Citations of:
An Aristotelian realist philosophy of mathematics: Mathematics as the science of quantity and stucture
London and New York: Palgrave MacMillan (2014)
Add citations
You must login to add citations.


This book offers a historical explanation of important philosophical problems in logic and mathematics, which have been neglected by the official history of modern logic. It offers extensive information on Gottlob Frege’s logic, discussing which aspects of his logic can be considered truly innovative in its revolution against the Aristotelian logic. It presents the work of Hilbert and his associates and followers with the aim of understanding the revolutionary change in the axiomatic method. Moreover, it offers useful tools to understand (...) 

This rich book differs from much contemporary philosophy of mathematics in the author’s witty, down to earth style, and his extensive experience as a working mathematician. It accords with the field in focusing on whether mathematical entities are real. Franklin holds that recent discussion of this has oscillated between various forms of Platonism, and various forms of nominalism. He denies nominalism by holding that universals exist and denies Platonism by holding that they are concrete, not abstract  looking to Aristotle (...) 

Mathematics is often taken to play one of two roles in the empirical sciences: either it represents empirical phenomena or it explains these phenomena by imposing constraints on them. This article identifies a third and distinct role that has not been fully appreciated in the literature on applicability of mathematics and may be pervasive in scientific practice. I call this the “bridging” role of mathematics, according to which mathematics acts as a connecting scheme in our explanatory reasoning about why and (...) 



A mathematical matrix is usually defined as a twodimensional array of scalars. And yet, as I explain, matrices are not in fact twodimensional arrays. So are we to conclude that matrices do not exist? I show how to resolve the puzzle, for both contemporary and older mathematics. The solution generalises to the interpretation of all mathematical discourse. The paper as a whole attempts to reinforce mathematical structuralism by reflecting on how best to interpret mathematics. 

There is a wide range of realist but nonPlatonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other nonabstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares these (...) 

This essay proposes a comprehensive blueprint for the hylomorphic foundations of cosmology. The key philosophical explananda in cosmology are those dealing with global processes and structures, the regularity of global regularities, and the existence of the global as such. The possibility of elucidating these using alternatives to hylomorphism is outlined and difficulties with these alternatives are raised. Hylomorphism, by contrast, provides a sound philosophical ground for cosmology insofar as it leads to notions of cosmic essence, the unity of complex essences, (...) 

This article elaborates the epistemic indispensability argument, which fully embraces the epistemic contribution of mathematics to science, but rejects the contention that such a contribution is a reason for granting reality to mathematicalia. Section 1 introduces the distinction between ontological and epistemic readings of the indispensability argument. Section 2 outlines some of the main flaws of the first premise of the ontological reading. Section 3 advances the epistemic indispensability argument in view of both applied and pure mathematics. And Sect. 4 (...) 

Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure mathematics and (...) 

There is little agreement about Aristotle’s philosophy of geometry, partly due to the textual evidence and partly part to disagreement over what constitutes a plausible view. I keep separate the questions ‘What is Aristotle’s philosophy of geometry?’ and ‘Is Aristotle right?’, and consider the textual evidence in the context of Greek geometrical practice, and show that, for Aristotle, plane geometry is about properties of certain sensible objects—specifically, dimensional continuity—and certain properties possessed by actual and potential compassandstraightedge drawings qua quantitative and (...) 

A problem for Aristotelian realist accounts of universals (neither Platonist nor nominalist) is the status of those universals that happen not to be realised in the physical (or any other) world. They perhaps include uninstantiated shades of blue and huge infinite cardinals. Should they be altogether excluded (as in D.M. Armstrong's theory of universals) or accorded some sort of reality? Surely truths about ratios are true even of ratios that are too big to be instantiated  what is the truthmaker (...) 

This paper explores the mereology of structural universals, using the structural richness of a nonclassical mereology without unique fusions. The paper focuses on a problem posed by David Lewis, who using the example of methane, and assuming classical mereology, argues against any purely mereological theory of structural universals. The problem is that being a methane molecule would have to contain being a hydrogen atom four times over, but mereology does not have the concept of the same part occurring several times. (...) 

What can we infer from numerical cognition about mathematical realism? In this paper, I will consider one aspect of numerical cognition that has received little attention in the literature: the remarkable similarities of numerical cognitive capacities across many animal species. This Invariantism in Numerical Cognition (INC) indicates that mathematics and morality are disanalogous in an important respect: protomoral beliefs differ substantially between animal species, whereas protomathematical beliefs (at least in the animals studied) seem to show more similarities. This makes moral (...) 

BellJohn L.* * _ Oppositions and Paradoxes: Philosophical Perplexities in Science and Mathematics _. Peterborough, Ontario: Broadview Press, 2016. ISBN: 9781554813025 ; 9781770486034. Pp. xiv + 202. 

Although there are many questions to be asked about philosophy of mathematics, the fundamental questions to be asked will be questions about what the mathematical object is in view of being and what the mathematical reasoning is in view of knowledge. It is clear that other problems will develop in parallel within the framework of the answers to these questions. For this rea son, when we approach Aristotle's philosophy of mathematics over these two basic problems, we come up with the (...) 



The distinction between the discrete and the continuous lies at the heart of mathematics. Discrete mathematics (arithmetic, algebra, combinatorics, graph theory, cryptography, logic) has a set of concepts, techniques, and application areas largely distinct from continuous mathematics (traditional geometry, calculus, most of functional analysis, differential equations, topology). The interaction between the two – for example in computer models of continuous systems such as fluid flow – is a central issue in the applicable mathematics of the last hundred years. This article (...) 



ParkWoosuk.* * _ Philosophy’s Loss of Logic to Mathematics: An Inadequately Understood TakeOver _. Studies in Applied Philosophy, Epistemology, and Rational Ethics; 43. Springer, 2018. ISBN: 9783319951461 ; 9783030069841 9783319951478. Pp. xii + 230. doi: 10.1007/9783319951478. 

The leaders of the Scientific Revolution were not Baconian in temperament, in trying to build up theories from data. Their project was that same as in Aristotle's Posterior Analytics: they hoped to find necessary principles that would show why the observations must be as they are. Their use of mathematics to do so expanded the Aristotelian project beyond the qualitative methods used by Aristotle and the scholastics. In many cases they succeeded. 

In some sense, both ontological and epistemological problems related to individuation have been the focal issues in the philosophy of mathematics ever since Frege. However, such an interest becomes manifest in the rise of structuralism as one of the most promising positions in recent philosophy of mathematics. The most recent controversy between Keränen and Shapiro seems to be the culmination of this phenomenon. Rather than taking sides, in this paper, I propose to critically examine some common assumptions shared by both (...) 



