Switch to: References

Add citations

You must login to add citations.
  1. Unraveling Π11 sets.Itay Neeman - 2000 - Annals of Pure and Applied Logic 106 (1-3):151-205.
    We construct coverings which unravel given Π11 sets. This in turn is used to prove, from optimal large cardinal assumptions, the determinacy of games with payoff and the determinacy of games with payoff in the σ algebra generated by Π11 sets.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Determinacy in the difference hierarchy of co-analytic sets.P. D. Welch - 1996 - Annals of Pure and Applied Logic 80 (1):69-108.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Determinacy in strong cardinal models.P. D. Welch - 2011 - Journal of Symbolic Logic 76 (2):719 - 728.
    We give limits defined in terms of abstract pointclasses of the amount of determinacy available in certain canonical inner models involving strong cardinals. We show for example: Theorem A. $\mathrm{D}\mathrm{e}\mathrm{t}\text{\hspace{0.17em}}({\mathrm{\Pi }}_{1}^{1}-\mathrm{I}\mathrm{N}\mathrm{D})$ ⇒ there exists an inner model with a strong cardinal. Theorem B. Det(AQI) ⇒ there exist type-1 mice and hence inner models with proper classes of strong cardinals. where ${\mathrm{\Pi }}_{1}^{1}-\mathrm{I}\mathrm{N}\mathrm{D}\phantom{\rule{0ex}{0ex}}$ (AQI) is the pointclass of boldface ${\mathrm{\Pi }}_{1}^{1}$ -inductive (respectively arithmetically quasi-inductive) sets of reals.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bounds on the Strength of Ordinal Definable Determinacy in Small Admissible Sets.Diego Rojas-Rebolledo - 2012 - Notre Dame Journal of Formal Logic 53 (3):351-371.
    We give upper and lower bounds for the strength of ordinal definable determinacy in a small admissible set. The upper bound is roughly a premouse with a measurable cardinal $\kappa$ of Mitchell order $\kappa^{++}$ and $\omega$ successors. The lower bound are models of ZFC with sequences of measurable cardinals, extending the work of Lewis, below a regular limit of measurable cardinals.
    Download  
     
    Export citation  
     
    Bookmark  
  • Closed and unbounded classes and the härtig quantifier model.Philip D. Welch - 2022 - Journal of Symbolic Logic 87 (2):564-584.
    We show that assuming modest large cardinals, there is a definable class of ordinals, closed and unbounded beneath every uncountable cardinal, so that for any closed and unbounded subclasses $P, Q, {\langle L[P],\in,P \rangle }$ and ${\langle L[Q],\in,Q \rangle }$ possess the same reals, satisfy the Generalised Continuum Hypothesis, and moreover are elementarily equivalent. Examples of such P are Card, the class of uncountable cardinals, I the uniform indiscernibles, or for any n the class $C^{n}{=_{{\operatorname {df}}}}\{ \lambda \, | \, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Determinacy for Games Ending at the First Admissible Relative to the Play.Itay Neeman - 2006 - Journal of Symbolic Logic 71 (2):425 - 459.
    Let o(κ) denote the Mitchell order of κ. We show how to reduce long games which run to the first ordinal admissible in the play, to iteration games on models with a cardinal κ so that (1) κ is a limit of Woodin cardinals: and (2) o(κ) = κ⁺⁺. We use the reduction to derive several optimal determinacy results on games which run to the first admissible in the play.
    Download  
     
    Export citation  
     
    Bookmark