Switch to: References

Add citations

You must login to add citations.
  1. Weak Well Orders and Fraïssé’s Conjecture.Anton Freund & Davide Manca - forthcoming - Journal of Symbolic Logic:1-16.
    The notion of countable well order admits an alternative definition in terms of embeddings between initial segments. We use the framework of reverse mathematics to investigate the logical strength of this definition and its connection with Fraïssé’s conjecture, which has been proved by Laver. We also fill a small gap in Shore’s proof that Fraïssé’s conjecture implies arithmetic transfinite recursion over $\mathbf {RCA}_0$, by giving a new proof of $\Sigma ^0_2$ -induction.
    Download  
     
    Export citation  
     
    Bookmark  
  • Algebraic combinatorics in bounded induction.Joaquín Borrego-Díaz - 2021 - Annals of Pure and Applied Logic 172 (2):102885.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse mathematics and colorings of hypergraphs.Caleb Davis, Jeffry Hirst, Jake Pardo & Tim Ransom - 2019 - Archive for Mathematical Logic 58 (5-6):575-585.
    Working in subsystems of second order arithmetic, we formulate several representations for hypergraphs. We then prove the equivalence of various vertex coloring theorems to \, \, and \.
    Download  
     
    Export citation  
     
    Bookmark  
  • Dickson’s lemma and weak Ramsey theory.Yasuhiko Omata & Florian Pelupessy - 2019 - Archive for Mathematical Logic 58 (3-4):413-425.
    We explore the connections between Dickson’s lemma and weak Ramsey theory. We show that a weak version of the Paris–Harrington principle for pairs in c colors and miniaturized Dickson’s lemma for c-tuples are equivalent over \. Furthermore, we look at a cascade of consequences for several variants of weak Ramsey’s theorem.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse mathematics of the finite downwards closed subsets of ordered by inclusion and adjacent Ramsey for fixed dimension.Florian Pelupessy - 2018 - Mathematical Logic Quarterly 64 (3):178-182.
    We show that the well partial orderedness of the finite downwards closed subsets of, ordered by inclusion, is equivalent to the well foundedness of the ordinal. Since we use Friedman's adjacent Ramsey theorem for fixed dimensions in the upper bound, we also give a treatment of the reverse mathematical status of that theorem.
    Download  
     
    Export citation  
     
    Bookmark