Switch to: References

Add citations

You must login to add citations.
  1. Is there any real substance to the claims for a 'new computationalism'?Alberto Hernandez-Espinosa, Hernandez-Quiroz Francisco & Zenil Hector - forthcoming - In Hernandez-Espinosa Alberto, Francisco Hernandez-Quiroz & Hector Zenil (eds.), CiE Computability in Europe 2017. Springer Verlag.
    'Computationalism' is a relatively vague term used to describe attempts to apply Turing's model of computation to phenomena outside its original purview: in modelling the human mind, in physics, mathematics, etc. Early versions of computationalism faced strong objections from many (and varied) quarters, from philosophers to practitioners of the aforementioned disciplines. Here we will not address the fundamental question of whether computational models are appropriate for describing some or all of the wide range of processes that they have been applied (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Examining the Continuity between Life and Mind: Is There a Continuity between Autopoietic Intentionality and Representationality?Wanja Wiese & Karl J. Friston - 2021 - Philosophies 6 (1):18.
    A weak version of the life-mind continuity thesis entails that every living system also has a basic mind (with a non-representational form of intentionality). The strong version entails that the same concepts that are sufficient to explain basic minds (with non-representational states) are also central to understanding non-basic minds (with representational states). We argue that recent work on the free energy principle supports the following claims with respect to the life-mind continuity thesis: (i) there is a strong continuity between life (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On Two Different Kinds of Computational Indeterminacy.Philippos Papayannopoulos, Nir Fresco & Oron Shagrir - 2022 - The Monist 105 (2):229-246.
    It is often indeterminate what function a given computational system computes. This phenomenon has been referred to as “computational indeterminacy” or “multiplicity of computations.” In this paper, we argue that what has typically been considered and referred to as the challenge of computational indeterminacy in fact subsumes two distinct phenomena, which are typically bundled together and should be teased apart. One kind of indeterminacy concerns a functional characterization of the system’s relevant behavior. Another kind concerns the manner in which the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The indeterminacy of computation.Nir Fresco, B. Jack Copeland & Marty J. Wolf - 2021 - Synthese 199 (5-6):12753-12775.
    Do the dynamics of a physical system determine what function the system computes? Except in special cases, the answer is no: it is often indeterminate what function a given physical system computes. Accordingly, care should be taken when the question ‘What does a particular neuronal system do?’ is answered by hypothesising that the system computes a particular function. The phenomenon of the indeterminacy of computation has important implications for the development of computational explanations of biological systems. Additionally, the phenomenon lends (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Mechanistic Computational Individuation without Biting the Bullet.Nir Fresco & Marcin Miłkowski - 2019 - British Journal for the Philosophy of Science:axz005.
    Is the mathematical function being computed by a given physical system determined by the system’s dynamics? This question is at the heart of the indeterminacy of computation phenomenon (Fresco et al. [unpublished]). A paradigmatic example is a conventional electrical AND-gate that is often said to compute conjunction, but it can just as well be used to compute disjunction. Despite the pervasiveness of this phenomenon in physical computational systems, it has been discussed in the philosophical literature only indirectly, mostly with reference (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Mechanistic Computational Individuation without Biting the Bullet.Nir Fresco & Marcin Miłkowski - 2021 - British Journal for the Philosophy of Science 72 (2):431-438.
    Is the mathematical function being computed by a given physical system determined by the system’s dynamics? This question is at the heart of the indeterminacy of computation phenomenon (Fresco et al. [unpublished]). A paradigmatic example is a conventional electrical AND-gate that is often said to compute conjunction, but it can just as well be used to compute disjunction. Despite the pervasiveness of this phenomenon in physical computational systems, it has been discussed in the philosophical literature only indirectly, mostly with reference (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Structuralism, indiscernibility, and physical computation.F. T. Doherty & J. Dewhurst - 2022 - Synthese 200 (3):1-26.
    Structuralism about mathematical objects and structuralist accounts of physical computation both face indeterminacy objections. For the former, the problem arises for cases such as the complex roots i and \, for which a automorphism can be defined, thus establishing the structural identity of these importantly distinct mathematical objects. In the case of the latter, the problem arises for logical duals such as AND and OR, which have invertible structural profiles :369–400, 2001). This makes their physical implementations indeterminate, in the sense (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computing Mechanisms Without Proper Functions.Joe Dewhurst - 2018 - Minds and Machines 28 (3):569-588.
    The aim of this paper is to begin developing a version of Gualtiero Piccinini’s mechanistic account of computation that does not need to appeal to any notion of proper functions. The motivation for doing so is a general concern about the role played by proper functions in Piccinini’s account, which will be evaluated in the first part of the paper. I will then propose a potential alternative approach, where computing mechanisms are understood in terms of Carl Craver’s perspectival account of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • How to Explain Miscomputation.Chris Tucker - 2018 - Philosophers' Imprint 18:1-17.
    Just as theory of representation is deficient if it can’t explain how misrepresentation is possible, a theory of computation is deficient if it can’t explain how miscomputation is possible. Nonetheless, philosophers have generally ignored miscomputation. My primary goal in this paper is to clarify both what miscomputation is and how to adequately explain it. Miscomputation is a special kind of malfunction: a system miscomputes when it computes in a way that it shouldn’t. To explain miscomputation, you must provide accounts of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations