Switch to: References

Add citations

You must login to add citations.
  1. Equivalence between Fraïssé’s conjecture and Jullien’s theorem.Antonio Montalbán - 2006 - Annals of Pure and Applied Logic 139 (1):1-42.
    We say that a linear ordering is extendible if every partial ordering that does not embed can be extended to a linear ordering which does not embed either. Jullien’s theorem is a complete classification of the countable extendible linear orderings. Fraïssé’s conjecture, which is actually a theorem, is the statement that says that the class of countable linear ordering, quasiordered by the relation of embeddability, contains no infinite descending chain and no infinite antichain. In this paper we study the strength (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On Fraïssé’s conjecture for linear orders of finite Hausdorff rank.Alberto Marcone & Antonio Montalbán - 2009 - Annals of Pure and Applied Logic 160 (3):355-367.
    We prove that the maximal order type of the wqo of linear orders of finite Hausdorff rank under embeddability is φ2, the first fixed point of the ε-function. We then show that Fraïssé’s conjecture restricted to linear orders of finite Hausdorff rank is provable in +“φ2 is well-ordered” and, over , implies +“φ2 is well-ordered”.
    Download  
     
    Export citation  
     
    Bookmark   7 citations