Switch to: References

Add citations

You must login to add citations.
  1. A Carnapian Approach to Counterexamples to Modus Ponens.Constantin C. Brîncuș & Iulian D. Toader - 2013 - Romanian Journal of Analytic Philosophy 7:78-85.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logical Consequence.J. C. Beall, Greg Restall & Gil Sagi - 2019 - Stanford Encyclopedia of Philosophy.
    A good argument is one whose conclusions follow from its premises; its conclusions are consequences of its premises. But in what sense do conclusions follow from premises? What is it for a conclusion to be a consequence of premises? Those questions, in many respects, are at the heart of logic (as a philosophical discipline). Consider the following argument: 1. If we charge high fees for university, only the rich will enroll. We charge high fees for university. Therefore, only the rich (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Inferentializing Semantics.Jaroslav Peregrin - 2010 - Journal of Philosophical Logic 39 (3):255 - 274.
    The entire development of modern logic is characterized by various forms of confrontation of what has come to be called proof theory with what has earned the label of model theory. For a long time the widely accepted view was that while model theory captures directly what logical formalisms are about, proof theory is merely our technical means of getting some incomplete grip on this; but in recent decades the situation has altered. Not only did proof theory expand into new (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • How May the Propositional Calculus Represent?Tristan Haze - 2017 - South American Journal of Logic 3 (1):173-184.
    This paper is a conceptual study in the philosophy of logic. The question considered is 'How may formulae of the propositional calculus be brought into a representational relation to the world?'. Four approaches are distinguished: (1) the denotational approach, (2) the abbreviational approach, (3) the truth-conditional approach, and (4) the modelling approach. (2) and (3) are very familiar, so I do not discuss them. (1), which is now largely obsolete, led to some interesting twists and turns in early analytic philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantifier Variance Dissolved.Suki Finn & Otávio Bueno - 2018 - Royal Institute of Philosophy Supplement 82:289-307.
    Quantifier variance faces a number of difficulties. In this paper we first formulate the view as holding that the meanings of the quantifiers may vary, and that languages using different quantifiers may be charitably translated into each other. We then object to the view on the basis of four claims: (i) quantifiers cannot vary their meaning extensionally by changing the domain of quantification; (ii) quantifiers cannot vary their meaning intensionally without collapsing into logical pluralism; (iii) quantifier variance is not an (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inferentialism and the Categoricity Problem: Reply to Raatikainen. North-Holland - unknown
    It is sometimes held that rules of inference determine the meaning of the logical constants: the meaning of, say, conjunction is fully determined by either its introduction or its elimination rules, or both; similarly for the other connectives. In a recent paper, Panu Raatikainen argues that this view—call it logical inferentialism—is undermined by some “very little known” considerations by Carnap (1943) to the effect that “in a definite sense, it is not true that the standard rules of inference” themselves suffice (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Carnap's Problem: What is It Like to Be a Normal Interpretation of Classical Logic?Arnold Koslow - 2010 - Abstracta 6 (1):117-135.
    Carnap in the 1930s discovered that there were non-normal interpretations of classical logic - ones for which negation and conjunction are not truth-functional so that a statement and its negation could have the same truth value, and a disjunction of two false sentences could be true. Church ar-gued that this did not call for a revision of classical logic. More recent writers seem to disa-gree. We provide a definition of "non-normal interpretation" and argue that Church was right, and in fact, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Inferentialism and the Categoricity Problem: Reply to Raatikainen.Julien Murzi & Ole Thomassen Hjortland - 2009 - Analysis 69 (3):480-488.
    It is sometimes held that rules of inference determine the meaning of the logical constants: the meaning of, say, conjunction is fully determined by either its introduction or its elimination rules, or both; similarly for the other connectives. In a recent paper, Panu Raatikainen (2008) argues that this view - call it logical inferentialism - is undermined by some "very little known" considerations by Carnap (1943) to the effect that "in a definite sense, it is not true that the standard (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • A Note on Carnap’s Result and the Connectives.Tristan Haze - 2019 - Axiomathes 29 (3):285-288.
    Carnap’s result about classical proof-theories not ruling out non-normal valuations of propositional logic formulae has seen renewed philosophical interest in recent years. In this note I contribute some considerations which may be helpful in its philosophical assessment. I suggest a vantage point from which to see the way in which classical proof-theories do, at least to a considerable extent, encode the meanings of the connectives (not by determining a range of admissible valuations, but in their own way), and I demonstrate (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation