Citations of:
Add citations
You must login to add citations.


Far from being unwelcome or impossible in a mathematical setting, indeterminacy in various forms can be seen as playing an important role in driving mathematical research forward by providing “sources of newness” in the sense of Hutter and Farías :434–449, 2017). I argue here that mathematical coincidences, phenomena recently under discussion in the philosophy of mathematics, are usefully seen as inducers of indeterminacy and as put to work in guiding mathematical research. I suggest that to call a pair of mathematical (...) 

While there has been much discussion about what makes some mathematical proofs more explanatory than others, and what are mathematical coincidences, in this article I explore the distinct phenomenon of mathematical facts that call for explanation. The existence of mathematical facts that call for explanation stands in tension with virtually all existing accounts of “calling for explanation”, which imply that necessary facts cannot call for explanation. In this paper I explore what theoretical revisions are needed in order to accommodate this (...) 

Until recently, discussion of virtues in the philosophy of mathematics has been fleeting and fragmentary at best. But in the last few years this has begun to change. As virtue theory has grown ever more influential, not just in ethics where virtues may seem most at home, but particularly in epistemology and the philosophy of science, some philosophers have sought to push virtues out into unexpected areas, including mathematics and its philosophy. But there are some mathematicians already there, ready to (...) 