2):156-185.
    Download  
     
    Export citation  
     
    Bookmark   10 citations