Citations of:
On the sense and reference of a logical constant
Philosophical Quarterly 54 (214):134–165 (2004)
Add citations
You must login to add citations.


This article offers an overview of inferential role semantics. We aim to provide a map of the terrain as well as challenging some of the inferentialist’s standard commitments. We begin by introducing inferentialism and placing it into the wider context of contemporary philosophy of language. §2 focuses on what is standardly considered both the most important test case for and the most natural application of inferential role semantics: the case of the logical constants. We discuss some of the (alleged) benefits (...) 

In the paper the following questions are discussed: What is logical consequence? What are logical constants? What is a logical system? What is logical pluralism? What is logic? In the conclusion, the main tendencies of development of modern logic are pointed out. 

This special issue collects together nine new essays on logical consequence :the relation obtaining between the premises and the conclusion of a logically valid argument. The present paper is a partial, and opinionated,introduction to the contemporary debate on the topic. We focus on two inﬂuential accounts of consequence, the modeltheoretic and the prooftheoretic, and on the seeming platitude that valid arguments necessarilypreserve truth. We brieﬂy discuss the main objections these accounts face, as well as Hartry Field’s contention that such objections (...) 

Many prominent writers on the philosophy of logic, including Michael Dummett, Dag Prawitz, Neil Tennant, have held that the introduction and elimination rules of a logical connective must be ‘in harmony ’ if the connective is to possess a sense. This Harmony Thesis has been used to justify the choice of logic: in particular, supposed violations of it by the classical rules for negation have been the basis for arguments for switching from classical to intuitionistic logic. The Thesis has also (...) 

We see no grounds for insisting that, because the concept natural number is abstract, its foundations must be innate. It is possible to specify domain general learning processes that feed into more abstract concepts of numerical infinity. By neglecting the messiness of children's slow acquisition of arithmetical concepts, Rips et al. present an idealized, unnecessarily insular, view of number development. 

