Switch to: References

Add citations

You must login to add citations.
  1. The Structural Complexity of Models of Arithmetic.Antonio Montalbán & Dino Rossegger - forthcoming - Journal of Symbolic Logic:1-17.
    We calculate the possible Scott ranks of countable models of Peano arithmetic. We show that no non-standard model can have Scott rank less than $\omega $ and that non-standard models of true arithmetic must have Scott rank greater than $\omega $. Other than that there are no restrictions. By giving a reduction via $\Delta ^{\mathrm {in}}_{1}$ bi-interpretability from the class of linear orderings to the canonical structural $\omega $ -jump of models of an arbitrary completion T of $\mathrm {PA}$ we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Finitely generated groups are universal among finitely generated structures.Matthew Harrison-Trainor & Meng-Che “Turbo” Ho - 2021 - Annals of Pure and Applied Logic 172 (1):102855.
    Universality has been an important concept in computable structure theory. A class C of structures is universal if, informally, for any structure of any kind there is a structure in C with the same computability-theoretic properties as the given structure. Many classes such as graphs, groups, and fields are known to be universal. This paper is about the class of finitely generated groups. Because finitely generated structures are relatively simple, the class of finitely generated groups has no hope of being (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpreting a Field in its Heisenberg Group.Rachael Alvir, Wesley Calvert, Grant Goodman, Valentina Harizanov, Julia Knight, Russell Miller, Andrey Morozov, Alexandra Soskova & Rose Weisshaar - 2022 - Journal of Symbolic Logic 87 (3):1215-1230.
    We improve on and generalize a 1960 result of Maltsev. For a field F, we denote by $H(F)$ the Heisenberg group with entries in F. Maltsev showed that there is a copy of F defined in $H(F)$, using existential formulas with an arbitrary non-commuting pair of elements as parameters. We show that F is interpreted in $H(F)$ using computable $\Sigma _1$ formulas with no parameters. We give two proofs. The first is an existence proof, relying on a result of Harrison-Trainor, (...)
    Download  
     
    Export citation  
     
    Bookmark