Switch to: References

Add citations

You must login to add citations.
  1. Harnessing Artificial Intelligence to Enhance Medical Image Analysis.Malak S. Hamad, Mohammed H. Aldeeb, Mohammed M. Almzainy, Shahd J. Albadrasawi, Musleh M. Musleh, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Health and Medical Research (IJAHMR) 8 (9):1-7.
    Abstract: The integration of Artificial Intelligence (AI) into medical imaging marks a transformative advancement in healthcare, significantly enhancing diagnostic accuracy, efficiency, and patient outcomes. This paper delves into the application of AI technologies in medical image analysis, with a particular focus on techniques such as convolutional neural networks (CNNs) and deep learning models. We examine how these technologies are employed across various imaging modalities, including X-rays, MRIs, and CT scans, to improve disease detection, image segmentation, and diagnostic support. Furthermore, the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Breakthroughs in Breast Cancer Detection: Emerging Technologies and Future Prospects.Ola I. A. Lafi, Rawan N. A. Albanna, Dina F. Alborno, Raja E. Altarazi, Amal Nabahin, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Health and Medical Research (IJAHMR) 8 (9):8-15.
    Abstract: Early detection of breast cancer is vital for improving patient outcomes and reducing mortality rates. Technological advancements have significantly enhanced the accuracy and efficiency of screening methods. This paper explores recent innovations in early detection, focusing on the evolution of digital mammography, the benefits of 3D mammography (tomosynthesis), and the application of advanced imaging techniques such as molecular imaging and MRI. It also examines the role of artificial intelligence (AI) in diagnostic tools, showing how machine learning algorithms are improving (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • AI Regulation and Governance.Mohammed M. Abu-Saqer, Sabreen R. Qwaider, Islam Albatish, Azmi H. Alsaqqa, Bassem S. Abu-Nasser & Samy S. Abu-Naser - forthcoming - Information Journal of Engineering Research (Ijaer).
    Abstract: As artificial intelligence (AI) technologies rapidly evolve and permeate various aspects of society, the need for effective regulation and governance has become increasingly critical. This paper explores the current landscape of AI regulation, examining existing frameworks and their efficacy in addressing the unique challenges posed by AI. Key issues such as ensuring compliance, mitigating biases, and maintaining transparency are analyzed. The paper also delves into ethical considerations surrounding AI governance, emphasizing the importance of fairness and accountability. Through case studies (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Classification of Peppers Using Deep Learning.Ruba F. Abdallatif, Walid Murad & Samy S. Abu-Naser - 2025 - International Journal of Academic Information Systems Research (IJAISR) 3 (1):35-41.
    Abstract: Vegetables that are popular and versatile over the world are peppers. Precise categorisation of pepper cultivars is vital for multiple uses, such as assessing market trends, regulating quality, and conducting genetic research. Classifying peppers using traditional methods can be subjective and time-consuming. This research proposes an automated pepper variety classification method based on deep learning. A deep convolutional neural network (CNN) model was trained on a dataset of 2,368 photos of peppers. With the purpose of accurately classifying the pepper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Classification of Male and Female Eyes Using Deep Learning: A Comparative Evaluation.Shahd Albadrasaw, Mohammed Almzainy, Faten El Kahlou & Samy S. Abu-Naser - 2025 - International Journal of Academic Information Systems Research (IJAISR) 3 (1):42-46.
    Abstract. This study investigates the application of convolutional neural networks (CNNs) to the task of classifying male and female eyes. Using a dataset of eye images, the research explores the potential of deep learning to accurately distinguish between the genders based solely on eye features. The proposed CNN model achieved 94% accuracy on the training set and 91% on the validation set. The study addresses the challenges and limitations in feature extraction from eye images and compares the proposed model with (...)
    Download  
     
    Export citation  
     
    Bookmark