Switch to: References

Citations of:

A note on JP'

Theoria 36 (2):183-184 (1970)

Add citations

You must login to add citations.
  1. Decidable variables for constructive logics.Satoru Niki - 2020 - Mathematical Logic Quarterly 66 (4):484-493.
    Ishihara's problem of decidable variables asks which class of decidable propositional variables is sufficient to warrant classical theorems in intuitionistic logic. We present several refinements to the class proposed by Ishii for this problem, which also allows the class to cover Glivenko's logic. We also treat the extension of the problem to minimal logic, suggesting a couple of new classes.
    Download  
     
    Export citation  
     
    Bookmark  
  • Contrapositionally complemented Heyting algebras and intuitionistic logic with minimal negation.Anuj Kumar More & Mohua Banerjee - 2023 - Logic Journal of the IGPL 31 (3):441-474.
    Two algebraic structures, the contrapositionally complemented Heyting algebra (ccHa) and the contrapositionally |$\vee $| complemented Heyting algebra (c|$\vee $|cHa), are studied. The salient feature of these algebras is that there are two negations, one intuitionistic and another minimal in nature, along with a condition connecting the two operators. Properties of these algebras are discussed, examples are given and comparisons are made with relevant algebras. Intuitionistic Logic with Minimal Negation (ILM) corresponding to ccHas and its extension |${\textrm {ILM}}$|-|${\vee }$| for c|$\vee (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Decidability of Some Extensions of J.R. I. Goldblatt - 1974 - Mathematical Logic Quarterly 20 (13‐18):203-206.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Decidability of Some Extensions ofJ.R. I. Goldblatt - 1974 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 20 (13-18):203-206.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Negative Equivalence of Extensions of Minimal Logic.Sergei P. Odintsov - 2004 - Studia Logica 78 (3):417-442.
    Two logics L1 and L2 are negatively equivalent if for any set of formulas X and any negated formula ¬, ¬ can be deduced from the set of hypotheses X in L1 if and only if it can be done in L2. This article is devoted to the investigation of negative equivalence relation in the class of extensions of minimal logic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations