Switch to: References

Add citations

You must login to add citations.
  1. The Ethics of AI Ethics: An Evaluation of Guidelines.Thilo Hagendorff - 2020 - Minds and Machines 30 (1):99-120.
    Current advances in research, development and application of artificial intelligence systems have yielded a far-reaching discourse on AI ethics. In consequence, a number of ethics guidelines have been released in recent years. These guidelines comprise normative principles and recommendations aimed to harness the “disruptive” potentials of new AI technologies. Designed as a semi-systematic evaluation, this paper analyzes and compares 22 guidelines, highlighting overlaps but also omissions. As a result, I give a detailed overview of the field of AI ethics. Finally, (...)
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • Ethics of Artificial Intelligence and Robotics.Vincent C. Müller - 2020 - In Edward N. Zalta (ed.), Stanford Encylopedia of Philosophy. pp. 1-70.
    Artificial intelligence (AI) and robotics are digital technologies that will have significant impact on the development of humanity in the near future. They have raised fundamental questions about what we should do with these systems, what the systems themselves should do, what risks they involve, and how we can control these. - After the Introduction to the field (§1), the main themes (§2) of this article are: Ethical issues that arise with AI systems as objects, i.e., tools made and used (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • (1 other version)A united framework of five principles for AI in society.Luciano Floridi & Josh Cowls - 2019 - Harvard Data Science Review 1 (1).
    Artificial Intelligence (AI) is already having a major impact on society. As a result, many organizations have launched a wide range of initiatives to establish ethical principles for the adoption of socially beneficial AI. Unfortunately, the sheer volume of proposed principles threatens to overwhelm and confuse. How might this problem of ‘principle proliferation’ be solved? In this paper, we report the results of a fine-grained analysis of several of the highest-profile sets of ethical principles for AI. We assess whether these (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • From what to how: an initial review of publicly available AI ethics tools, methods and research to translate principles into practices.Jessica Morley, Luciano Floridi, Libby Kinsey & Anat Elhalal - 2020 - Science and Engineering Ethics 26 (4):2141-2168.
    The debate about the ethical implications of Artificial Intelligence dates from the 1960s :741–742, 1960; Wiener in Cybernetics: or control and communication in the animal and the machine, MIT Press, New York, 1961). However, in recent years symbolic AI has been complemented and sometimes replaced by Neural Networks and Machine Learning techniques. This has vastly increased its potential utility and impact on society, with the consequence that the ethical debate has gone mainstream. Such a debate has primarily focused on principles—the (...)
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • (1 other version)The ethics of algorithms: key problems and solutions.Andreas Tsamados, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo & Luciano Floridi - 2021 - AI and Society.
    Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Artificial Intelligence and Patient-Centered Decision-Making.Jens Christian Bjerring & Jacob Busch - 2020 - Philosophy and Technology 34 (2):349-371.
    Advanced AI systems are rapidly making their way into medical research and practice, and, arguably, it is only a matter of time before they will surpass human practitioners in terms of accuracy, reliability, and knowledge. If this is true, practitioners will have a prima facie epistemic and professional obligation to align their medical verdicts with those of advanced AI systems. However, in light of their complexity, these AI systems will often function as black boxes: the details of their contents, calculations, (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • How to design AI for social good: seven essential factors.Luciano Floridi, Josh Cowls, Thomas C. King & Mariarosaria Taddeo - 2020 - Science and Engineering Ethics 26 (3):1771–1796.
    The idea of artificial intelligence for social good is gaining traction within information societies in general and the AI community in particular. It has the potential to tackle social problems through the development of AI-based solutions. Yet, to date, there is only limited understanding of what makes AI socially good in theory, what counts as AI4SG in practice, and how to reproduce its initial successes in terms of policies. This article addresses this gap by identifying seven ethical factors that are (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • (1 other version)The ethics of algorithms: key problems and solutions.Andreas Tsamados, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo & Luciano Floridi - 2022 - AI and Society 37 (1):215-230.
    Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • (1 other version)Translating principles into practices of digital ethics: five risks of being unethical.Luciano Floridi - 2019 - Philosophy and Technology 32 (2):185-193.
    Modern digital technologies—from web-based services to Artificial Intelligence (AI) solutions—increasingly affect the daily lives of billions of people. Such innovation brings huge opportunities, but also concerns about design, development, and deployment of digital technologies. This article identifies and discusses five clusters of risk in the international debate about digital ethics: ethics shopping; ethics bluewashing; ethics lobbying; ethics dumping; and ethics shirking.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Artificial Intelligence, Values, and Alignment.Iason Gabriel - 2020 - Minds and Machines 30 (3):411-437.
    This paper looks at philosophical questions that arise in the context of AI alignment. It defends three propositions. First, normative and technical aspects of the AI alignment problem are interrelated, creating space for productive engagement between people working in both domains. Second, it is important to be clear about the goal of alignment. There are significant differences between AI that aligns with instructions, intentions, revealed preferences, ideal preferences, interests and values. A principle-based approach to AI alignment, which combines these elements (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Mapping Value Sensitive Design onto AI for Social Good Principles.Steven Umbrello & Ibo van de Poel - 2021 - AI and Ethics 1 (3):283–296.
    Value Sensitive Design (VSD) is an established method for integrating values into technical design. It has been applied to different technologies and, more recently, to artificial intelligence (AI). We argue that AI poses a number of challenges specific to VSD that require a somewhat modified VSD approach. Machine learning (ML), in particular, poses two challenges. First, humans may not understand how an AI system learns certain things. This requires paying attention to values such as transparency, explicability, and accountability. Second, ML (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • What do we want from Explainable Artificial Intelligence (XAI)? – A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research.Markus Langer, Daniel Oster, Timo Speith, Lena Kästner, Kevin Baum, Holger Hermanns, Eva Schmidt & Andreas Sesing - 2021 - Artificial Intelligence 296 (C):103473.
    Previous research in Explainable Artificial Intelligence (XAI) suggests that a main aim of explainability approaches is to satisfy specific interests, goals, expectations, needs, and demands regarding artificial systems (we call these “stakeholders' desiderata”) in a variety of contexts. However, the literature on XAI is vast, spreads out across multiple largely disconnected disciplines, and it often remains unclear how explainability approaches are supposed to achieve the goal of satisfying stakeholders' desiderata. This paper discusses the main classes of stakeholders calling for explainability (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Ethical Implications of Artificial Intelligence (AI) For Meaningful Work.Sarah Bankins & Paul Formosa - 2023 - Journal of Business Ethics (4):1-16.
    The increasing workplace use of artificially intelligent (AI) technologies has implications for the experience of meaningful human work. Meaningful work refers to the perception that one’s work has worth, significance, or a higher purpose. The development and organisational deployment of AI is accelerating, but the ways in which this will support or diminish opportunities for meaningful work and the ethical implications of these changes remain under-explored. This conceptual paper is positioned at the intersection of the meaningful work and ethical AI (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Varieties of transparency: exploring agency within AI systems.Gloria Andrada, Robert William Clowes & Paul Smart - 2023 - AI and Society 38 (4):1321-1331.
    AI systems play an increasingly important role in shaping and regulating the lives of millions of human beings across the world. Calls for greater _transparency_ from such systems have been widespread. However, there is considerable ambiguity concerning what “transparency” actually means, and therefore, what greater transparency might entail. While, according to some debates, transparency requires _seeing through_ the artefact or device, widespread calls for transparency imply _seeing into_ different aspects of AI systems. These two notions are in apparent tension with (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Decolonial AI: Decolonial Theory as Sociotechnical Foresight in Artificial Intelligence.Shakir Mohamed, Marie-Therese Png & William Isaac - 2020 - Philosophy and Technology 33 (4):659-684.
    This paper explores the important role of critical science, and in particular of post-colonial and decolonial theories, in understanding and shaping the ongoing advances in artificial intelligence. Artificial intelligence is viewed as amongst the technological advances that will reshape modern societies and their relations. While the design and deployment of systems that continually adapt holds the promise of far-reaching positive change, they simultaneously pose significant risks, especially to already vulnerable peoples. Values and power are central to this discussion. Decolonial theories (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Levels of explicability for medical artificial intelligence: What do we normatively need and what can we technically reach?Frank Ursin, Felix Lindner, Timo Ropinski, Sabine Salloch & Cristian Timmermann - 2023 - Ethik in der Medizin 35 (2):173-199.
    Definition of the problem The umbrella term “explicability” refers to the reduction of opacity of artificial intelligence (AI) systems. These efforts are challenging for medical AI applications because higher accuracy often comes at the cost of increased opacity. This entails ethical tensions because physicians and patients desire to trace how results are produced without compromising the performance of AI systems. The centrality of explicability within the informed consent process for medical AI systems compels an ethical reflection on the trade-offs. Which (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • From Responsibility to Reason-Giving Explainable Artificial Intelligence.Kevin Baum, Susanne Mantel, Timo Speith & Eva Schmidt - 2022 - Philosophy and Technology 35 (1):1-30.
    We argue that explainable artificial intelligence (XAI), specifically reason-giving XAI, often constitutes the most suitable way of ensuring that someone can properly be held responsible for decisions that are based on the outputs of artificial intelligent (AI) systems. We first show that, to close moral responsibility gaps (Matthias 2004), often a human in the loop is needed who is directly responsible for particular AI-supported decisions. Second, we appeal to the epistemic condition on moral responsibility to argue that, in order to (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Value Sensitive Design to Achieve the UN SDGs with AI: A Case of Elderly Care Robots.Steven Umbrello, Marianna Capasso, Maurizio Balistreri, Alberto Pirni & Federica Merenda - 2021 - Minds and Machines 31 (3):395-419.
    Healthcare is becoming increasingly automated with the development and deployment of care robots. There are many benefits to care robots but they also pose many challenging ethical issues. This paper takes care robots for the elderly as the subject of analysis, building on previous literature in the domain of the ethics and design of care robots. Using the value sensitive design approach to technology design, this paper extends its application to care robots by integrating the values of care, values that (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The ethics of digital well-being: a thematic review.Christopher Burr, Mariarosaria Taddeo & Luciano Floridi - 2020 - Science and Engineering Ethics 26 (4):2313–2343.
    This article presents the first thematic review of the literature on the ethical issues concerning digital well-being. The term ‘digital well-being’ is used to refer to the impact of digital technologies on what it means to live a life that is good for a human being. The review explores the existing literature on the ethics of digital well-being, with the goal of mapping the current debate and identifying open questions for future research. The review identifies major issues related to several (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Primer on an ethics of AI-based decision support systems in the clinic.Matthias Braun, Patrik Hummel, Susanne Beck & Peter Dabrock - 2021 - Journal of Medical Ethics 47 (12):3-3.
    Making good decisions in extremely complex and difficult processes and situations has always been both a key task as well as a challenge in the clinic and has led to a large amount of clinical, legal and ethical routines, protocols and reflections in order to guarantee fair, participatory and up-to-date pathways for clinical decision-making. Nevertheless, the complexity of processes and physical phenomena, time as well as economic constraints and not least further endeavours as well as achievements in medicine and healthcare (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Artificial intelligence, transparency, and public decision-making.Karl de Fine Licht & Jenny de Fine Licht - 2020 - AI and Society 35 (4):917-926.
    The increasing use of Artificial Intelligence for making decisions in public affairs has sparked a lively debate on the benefits and potential harms of self-learning technologies, ranging from the hopes of fully informed and objectively taken decisions to fear for the destruction of mankind. To prevent the negative outcomes and to achieve accountable systems, many have argued that we need to open up the “black box” of AI decision-making and make it more transparent. Whereas this debate has primarily focused on (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • The ethics of digital well-being: a thematic review.Christopher Burr, Mariarosaria Taddeo & Luciano Floridi - 2020 - Science and Engineering Ethics 26 (4):2313–⁠2343.
    This article presents the first thematic review of the literature on the ethical issues concerning digital well-being. The term ‘digital well-being’ is used to refer to the impact of digital technologies on what it means to live a life that isgood fora human being. The review explores the existing literature on the ethics of digital well-being, with the goal of mapping the current debate and identifying open questions for future research. The review identifies major issues related to several key social (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The algorithm audit: Scoring the algorithms that score us.Jovana Davidovic, Shea Brown & Ali Hasan - 2021 - Big Data and Society 8 (1).
    In recent years, the ethical impact of AI has been increasingly scrutinized, with public scandals emerging over biased outcomes, lack of transparency, and the misuse of data. This has led to a growing mistrust of AI and increased calls for mandated ethical audits of algorithms. Current proposals for ethical assessment of algorithms are either too high level to be put into practice without further guidance, or they focus on very specific and technical notions of fairness or transparency that do not (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • AI and society: a virtue ethics approach.Mirko Farina, Petr Zhdanov, Artur Karimov & Andrea Lavazza - 2024 - AI and Society 39 (3):1127-1140.
    Advances in artificial intelligence and robotics stand to change many aspects of our lives, including our values. If trends continue as expected, many industries will undergo automation in the near future, calling into question whether we can still value the sense of identity and security our occupations once provided us with. Likewise, the advent of social robots driven by AI, appears to be shifting the meaning of numerous, long-standing values associated with interpersonal relationships, like friendship. Furthermore, powerful actors’ and institutions’ (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Explicability of artificial intelligence in radiology: Is a fifth bioethical principle conceptually necessary?Frank Ursin, Cristian Timmermann & Florian Steger - 2022 - Bioethics 36 (2):143-153.
    Recent years have witnessed intensive efforts to specify which requirements ethical artificial intelligence (AI) must meet. General guidelines for ethical AI consider a varying number of principles important. A frequent novel element in these guidelines, that we have bundled together under the term explicability, aims to reduce the black-box character of machine learning algorithms. The centrality of this element invites reflection on the conceptual relation between explicability and the four bioethical principles. This is important because the application of general ethical (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A Misdirected Principle with a Catch: Explicability for AI.Scott Robbins - 2019 - Minds and Machines 29 (4):495-514.
    There is widespread agreement that there should be a principle requiring that artificial intelligence be ‘explicable’. Microsoft, Google, the World Economic Forum, the draft AI ethics guidelines for the EU commission, etc. all include a principle for AI that falls under the umbrella of ‘explicability’. Roughly, the principle states that “for AI to promote and not constrain human autonomy, our ‘decision about who should decide’ must be informed by knowledge of how AI would act instead of us” :689–707, 2018). There (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Robot Autonomy vs. Human Autonomy: Social Robots, Artificial Intelligence (AI), and the Nature of Autonomy.Paul Formosa - 2021 - Minds and Machines 31 (4):595-616.
    Social robots are robots that can interact socially with humans. As social robots and the artificial intelligence that powers them becomes more advanced, they will likely take on more social and work roles. This has many important ethical implications. In this paper, we focus on one of the most central of these, the impacts that social robots can have on human autonomy. We argue that, due to their physical presence and social capacities, there is a strong potential for social robots (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Ethics-based auditing of automated decision-making systems: nature, scope, and limitations.Jakob Mökander, Jessica Morley, Mariarosaria Taddeo & Luciano Floridi - 2021 - Science and Engineering Ethics 27 (4):1–30.
    Important decisions that impact humans lives, livelihoods, and the natural environment are increasingly being automated. Delegating tasks to so-called automated decision-making systems can improve efficiency and enable new solutions. However, these benefits are coupled with ethical challenges. For example, ADMS may produce discriminatory outcomes, violate individual privacy, and undermine human self-determination. New governance mechanisms are thus needed that help organisations design and deploy ADMS in ways that are ethical, while enabling society to reap the full economic and social benefits of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • What Are Humans Doing in the Loop? Co-Reasoning and Practical Judgment When Using Machine Learning-Driven Decision Aids.Sabine Salloch & Andreas Eriksen - 2024 - American Journal of Bioethics 24 (9):67-78.
    Within the ethical debate on Machine Learning-driven decision support systems (ML_CDSS), notions such as “human in the loop” or “meaningful human control” are often cited as being necessary for ethical legitimacy. In addition, ethical principles usually serve as the major point of reference in ethical guidance documents, stating that conflicts between principles need to be weighed and balanced against each other. Starting from a neo-Kantian viewpoint inspired by Onora O'Neill, this article makes a concrete suggestion of how to interpret the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Responsible nudging for social good: new healthcare skills for AI-driven digital personal assistants.Marianna Capasso & Steven Umbrello - 2022 - Medicine, Health Care and Philosophy 25 (1):11-22.
    Traditional medical practices and relationships are changing given the widespread adoption of AI-driven technologies across the various domains of health and healthcare. In many cases, these new technologies are not specific to the field of healthcare. Still, they are existent, ubiquitous, and commercially available systems upskilled to integrate these novel care practices. Given the widespread adoption, coupled with the dramatic changes in practices, new ethical and social issues emerge due to how these systems nudge users into making decisions and changing (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)The explanation game: a formal framework for interpretable machine learning.David S. Watson & Luciano Floridi - 2020 - Synthese 198 (10):1–⁠32.
    We propose a formal framework for interpretable machine learning. Combining elements from statistical learning, causal interventionism, and decision theory, we design an idealised explanation game in which players collaborate to find the best explanation for a given algorithmic prediction. Through an iterative procedure of questions and answers, the players establish a three-dimensional Pareto frontier that describes the optimal trade-offs between explanatory accuracy, simplicity, and relevance. Multiple rounds are played at different levels of abstraction, allowing the players to explore overlapping causal (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • What we owe to decision-subjects: beyond transparency and explanation in automated decision-making.David Gray Grant, Jeff Behrends & John Basl - 2023 - Philosophical Studies 2003:1-31.
    The ongoing explosion of interest in artificial intelligence is fueled in part by recently developed techniques in machine learning. Those techniques allow automated systems to process huge amounts of data, utilizing mathematical methods that depart from traditional statistical approaches, and resulting in impressive advancements in our ability to make predictions and uncover correlations across a host of interesting domains. But as is now widely discussed, the way that those systems arrive at their outputs is often opaque, even to the experts (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Decolonizing AI Ethics: Relational Autonomy as a Means to Counter AI Harms.Sábëlo Mhlambi & Simona Tiribelli - 2023 - Topoi 42 (3):867-880.
    Many popular artificial intelligence (AI) ethics frameworks center the principle of autonomy as necessary in order to mitigate the harms that might result from the use of AI within society. These harms often disproportionately affect the most marginalized within society. In this paper, we argue that the principle of autonomy, as currently formalized in AI ethics, is itself flawed, as it expresses only a mainstream mainly liberal notion of autonomy as rational self-determination, derived from Western traditional philosophy. In particular, we (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Social Media and its Negative Impacts on Autonomy.Siavosh Sahebi & Paul Formosa - 2022 - Philosophy and Technology 35 (3):1-24.
    How social media impacts the autonomy of its users is a topic of increasing focus. However, much of the literature that explores these impacts fails to engage in depth with the philosophical literature on autonomy. This has resulted in a failure to consider the full range of impacts that social media might have on autonomy. A deeper consideration of these impacts is thus needed, given the importance of both autonomy as a moral concept and social media as a feature of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The European legislation on AI: a brief analysis of its philosophical approach.Luciano Floridi - 2021 - Philosophy and Technology 34 (2):215–⁠222.
    On 21 April 2021, the European Commission published the proposal of the new EU Artificial Intelligence Act (AIA) — one of the most influential steps taken so far to regulate AI internationally. This article highlights some foundational aspects of the Act and analyses the philosophy behind its proposal.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A Virtue-Based Framework to Support Putting AI Ethics into Practice.Thilo Hagendorff - 2022 - Philosophy and Technology 35 (3):1-24.
    Many ethics initiatives have stipulated sets of principles and standards for good technology development in the AI sector. However, several AI ethics researchers have pointed out a lack of practical realization of these principles. Following that, AI ethics underwent a practical turn, but without deviating from the principled approach. This paper proposes a complementary to the principled approach that is based on virtue ethics. It defines four “basic AI virtues”, namely justice, honesty, responsibility and care, all of which represent specific (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Artificial intelligence ethics guidelines for developers and users: clarifying their content and normative implications.Mark Ryan & Bernd Carsten Stahl - 2021 - Journal of Information, Communication and Ethics in Society 19 (1):61-86.
    Purpose The purpose of this paper is clearly illustrate this convergence and the prescriptive recommendations that such documents entail. There is a significant amount of research into the ethical consequences of artificial intelligence. This is reflected by many outputs across academia, policy and the media. Many of these outputs aim to provide guidance to particular stakeholder groups. It has recently been shown that there is a large degree of convergence in terms of the principles upon which these guidance documents are (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Artificial intelligence and the value of transparency.Joel Walmsley - 2021 - AI and Society 36 (2):585-595.
    Some recent developments in Artificial Intelligence—especially the use of machine learning systems, trained on big data sets and deployed in socially significant and ethically weighty contexts—have led to a number of calls for “transparency”. This paper explores the epistemological and ethical dimensions of that concept, as well as surveying and taxonomising the variety of ways in which it has been invoked in recent discussions. Whilst “outward” forms of transparency may be straightforwardly achieved, what I call “functional” transparency about the inner (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Ethics of AI-Enabled Recruiting and Selection: A Review and Research Agenda.Anna Lena Hunkenschroer & Christoph Luetge - 2022 - Journal of Business Ethics 178 (4):977-1007.
    Companies increasingly deploy artificial intelligence technologies in their personnel recruiting and selection process to streamline it, making it faster and more efficient. AI applications can be found in various stages of recruiting, such as writing job ads, screening of applicant resumes, and analyzing video interviews via face recognition software. As these new technologies significantly impact people’s lives and careers but often trigger ethical concerns, the ethicality of these AI applications needs to be comprehensively understood. However, given the novelty of AI (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • AI, Opacity, and Personal Autonomy.Bram Vaassen - 2022 - Philosophy and Technology 35 (4):1-20.
    Advancements in machine learning have fuelled the popularity of using AI decision algorithms in procedures such as bail hearings, medical diagnoses and recruitment. Academic articles, policy texts, and popularizing books alike warn that such algorithms tend to be opaque: they do not provide explanations for their outcomes. Building on a causal account of transparency and opacity as well as recent work on the value of causal explanation, I formulate a moral concern for opaque algorithms that is yet to receive a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Embedded ethics: a proposal for integrating ethics into the development of medical AI.Alena Buyx, Sami Haddadin, Ruth Müller, Daniel Tigard, Amelia Fiske & Stuart McLennan - 2022 - BMC Medical Ethics 23 (1):1-10.
    The emergence of ethical concerns surrounding artificial intelligence (AI) has led to an explosion of high-level ethical principles being published by a wide range of public and private organizations. However, there is a need to consider how AI developers can be practically assisted to anticipate, identify and address ethical issues regarding AI technologies. This is particularly important in the development of AI intended for healthcare settings, where applications will often interact directly with patients in various states of vulnerability. In this (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • AI and the expert; a blueprint for the ethical use of opaque AI.Amber Ross - forthcoming - AI and Society:1-12.
    The increasing demand for transparency in AI has recently come under scrutiny. The question is often posted in terms of “epistemic double standards”, and whether the standards for transparency in AI ought to be higher than, or equivalent to, our standards for ordinary human reasoners. I agree that the push for increased transparency in AI deserves closer examination, and that comparing these standards to our standards of transparency for other opaque systems is an appropriate starting point. I suggest that a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Making AI Intelligible: Philosophical Foundations.Herman Cappelen & Josh Dever - 2021 - New York, USA: Oxford University Press.
    Can humans and artificial intelligences share concepts and communicate? Making AI Intelligible shows that philosophical work on the metaphysics of meaning can help answer these questions. Herman Cappelen and Josh Dever use the externalist tradition in philosophy to create models of how AIs and humans can understand each other. In doing so, they illustrate ways in which that philosophical tradition can be improved. The questions addressed in the book are not only theoretically interesting, but the answers have pressing practical implications. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Evidence, ethics and the promise of artificial intelligence in psychiatry.Melissa McCradden, Katrina Hui & Daniel Z. Buchman - 2023 - Journal of Medical Ethics 49 (8):573-579.
    Researchers are studying how artificial intelligence (AI) can be used to better detect, prognosticate and subgroup diseases. The idea that AI might advance medicine’s understanding of biological categories of psychiatric disorders, as well as provide better treatments, is appealing given the historical challenges with prediction, diagnosis and treatment in psychiatry. Given the power of AI to analyse vast amounts of information, some clinicians may feel obligated to align their clinical judgements with the outputs of the AI system. However, a potential (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (2 other versions)The explanation game: a formal framework for interpretable machine learning.David S. Watson & Luciano Floridi - 2021 - Synthese 198 (10):9211-9242.
    We propose a formal framework for interpretable machine learning. Combining elements from statistical learning, causal interventionism, and decision theory, we design an idealisedexplanation gamein which players collaborate to find the best explanation(s) for a given algorithmic prediction. Through an iterative procedure of questions and answers, the players establish a three-dimensional Pareto frontier that describes the optimal trade-offs between explanatory accuracy, simplicity, and relevance. Multiple rounds are played at different levels of abstraction, allowing the players to explore overlapping causal patterns of (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Artificial intelligence ethics has a black box problem.Jean-Christophe Bélisle-Pipon, Erica Monteferrante, Marie-Christine Roy & Vincent Couture - 2023 - AI and Society 38 (4):1507-1522.
    It has become a truism that the ethics of artificial intelligence (AI) is necessary and must help guide technological developments. Numerous ethical guidelines have emerged from academia, industry, government and civil society in recent years. While they provide a basis for discussion on appropriate regulation of AI, it is not always clear how these ethical guidelines were developed, and by whom. Using content analysis, we surveyed a sample of the major documents (_n_ = 47) and analyzed the accessible information regarding (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Defending explicability as a principle for the ethics of artificial intelligence in medicine.Jonathan Adams - 2023 - Medicine, Health Care and Philosophy 26 (4):615-623.
    The difficulty of explaining the outputs of artificial intelligence (AI) models and what has led to them is a notorious ethical problem wherever these technologies are applied, including in the medical domain, and one that has no obvious solution. This paper examines the proposal, made by Luciano Floridi and colleagues, to include a new ‘principle of explicability’ alongside the traditional four principles of bioethics that make up the theory of ‘principlism’. It specifically responds to a recent set of criticisms that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Leap of Faith: Is There a Formula for “Trustworthy” AI?Matthias Braun, Hannah Bleher & Patrik Hummel - 2021 - Hastings Center Report 51 (3):17-22.
    Trust is one of the big buzzwords in debates about the shaping of society, democracy, and emerging technologies. For example, one prominent idea put forward by the High‐Level Expert Group on Artificial Intelligence appointed by the European Commission is that artificial intelligence should be trustworthy. In this essay, we explore the notion of trust and argue that both proponents and critics of trustworthy AI have flawed pictures of the nature of trust. We develop an approach to understanding trust in AI (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Role of Engineers in Harmonising Human Values for AI Systems Design.Steven Umbrello - 2022 - Journal of Responsible Technology 10 (July):100031.
    Most engineers Fwork within social structures governing and governed by a set of values that primarily emphasise economic concerns. The majority of innovations derive from these loci. Given the effects of these innovations on various communities, it is imperative that the values they embody are aligned with those societies. Like other transformative technologies, artificial intelligence systems can be designed by a single organisation but be diffused globally, demonstrating impacts over time. This paper argues that in order to design for this (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Operationalising AI ethics: how are companies bridging the gap between practice and principles? An exploratory study.Javier Camacho Ibáñez & Mónica Villas Olmeda - 2022 - AI and Society 37 (4):1663-1687.
    Despite the increase in the research field of ethics in artificial intelligence, most efforts have focused on the debate about principles and guidelines for responsible AI, but not enough attention has been given to the “how” of applied ethics. This paper aims to advance the research exploring the gap between practice and principles in AI ethics by identifying how companies are applying those guidelines and principles in practice. Through a qualitative methodology based on 22 semi-structured interviews and two focus groups, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations