Switch to: References

Add citations

You must login to add citations.
  1. Is Complexity a Scientific Concept?Paul Taborsky - 2014 - Studies in History and Philosophy of Science Part A 47:51-59.
    Complexity science has proliferated across academic domains in recent years. A question arises as to whether any useful sense of ‘generalized complexity ’ can be abstracted from the various versions of complexity to be found in the literature, and whether it could prove fruitful in a scientific sense. Most attempts at defining complexity center around two kinds of notions: Structural, and temporal or dynamic. Neither of these is able to provide a foundation for the intuitive or generalized notion when taken (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Promises of Complexity Sciences: A Critique.Fabrizio Li Vigni - 2023 - Perspectives on Science 31 (4):465-502.
    Complexity sciences have become famous worldwide thanks to several popular books that served as echo chambers of their promises. These consisted in departing from “classical science” defined as deterministic, reductionist, analytic and mono-disciplinary. Their founders and supporters declared that complexity sciences were going to give rise (or that they have given rise) to a post-Laplacian, antireductionist, holistic and interdisciplinary approach. By taking a closer look at their content and practices, I argue in this article that, because of their physics-oriented, computationalist, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Chreods, homeorhesis and biofields: Finding the right path for science.Arran Gare - 2017 - Progress in Biophysics and Molecular Biology 131:61-91.
    C.H. Waddington’s concepts of ‘chreods’ (canalized paths of development) and ‘homeorhesis’ (the tendency to return to a path), each associated with ‘morphogenetic fields’, were conceived by him as a contribution to complexity theory. Subsequent developments in complexity theory have largely ignored Waddington’s work and efforts to advance it. Waddington explained the development of the concept of chreod as the influence on his work of Alfred North Whitehead’s process philosophy, notably, the concept of concrescence as a self-causing process. Processes were recognized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Overcoming the Newtonian Paradigm: The Unfinished Project of Theoretical Biology from a Schellingian Perspective.Arran Gare - 2013 - Progress in Biophysics and Molecular Biology 113:5-24.
    Defending Robert Rosen’s claim that in every confrontation between physics and biology it is physics that has always had to give ground, it is shown that many of the most important advances in mathematics and physics over the last two centuries have followed from Schelling’s demand for a new physics that could make the emergence of life intelligible. Consequently, while reductionism prevails in biology, many biophysicists are resolutely anti-reductionist. This history is used to identify and defend a fragmented but progressive (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Mathematics, explanation and reductionism: exposing the roots of the Egyptianism of European civilization.Arran Gare - 2005 - Cosmos and History 1 (1):54-89.
    We have reached the peculiar situation where the advance of mainstream science has required us to dismiss as unreal our own existence as free, creative agents, the very condition of there being science at all. Efforts to free science from this dead-end and to give a place to creative becoming in the world have been hampered by unexamined assumptions about what science should be, assumptions which presuppose that if creative becoming is explained, it will be explained away as an illusion. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation