Switch to: References

Citations of:

Syntactic semantics: Foundations of computational natural language understanding

In James H. Fetzer (ed.), Aspects of AI. Kluwer Academic Publishers (1988)

Add citations

You must login to add citations.
  1. Book Reviews. [REVIEW][author unknown] - 2006 - Australasian Journal of Philosophy 84 (1):129-145.
    Preston, John, and Mark Bishop, eds., Views into the Chinese Room: New Essays on Searle and Artificial Intelligence, Oxford: Clarendon Press, 2002, pp. xvi + 410, US$99.00, US$39.95...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computers Are Syntax All the Way Down: Reply to Bozşahin.William J. Rapaport - 2019 - Minds and Machines 29 (2):227-237.
    A response to a recent critique by Cem Bozşahin of the theory of syntactic semantics as it applies to Helen Keller, and some applications of the theory to the philosophy of computer science.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The epigenesis of meaning in human beings, and possibly in robots.Jordan Zlatev - 2001 - Minds and Machines 11 (2):155-195.
    This article addresses a classical question: Can a machine use language meaningfully and if so, how can this be achieved? The first part of the paper is mainly philosophical. Since meaning implies intentionality on the part of the language user, artificial systems which obviously lack intentionality will be `meaningless'. There is, however, no good reason to assume that intentionality is an exclusively biological property and thus a robot with bodily structures, interaction patterns and development similar to those of human beings (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The chinese room argument reconsidered: Essentialism, indeterminacy, and strong AI. [REVIEW]Jerome C. Wakefield - 2003 - Minds and Machines 13 (2):285-319.
    I argue that John Searle's (1980) influential Chinese room argument (CRA) against computationalism and strong AI survives existing objections, including Block's (1998) internalized systems reply, Fodor's (1991b) deviant causal chain reply, and Hauser's (1997) unconscious content reply. However, a new ``essentialist'' reply I construct shows that the CRA as presented by Searle is an unsound argument that relies on a question-begging appeal to intuition. My diagnosis of the CRA relies on an interpretation of computationalism as a scientific theory about the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computationalism.Stuart C. Shapiro - 1995 - Minds and Machines 5 (4):467-87.
    Computationalism, the notion that cognition is computation, is a working hypothesis of many AI researchers and Cognitive Scientists. Although it has not been proved, neither has it been disproved. In this paper, I give some refutations to some well-known alleged refutations of computationalism. My arguments have two themes: people are more limited than is often recognized in these debates; computer systems are more complicated than is often recognized in these debates. To underline the latter point, I sketch the design and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • What is a Computer? A Survey.William J. Rapaport - 2018 - Minds and Machines 28 (3):385-426.
    A critical survey of some attempts to define ‘computer’, beginning with some informal ones, then critically evaluating those of three philosophers, and concluding with an examination of whether the brain and the universe are computers.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • What did you mean by that? Misunderstanding, negotiation, and syntactic semantics.William J. Rapaport - 2003 - Minds and Machines 13 (3):397-427.
    Syntactic semantics is a holistic, conceptual-role-semantic theory of how computers can think. But Fodor and Lepore have mounted a sustained attack on holistic semantic theories. However, their major problem with holism (that, if holism is true, then no two people can understand each other) can be fixed by means of negotiating meanings. Syntactic semantics and Fodor and Lepore’s objections to holism are outlined; the nature of communication, miscommunication, and negotiation is discussed; Bruner’s ideas about the negotiation of meaning are explored; (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Yes, She Was!: Reply to Ford’s “Helen Keller Was Never in a Chinese Room”.William J. Rapaport - 2011 - Minds and Machines 21 (1):3-17.
    Ford’s Helen Keller Was Never in a Chinese Room claims that my argument in How Helen Keller Used Syntactic Semantics to Escape from a Chinese Room fails because Searle and I use the terms ‘syntax’ and ‘semantics’ differently, hence are at cross purposes. Ford has misunderstood me; this reply clarifies my theory.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Syntax, Semantics, and Computer Programs.William J. Rapaport - 2020 - Philosophy and Technology 33 (2):309-321.
    Turner argues that computer programs must have purposes, that implementation is not a kind of semantics, and that computers might need to understand what they do. I respectfully disagree: Computer programs need not have purposes, implementation is a kind of semantic interpretation, and neither human computers nor computing machines need to understand what they do.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Predication, fiction, and artificial intelligence.William J. Rapaport - 1991 - Topoi 10 (1):79-111.
    This paper describes the SNePS knowledge-representation and reasoning system. SNePS is an intensional, propositional, semantic-network processing system used for research in AI. We look at how predication is represented in such a system when it is used for cognitive modeling and natural-language understanding and generation. In particular, we discuss issues in the representation of fictional entities and the representation of propositions from fiction, using SNePS. We briefly survey four philosophical ontological theories of fiction and sketch an epistemological theory of fiction (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • How Helen Keller Used Syntactic Semantics to Escape from a Chinese Room.William J. Rapaport - 2006 - Minds and Machines 16 (4):381-436.
    A computer can come to understand natural language the same way Helen Keller did: by using “syntactic semantics”—a theory of how syntax can suffice for semantics, i.e., how semantics for natural language can be provided by means of computational symbol manipulation. This essay considers real-life approximations of Chinese Rooms, focusing on Helen Keller’s experiences growing up deaf and blind, locked in a sort of Chinese Room yet learning how to communicate with the outside world. Using the SNePS computational knowledge-representation system, (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • How to pass a Turing test: Syntactic semantics, natural-language understanding, and first-person cognition.William J. Rapaport - 2000 - Journal of Logic, Language, and Information 9 (4):467-490.
    I advocate a theory of syntactic semantics as a way of understanding how computers can think (and how the Chinese-Room-Argument objection to the Turing Test can be overcome): (1) Semantics, considered as the study of relations between symbols and meanings, can be turned into syntax – a study of relations among symbols (including meanings) – and hence syntax (i.e., symbol manipulation) can suffice for the semantical enterprise (contra Searle). (2) Semantics, considered as the process of understanding one domain (by modeling (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Holism, conceptual-role semantics, and syntactic semantics.William J. Rapaport - 2002 - Minds and Machines 12 (1):3-59.
    This essay continues my investigation of `syntactic semantics': the theory that, pace Searle's Chinese-Room Argument, syntax does suffice for semantics (in particular, for the semantics needed for a computational cognitive theory of natural-language understanding). Here, I argue that syntactic semantics (which is internal and first-person) is what has been called a conceptual-role semantics: The meaning of any expression is the role that it plays in the complete system of expressions. Such a `narrow', conceptual-role semantics is the appropriate sort of semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Because mere calculating isn't thinking: Comments on Hauser's Why Isn't My Pocket Calculator a Thinking Thing?.William J. Rapaport - 1993 - Minds and Machines 3 (1):11-20.
    Hauser argues that his pocket calculator (Cal) has certain arithmetical abilities: it seems Cal calculates. That calculating is thinking seems equally untendentious. Yet these two claims together provide premises for a seemingly valid syllogism whose conclusion - Cal thinks - most would deny. He considers several ways to avoid this conclusion, and finds them mostly wanting. Either we ourselves can't be said to think or calculate if our calculation-like performances are judged by the standards proposed to rule out Cal; or (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Do Computers "Have Syntax, But No Semantics"?Jaroslav Peregrin - 2021 - Minds and Machines 31 (2):305-321.
    The heyday of discussions initiated by Searle's claim that computers have syntax, but no semantics has now past, yet philosophers and scientists still tend to frame their views on artificial intelligence in terms of syntax and semantics. In this paper I do not intend to take part in these discussions; my aim is more fundamental, viz. to ask what claims about syntax and semantics in this context can mean in the first place. And I argue that their sense is so (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Searle's abstract argument against strong AI.Andrew Melnyk - 1996 - Synthese 108 (3):391-419.
    Discussion of Searle's case against strong AI has usually focused upon his Chinese Room thought-experiment. In this paper, however, I expound and then try to refute what I call his abstract argument against strong AI, an argument which turns upon quite general considerations concerning programs, syntax, and semantics, and which seems not to depend on intuitions about the Chinese Room. I claim that this argument fails, since it assumes one particular account of what a program is. I suggest an alternative (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Can semantics be syntactic?Neal Jahren - 1990 - Synthese 82 (3):309-28.
    The author defends John R. Searle's Chinese Room argument against a particular objection made by William J. Rapaport called the Korean Room. Foundational issues such as the relationship of strong AI to human mentality and the adequacy of the Turing Test are discussed. Through undertaking a Gedankenexperiment similar to Searle's but which meets new specifications given by Rapaport for an AI system, the author argues that Rapaport's objection to Searle does not stand and that Rapaport's arguments seem convincing only because (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Searle's Chinese Box: Debunking the Chinese Room Argument. [REVIEW]Larry Hauser - 1997 - Minds and Machines 7 (2):199-226.
    John Searle's Chinese room argument is perhaps the most influential andwidely cited argument against artificial intelligence (AI). Understood astargeting AI proper – claims that computers can think or do think– Searle's argument, despite its rhetorical flash, is logically andscientifically a dud. Advertised as effective against AI proper, theargument, in its main outlines, is an ignoratio elenchi. It musterspersuasive force fallaciously by indirection fostered by equivocaldeployment of the phrase "strong AI" and reinforced by equivocation on thephrase "causal powers" (at least) equal (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Thinking and computing: Computers as special kinds of signs. [REVIEW]James H. Fetzer - 1997 - Minds and Machines 7 (3):345-364.
    Cognitive science has been dominated by the computational conception that cognition is computation across representations. To the extent to which cognition as computation across representations is supposed to be a purposive, meaningful, algorithmic, problem-solving activity, however, computers appear to be incapable of cognition. They are devices that can facilitate computations on the basis of semantic grounding relations as special kinds of signs. Even their algorithmic, problem-solving character arises from their interpretation by human users. Strictly speaking, computers as such — apart (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Computers Aren’t Syntax All the Way Down or Content All the Way Up.Cem Bozşahin - 2018 - Minds and Machines 28 (3):543-567.
    This paper argues that the idea of a computer is unique. Calculators and analog computers are not different ideas about computers, and nature does not compute by itself. Computers, once clearly defined in all their terms and mechanisms, rather than enumerated by behavioral examples, can be more than instrumental tools in science, and more than source of analogies and taxonomies in philosophy. They can help us understand semantic content and its relation to form. This can be achieved because they have (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A note on the chinese room.Hanoch Ben-Yami - 1993 - Synthese 95 (2):169-72.
    Searle's Chinese Room was supposed to prove that computers can't understand: the man in the room, following, like a computer, syntactical rules alone, though indistinguishable from a genuine Chinese speaker, doesn't understand a word. But such a room is impossible: the man won't be able to respond correctly to questions like What is the time?, even though such an ability is indispensable for a genuine Chinese speaker. Several ways to provide the room with the required ability are considered, and it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The philosophy of computer science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Semiotic Systems, Computers, and the Mind: How Cognition Could Be Computing.William J. Rapaport - 2012 - International Journal of Signs and Semiotic Systems 2 (1):32-71.
    In this reply to James H. Fetzer’s “Minds and Machines: Limits to Simulations of Thought and Action”, I argue that computationalism should not be the view that (human) cognition is computation, but that it should be the view that cognition (simpliciter) is computable. It follows that computationalism can be true even if (human) cognition is not the result of computations in the brain. I also argue that, if semiotic systems are systems that interpret signs, then both humans and computers are (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Analogical insight: toward unifying categorization and analogy.Eric Dietrich - 2010 - Cognitive Processing 11 (4):331-.
    The purpose of this paper is to present two kinds of analogical representational change, both occurring early in the analogy-making process, and then, using these two kinds of change, to present a model unifying one sort of analogy-making and categorization. The proposed unification rests on three key claims: (1) a certain type of rapid representational abstraction is crucial to making the relevant analogies (this is the first kind of representational change; a computer model is presented that demonstrates this kind of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • How minds can be computational systems.William J. Rapaport - 1998 - Journal of Experimental and Theoretical Artificial Intelligence 10 (4):403-419.
    The proper treatment of computationalism, as the thesis that cognition is computable, is presented and defended. Some arguments of James H. Fetzer against computationalism are examined and found wanting, and his positive theory of minds as semiotic systems is shown to be consistent with computationalism. An objection is raised to an argument of Selmer Bringsjord against one strand of computationalism, namely, that Turing-Test± passing artifacts are persons, it is argued that, whether or not this objection holds, such artifacts will inevitably (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Computer processes and virtual persons: Comments on Cole's "artificial intelligence and personal identity".William J. Rapaport - 1990
    This is a draft of the written version of comments on a paper by David Cole, presented orally at the American Philosophical Association Central Division meeting in New Orleans, 27 April 1990. Following the written comments are 2 appendices: One contains a letter to Cole updating these comments. The other is the handout from the oral presentation.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Analogical insight: toward unifying categorization and analogy.Eric Dietrich - 2010 - Cognitive Processing 11 (4):331-346.
    The purpose of this paper is to present two kinds of analogical representational change, both occurring early in the analogy-making process, and then, using these two kinds of change, to present a model unifying one sort of analogy-making and categorization. The proposed unification rests on three key claims: (1) a certain type of rapid representational abstraction is crucial to making the relevant analogies (this is the first kind of representational change; a computer model is presented that demonstrates this kind of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • To think or not to think.William J. Rapaport - 1988 - Noûs 22 (4):585-609.
    A critical study of John Searle's Minds, Brains and Science (Cambridge, MA: Harvard University Press, 1984).
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Meinongian Semantics and Artificial Intelligence.William J. Rapaport - 2013 - Humana Mente 6 (25):25-52.
    This essay describes computational semantic networks for a philosophical audience and surveys several approaches to semantic-network semantics. In particular, propositional semantic networks are discussed; it is argued that only a fully intensional, Meinongian semantics is appropriate for them; and several Meinongian systems are presented.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Thinking and Computing: Computers as Special Kinds of Signs.James Fetzer - 2001 - The Commens Encyclopedia: The Digital Encyclopedia of Peirce Studies.
    Cognitive science has been dominated by the computational conception that cogniton is computation across representations. To the extent to which cognition is supposed to be a purposive, meaningful, algorithmic, problem-solving activity, however, computers appear to be incapable of cognition. They are devices that can facilitate computations on the basis of semantic grounding relations as special kinds of signs. Even their algorithmic, problem-solving character arises from ther interpretation by human users. Strictly speaking, computers as such–apart from human users–are not only incapable (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The modal argument for hypercomputing minds.Selmer Bringsjord - 2004 - Theoretical Computer Science 317.
    Download  
     
    Export citation  
     
    Bookmark   7 citations