Switch to: References

Add citations

You must login to add citations.
  1. Do Accelerating Turing Machines Compute the Uncomputable?B. Jack Copeland & Oron Shagrir - 2011 - Minds and Machines 21 (2):221-239.
    Accelerating Turing machines have attracted much attention in the last decade or so. They have been described as “the work-horse of hypercomputation” (Potgieter and Rosinger 2010: 853). But do they really compute beyond the “Turing limit”—e.g., compute the halting function? We argue that the answer depends on what you mean by an accelerating Turing machine, on what you mean by computation, and even on what you mean by a Turing machine. We show first that in the current literature the term (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Practical Intractability: A Critique of the Hypercomputation Movement. [REVIEW]Aran Nayebi - 2014 - Minds and Machines 24 (3):275-305.
    For over a decade, the hypercomputation movement has produced computational models that in theory solve the algorithmically unsolvable, but they are not physically realizable according to currently accepted physical theories. While opponents to the hypercomputation movement provide arguments against the physical realizability of specific models in order to demonstrate this, these arguments lack the generality to be a satisfactory justification against the construction of any information-processing machine that computes beyond the universal Turing machine. To this end, I present a more (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Physical Computation: How General are Gandy’s Principles for Mechanisms?B. Jack Copeland & Oron Shagrir - 2007 - Minds and Machines 17 (2):217-231.
    What are the limits of physical computation? In his ‘Church’s Thesis and Principles for Mechanisms’, Turing’s student Robin Gandy proved that any machine satisfying four idealised physical ‘principles’ is equivalent to some Turing machine. Gandy’s four principles in effect define a class of computing machines (‘Gandy machines’). Our question is: What is the relationship of this class to the class of all (ideal) physical computing machines? Gandy himself suggests that the relationship is identity. We do not share this view. We (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Selection, growth and form. Turing’s two biological paths towards intelligent machinery.Hajo Greif, Adam P. Kubiak & Paweł Stacewicz - 2024 - Studies in History and Philosophy of Science Part A 106 (C):126-135.
    Download  
     
    Export citation  
     
    Bookmark  
  • La thèse de l’hyper-calcul : enjeux et problèmes philosophiques.Florent Franchette - 2012 - Philosophia Scientiae 16 (3):17-38.
    Dans cet article je réponds à deux questions philosophiques soule­vées par la thèse suivante appelée « thèse de l’hyper-calcul » : il est possible de construire physiquement un modèle d’hyper-calcul. La première question est liée aux enjeux de cette thèse. Puisque la construction physique d’un modèle de calcul dépasse le cadre mathématique initial de la théorie de la calculabilité, j expliquerai pourquoi il est nécessaire de construire physiquement un modèle d’hyper-calcul. La seconde question concerne le problème de la vérification : (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Abstraction/Representation Account of Computation and Subjective Experience.Jochen Szangolies - 2020 - Minds and Machines 30 (2):259-299.
    I examine the abstraction/representation theory of computation put forward by Horsman et al., connecting it to the broader notion of modeling, and in particular, model-based explanation, as considered by Rosen. I argue that the ‘representational entities’ it depends on cannot themselves be computational, and that, in particular, their representational capacities cannot be realized by computational means, and must remain explanatorily opaque to them. I then propose that representation might be realized by subjective experience (qualia), through being the bearer of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Turing: The Great Unknown.Aurea Anguera, Juan A. Lara, David Lizcano, María-Aurora Martínez, Juan Pazos & F. David de la Peña - 2020 - Foundations of Science 25 (4):1203-1225.
    Turing was an exceptional mathematician with a peculiar and fascinating personality and yet he remains largely unknown. In fact, he might be considered the father of the von Neumann architecture computer and the pioneer of Artificial Intelligence. And all thanks to his machines; both those that Church called “Turing machines” and the a-, c-, o-, unorganized- and p-machines, which gave rise to evolutionary computations and genetic programming as well as connectionism and learning. This paper looks at all of these and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Alan Turing and the origins of complexity.Miguel Angel Martin-Delgado - 2013 - Arbor 189 (764):a083.
    Download  
     
    Export citation  
     
    Bookmark  
  • Beyond the universal Turing machine.Jack Copeland - 1999 - Australasian Journal of Philosophy 77 (1):46-67.
    We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of well-defined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a philosophical defence of its foundations.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Semantic linking through spaces for cyber-physical-socio intelligence: A methodology.Hai Zhuge - 2011 - Artificial Intelligence 175 (5-6):988-1019.
    Download  
     
    Export citation  
     
    Bookmark  
  • Can Ai be Intelligent?Kazimierz Trzęsicki - 2016 - Studies in Logic, Grammar and Rhetoric 48 (1):103-131.
    The aim of this paper is an attempt to give an answer to the question what does it mean that a computational system is intelligent. We base on some theses that though debatable are commonly accepted. Intelligence is conceived as the ability of tractable solving of some problems that in general are not solvable by deterministic Turing Machine.
    Download  
     
    Export citation  
     
    Bookmark  
  • Significance of Models of Computation, from Turing Model to Natural Computation.Gordana Dodig-Crnkovic - 2011 - Minds and Machines 21 (2):301-322.
    The increased interactivity and connectivity of computational devices along with the spreading of computational tools and computational thinking across the fields, has changed our understanding of the nature of computing. In the course of this development computing models have been extended from the initial abstract symbol manipulating mechanisms of stand-alone, discrete sequential machines, to the models of natural computing in the physical world, generally concurrent asynchronous processes capable of modelling living systems, their informational structures and dynamics on both symbolic and (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations