Switch to: References

Add citations

You must login to add citations.
  1. Leveraging Artificial Intelligence for Strategic Business Decision-Making: Opportunities and Challenges.Mohammed Hazem M. Hamadaqa, Mohammad Alnajjar, Mohammed N. Ayyad, Mohammed A. Al-Nakhal, Basem S. Abunasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (8):16-23.
    Abstract: Artificial Intelligence (AI) has rapidly evolved, offering transformative capabilities for business decision-making. This paper explores how AI can be leveraged to enhance strategic decision-making in business contexts. It examines the integration of AI-driven analytics, predictive modeling, and automation to improve decision accuracy and operational efficiency. By analyzing current applications and case studies, the paper highlights the opportunities AI presents, including enhanced data insights, risk management, and personalized customer experiences. Additionally, it addresses the challenges businesses face in adopting AI, such (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • AI in HRM: Revolutionizing Recruitment, Performance Management, and Employee Engagement.Mostafa El-Ghoul, Mohammed M. Almassri, Mohammed F. El-Habibi, Mohanad H. Al-Qadi, Alaa Abou Eloun, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Applied Research (Ijaar) 8 (9):16-23.
    Artificial Intelligence (AI) is rapidly transforming Human Resource Management (HRM) by enhancing the efficiency and effectiveness of key functions such as recruitment, performance management, and employee engagement. This paper explores the integration of AI technologies in HRM, focusing on their potential to revolutionize these critical areas. In recruitment, AI-driven tools streamline candidate sourcing, screening, and selection processes, leading to more accurate and unbiased hiring decisions. Performance management is similarly transformed, with AI enabling continuous, data-driven feedback and personalized development plans that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • AI-Driven Innovations in Agriculture: Transforming Farming Practices and Outcomes.Jehad M. Altayeb, Hassam Eleyan, Nida D. Wishah, Abed Elilah Elmahmoum, Ahmed J. Khalil, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Applied Research (Ijaar) 8 (9):1-6.
    Abstract: Artificial Intelligence (AI) is transforming the agricultural sector, enhancing both productivity and sustainability. This paper delves into the impact of AI technologies on agriculture, emphasizing their application in precision farming, predictive analytics, and automation. AI-driven tools facilitate more efficient crop and resource management, leading to higher yields and a reduced environmental footprint. The paper explores key AI technologies, such as machine learning algorithms for crop monitoring, robotics for automated planting and harvesting, and data analytics for optimizing resource use. Additionally, (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Artificial Intelligence in Digital Media: Opportunities, Challenges, and Future Directions.Basma S. Abu Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic and Applied Research (IJAAR) 8 (6):1-10.
    Abstract: This research paper explores the transformative impact of artificial intelligence (AI) on digital media, examining both the opportunities it presents and the challenges it poses. The integration of AI into digital media has revolutionized content creation, distribution, and analytics, offering unprecedented levels of personalization, efficiency, and insight. Automated journalism, AI- driven recommendation systems, and advanced audience analytics are among the key areas where AI is making significant contributions. However, the adoption of AI also brings ethical considerations, including concerns about (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explainable AI (XAI).Rami Al-Dahdooh, Ahmad Marouf, Mahmoud Jamal Abu Ghali, Ali Osama Mahdi, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2025 - International Journal of Academic Information Systems Research (IJAISR) 9 (1):65-70.
    Abstract: As artificial intelligence (AI) systems become increasingly complex and pervasive, the need for transparency and interpretability has never been more critical. Explainable AI (XAI) addresses this need by providing methods and techniques to make AI decisions more understandable to humans. This paper explores the core principles of XAI, highlighting its importance for trust, accountability, and ethical AI deployment. We examine various XAI techniques, including interpretable models and post-hoc explanation methods, and discuss their strengths and limitations. Additionally, we present case (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Classification of Peppers Using Deep Learning.Ruba F. Abdallatif, Walid Murad & Samy S. Abu-Naser - 2025 - International Journal of Academic Information Systems Research (IJAISR) 3 (1):35-41.
    Abstract: Vegetables that are popular and versatile over the world are peppers. Precise categorisation of pepper cultivars is vital for multiple uses, such as assessing market trends, regulating quality, and conducting genetic research. Classifying peppers using traditional methods can be subjective and time-consuming. This research proposes an automated pepper variety classification method based on deep learning. A deep convolutional neural network (CNN) model was trained on a dataset of 2,368 photos of peppers. With the purpose of accurately classifying the pepper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Classification of Male and Female Eyes Using Deep Learning: A Comparative Evaluation.Shahd Albadrasaw, Mohammed Almzainy, Faten El Kahlou & Samy S. Abu-Naser - 2025 - International Journal of Academic Information Systems Research (IJAISR) 3 (1):42-46.
    Abstract. This study investigates the application of convolutional neural networks (CNNs) to the task of classifying male and female eyes. Using a dataset of eye images, the research explores the potential of deep learning to accurately distinguish between the genders based solely on eye features. The proposed CNN model achieved 94% accuracy on the training set and 91% on the validation set. The study addresses the challenges and limitations in feature extraction from eye images and compares the proposed model with (...)
    Download  
     
    Export citation  
     
    Bookmark