Switch to: References

Citations of:

Mathematical Knowledge

Oxford, England: Oxford University Press (2007)

Add citations

You must login to add citations.
  1. Models, structures, and the explanatory role of mathematics in empirical science.Mary Leng - 2021 - Synthese 199 (3-4):10415-10440.
    Are there genuine mathematical explanations of physical phenomena, and if so, how can mathematical theories, which are typically thought to concern abstract mathematical objects, explain contingent empirical matters? The answer, I argue, is in seeing an important range of mathematical explanations as structural explanations, where structural explanations explain a phenomenon by showing it to have been an inevitable consequence of the structural features instantiated in the physical system under consideration. Such explanations are best cast as deductive arguments which, by virtue (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Idealism and the Identity Theory of Truth.Robert Trueman - 2020 - Mind 130 (519):783-807.
    In a recent article, Hofweber presents a new, and surprising, argument for idealism. His argument is surprising because it starts with an apparently innocent premiss from the philosophy of language: that ‘that’-clauses do not refer. I do not think that Hofweber's argument works, and my first aim in this paper is to explain why. However, I agree with Hofweber that what we say about ‘that’-clauses has important metaphysical consequences. My second aim is to argue that, far from leading us into (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Reality of Field’s Epistemological Challenge to Platonism.David Liggins - 2018 - Erkenntnis 83 (5):1027-1031.
    In the introduction to his Realism, mathematics and modality, and in earlier papers included in that collection, Hartry Field offered an epistemological challenge to platonism in the philosophy of mathematics. Justin Clarke-Doane Truth, objects, infinity: New perspectives on the philosophy of Paul Benacerraf, 2016) argues that Field’s challenge is an illusion: it does not pose a genuine problem for platonism. My aim is to show that Clarke-Doane’s argument relies on a misunderstanding of Field’s challenge.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • There is No Easy Road to Nominalism.M. Colyvan - 2010 - Mind 119 (474):285-306.
    Hartry Field has shown us a way to be nominalists: we must purge our scientific theories of quantification over abstracta and we must prove the appropriate conservativeness results. This is not a path for the faint hearted. Indeed, the substantial technical difficulties facing Field's project have led some to explore other, easier options. Recently, Jody Azzouni, Joseph Melia, and Stephen Yablo have argued that it is a mistake to read our ontological commitments simply from what the quantifiers of our best (...)
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • Predication as Ascription.David Liebesman - 2015 - Mind 124 (494):517-569.
    I articulate and defend a necessary and sufficient condition for predication. The condition is that a term or term-occurrence stands in the relation of ascription to its designatum, ascription being a fundamental semantic relation that differs from reference. This view has dramatically different semantic consequences from its alternatives. After outlining the alternatives, I draw out these consequences and show how they favour the ascription view. I then develop the view and elicit a number of its virtues.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Hierarchies Ontological and Ideological.Øystein Linnebo & Agustín Rayo - 2012 - Mind 121 (482):269 - 308.
    Gödel claimed that Zermelo-Fraenkel set theory is 'what becomes of the theory of types if certain superfluous restrictions are removed'. The aim of this paper is to develop a clearer understanding of Gödel's remark, and of the surrounding philosophical terrain. In connection with this, we discuss some technical issues concerning infinitary type theories and the programme of developing the semantics for higher-order languages in other higher-order languages.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • (1 other version)What is the Benacerraf Problem?Justin Clarke-Doane - 2017 - In Fabrice Pataut Jody Azzouni, Paul Benacerraf Justin Clarke-Doane, Jacques Dubucs Sébastien Gandon, Brice Halimi Jon Perez Laraudogoitia, Mary Leng Ana Leon-Mejia, Antonio Leon-Sanchez Marco Panza, Fabrice Pataut Philippe de Rouilhan & Andrea Sereni Stuart Shapiro (eds.), New Perspectives on the Philosophy of Paul Benacerraf: Truth, Objects, Infinity (Fabrice Pataut, Editor). Springer.
    In "Mathematical Truth", Paul Benacerraf articulated an epistemological problem for mathematical realism. His formulation of the problem relied on a causal theory of knowledge which is now widely rejected. But it is generally agreed that Benacerraf was onto a genuine problem for mathematical realism nevertheless. Hartry Field describes it as the problem of explaining the reliability of our mathematical beliefs, realistically construed. In this paper, I argue that the Benacerraf Problem cannot be made out. There simply is no intelligible problem (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • How to think about informal proofs.Brendan Larvor - 2012 - Synthese 187 (2):715-730.
    It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • To bridge Gödel’s gap.Eileen S. Nutting - 2016 - Philosophical Studies 173 (8):2133-2150.
    In “Mathematical Truth,” Paul Benacerraf raises an epistemic challenge for mathematical platonists. In this paper, I examine the assumptions that motivate Benacerraf’s original challenge, and use them to construct a new causal challenge for the epistemology of mathematics. This new challenge, which I call ‘Gödel’s Gap’, appeals to intuitive insights into mathematical knowledge. Though it is a causal challenge, it does not rely on any obviously objectionable constraints on knowledge. As a result, it is more compelling than the original challenge. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Necessarily Maybe. Quantifiers, Modality and Vagueness.Alessandro Torza - 2015 - In Quantifiers, Quantifiers, and Quantifiers. Themes in Logic, Metaphysics, and Language. (Synthese Library vol. 373). Springer. pp. 367-387.
    Languages involving modalities and languages involving vagueness have each been thoroughly studied. On the other hand, virtually nothing has been said about the interaction of modality and vagueness. This paper aims to start filling that gap. Section 1 is a discussion of various possible sources of vague modality. Section 2 puts forward a model theory for a quantified language with operators for modality and vagueness. The model theory is followed by a discussion of the resulting logic. In Section 3, the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Equivalent explanations and mathematical realism. Reply to “Evidence, Explanation, and Enhanced Indispensability”.Andrea Sereni - 2016 - Synthese 193 (2):423-434.
    The author of “Evidence, Explanation, Enhanced Indispensability” advances a criticism to the Enhanced Indispensability Argument and the use of Inference to the Best Explanation in order to draw ontological conclusions from mathematical explanations in science. His argument relies on the availability of equivalent though competing explanations, and a pluralist stance on explanation. I discuss whether pluralism emerges as a stable position, and focus here on two main points: whether cases of equivalent explanations have been actually offered, and which ontological consequences (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Default Reasonableness and the Mathoids.Sharon Berry - 2013 - Synthese 190 (17):3695-3713.
    In this paper I will argue that (principled) attempts to ground a priori knowledge in default reasonable beliefs cannot capture certain common intuitions about what is required for a priori knowledge. I will describe hypothetical creatures who derive complex mathematical truths like Fermat’s last theorem via short and intuitively unconvincing arguments. Many philosophers with foundationalist inclinations will feel that these creatures must lack knowledge because they are unable to justify their mathematical assumptions in terms of the kind of basic facts (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On Naturalizing the Epistemology of Mathematics.Jeffrey W. Roland - 2009 - Pacific Philosophical Quarterly 90 (1):63-97.
    In this paper, I consider an argument for the claim that any satisfactory epistemology of mathematics will violate core tenets of naturalism, i.e. that mathematics cannot be naturalized. I find little reason for optimism that the argument can be effectively answered.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)On What There is—Infinitesimals and the Nature of Numbers.Jens Erik Fenstad - 2015 - Inquiry: An Interdisciplinary Journal of Philosophy 58 (1):57-79.
    This essay will be divided into three parts. In the first part, we discuss the case of infintesimals seen as a bridge between the discrete and the continuous. This leads in the second part to a discussion of the nature of numbers. In the last part, we follow up with some observations on the obvious applicability of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • What Are Mathematical Coincidences ?M. Lange - 2010 - Mind 119 (474):307-340.
    Although all mathematical truths are necessary, mathematicians take certain combinations of mathematical truths to be ‘coincidental’, ‘accidental’, or ‘fortuitous’. The notion of a ‘ mathematical coincidence’ has so far failed to receive sufficient attention from philosophers. I argue that a mathematical coincidence is not merely an unforeseen or surprising mathematical result, and that being a misleading combination of mathematical facts is neither necessary nor sufficient for qualifying as a mathematical coincidence. I argue that although the components of a mathematical coincidence (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations