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Abstract. Much work in MKM depends on the application of formal
logic to mathematics. However, much mathematical knowledge is infor-
mal. Luckily, formal logic only represents one tradition in logic, specifi-
cally the modeling of inference in terms of logical form. Many inferences
cannot be captured in this manner. The study of such inferences is still
within the domain of logic, and is sometimes called informal logic. This
paper explores some of the benefits informal logic may have for the man-
agement of informal mathematical knowledge.

1 Informal Mathematical Knowledge

What sort of mathematical knowledge does mathematical knowledge manage-
ment manage? A distinction between knowledge that and knowledge how is fre-
quently deployed in epistemology. In mathematics this corresponds to the dis-
tinction between knowing mathematical propositions and knowing how to con-
duct mathematical proofs, that is being acquainted with mathematical practice.
Each of these two sorts of knowledge may be related to a problem for MKM.
In the first case, the problem may be expressed as ‘How can a computer repre-
sent the truths of mathematics?’. In recent years this problem has been tackled
with increasing success. In the second case, the problem may be expressed as
‘How can a computer represent the proofs of mathematics?’. If this question is
understood as ‘How can a computer perform the proofs of mathematics?’, then
the progress in automated theorem proving provides a ready answer. However,
this would be to misunderstand the original question, which did not ask how
mathematics could be done by a machine, but how it is and has been done by
mathematicians.

The traditions of formalization and automated theorem proving upon which
much work in MKM has been based are heavily indebted to the methods of
formal logic. However, formal logic is a poor guide to mathematical practice,
as mathematicians seldom use it to write proofs. Although most mathematical
proofs may in principle be formalized, the process is often arduous and can
dramatically reduce intelligibility. For this reason such formalization is rarely
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attempted, and most mathematicians regard formal logic as of little relevance to
their work. Moreover, a great deal of important mathematical communication
does not even aspire to be formalizable in principle. Why? Because it contains
substantial gaps, or even contradictions.

At first glance, it may seem that such mathematics would be no great loss.
However, there are several areas of mathematical practice to which it is indispens-
able. The first of these is the history of mathematics. Little if any mathematical
work conducted before the twentieth century meets modern standards of rigour.
An historian engaged in a diachronic study of a mathematical theory needs to
marshal a considerable body of mathematical inference, much of it unsound.
Salvaging the sound parts and restating them with modern rigour may be good
practice for textbook writers, but is not acceptable for historians.

Contemporary mathematics can also give rise to similar problems. The refer-
eed journal article is not the only form of mathematical communication. Mathe-
maticians with shared interests can often communicate complex ideas with con-
siderable brevity and absence of formal rigour. Moreover, collaborators often
profit from sharing their work in an unpolished, and perhaps mistaken, form.
The famous English mathematicians G. H. Hardy and J. E. Littlewood appar-
ently ran their long-standing and successful collaboration in accordance with a
set of ‘axioms’. The first of these ‘said that when one wrote to the other (they
often preferred to exchange thoughts in writing instead of orally), it was com-
pletely indifferent whether what they said was right or wrong. As Hardy put it,
otherwise they could not write completely as they pleased, but would have to
feel a certain responsibility thereby.’ (from a lecture by Harald Bohr, cited in
Littlewood, 1986, p. 10).

That sort of communication may be inadvertently contradictory, but some
mathematicians have gone further, to find heuristic insight in ‘the idea . . . that
a proof can be respectable without being flawless’ (Lakatos, 1976, p. 139). Con-
sider, for example, the following remarks of Fields medallist Vaughan Jones:

I used to dislike intensely, but have come to appreciate and even search
for . . . the situation where one has two, watertight well-designed argu-
ments that lead inexorably to opposite conclusions. . . . Remember that
research in mathematics involves a foray into the unknown. We may not
know which of the two conclusions is correct or even have any feeling or
guess. Proof at this point is our only arbiter. And it seems to have let us
down. I have known myself to be in this situation for months on end. It
induces obsessive and anti-social behaviour. Perhaps we have found an
inconsistency in mathematics. But no, eventually a crack is found in one
of the arguments and it begins to look more and more shaky. Eventually
we kick ourselves for being so utterly stupid and life goes on. But it was
no tool of logic that saved us. The search for a chink in the armour often
involved many tricks including elaborate thought experiments and per-
haps computer calculations. Much structural understanding is created,
which is why I now so value this process. One’s feeling of having obtained
truth at the end is approaching the absolute. Though I should add that
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I have been forced to reverse the conclusion on occasions (Jones, 1998,
pp. 208 f., emphasis added).

The situation which Jones describes, a deeper mathematical understanding
derived from the analysis of apparently rebutted proofs, is central to the math-
ematical methodology espoused by the Hungarian philosopher of mathematics
Imre Lakatos. His ‘method of proofs and refutations’ was inspired by the at-
tempts of several generations of mathematicians to rescue the Descartes-Euler
Conjecture from numerous apparent rebuttals. He summarizes the method as
follows:

Rule 1. If you have a conjecture, set out to prove it and to refute it.
Inspect the proof carefully to prepare a list of non-trivial lemmas
(proof-analysis); find counterexamples both to the conjecture (global
counterexamples) and to the suspect lemmas (local counterexam-
ples).

Rule 2. If you have a global counterexample discard your conjecture,
add to your proof-analysis a suitable lemma that will be refuted
by the counterexample, and replace the discarded conjecture by an
improved one that incorporates the lemma as a condition. Do not
allow a refutation to be dismissed as a monster. Try to make all
‘hidden lemmas’ explicit.

Rule 3. If you have a local counterexample, check to see whether it is
also a global counterexample. If it is you can easily apply Rule 2.
(Lakatos, 1976, p. 50).

Rule 4. If you have a counterexample which is local but not global, try
to improve your proof analysis by replacing the refuted lemma by an
unfalsified one. (Lakatos, 1976, p. 58).

Rule 5. If you have counterexamples of any type, try to find, by deduc-
tive guessing, a deeper theorem to which they are counterexamples
no longer. (Lakatos, 1976, p. 76).

The mathematician described by Lakatos’s method accrues mathematical beliefs,
but many of them are tentative, changeable, and quite possibly wrong. But if
Lakatos is right, and Jones’s experience suggests that he is, this is nevertheless
one of the most successful strategies for acquiring mathematical knowledge.

2 Informal Logic

2.1 What is Informal Logic?

To speak of informal logic is not to contradict oneself but to acknowl-
edge what should be obvious: that the understanding of natural argu-
ments requires substantive knowledge and insights not captured in the
axiomatized rules of formal logic. (Govier, 1987, p. 204).
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The distinction between formal and informal logic has been stated in a variety
of different ways. Much of the confusion arises from the ambiguity of ‘formal’
(Johnson, 1996, p. 45). Informal logic does not exclude the pursuit of precise and
normative principles by which arguments may be analyzed and evaluated. Rather
it concerns itself with arguments which cannot reliably be represented purely
in terms of the logical form of the component propositions. Characteristically,
these are arguments expressed in natural language. However, as the last section
suggests, some arguments in mathematics may also have this quality.1

2.2 The Toulmin Layout

One of the most influential attempts to analyze the structure of arguments with-
out appealing to the logical form of their propositions was developed in the 1950s
by Stephen Toulmin. His ‘layout’ can represent deductive inference, but encom-
passes many other species of argument besides. The arguments it analyzes may
vary considerably in strength: in particular, they may be defeasible—Toulmin
was one of the first philosophers to use this term. Toulmin’s layout continues to
be an important focus for contemporary work in informal logic.

CD

W

(a) Basic Layout

QD C

R

W

B

(b) Enhanced Layout

Fig. 1. Toulmin layouts

In its simplest form, shown in Fig. 1(a), the layout represents the derivation
of a Claim (C), from Data (D), in accordance with a Warrant (W ). This DWC
pattern may appear to resemble a deductive inference rule, such as modus po-
nens, but it can be used to represent many other, looser inferential steps. The
differences between these types of inference are made explicit by the additional
elements of the full layout shown in Fig. 1(b). The warrant is justified by its
dependence on Backing (B), possible exceptions or Rebuttals (R) are allowed

1 For a more substantial defence of the applicability of informal logic to mathematics,
see Aberdein (2006).
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for, and the resultant force of the argument is stated in the Qualifier (Q). Hence
the full layout may be understood as ‘Given that D, we can Q claim that C,
since W (on account of B), unless R’. For example: ‘Given that Harry was born
in Bermuda, we can presumably claim that he is British, since anyone born in
Bermuda will generally be British (on account of various statutes . . . ), unless
his parents were aliens, say’.2

In the tetrahedron the faces join-
ing at each vertex are 3 equilat-
eral triangles, with angles totaling
3 × 60◦ = 180◦; in the octahe-
dron 4 equilateral triangles, total-
ing 4× 60◦ = 240◦; in the icosahe-
dron, 5, totaling 5× 60◦ = 300◦. In
the cube they are 3 squares, with
angles totaling 3× 90◦ = 270◦, and
in the dodecahedron, they are 3 pen-
tagons totaling 3×108◦ = 324◦. No
other set of equal angles at the ver-
tex of a solid adds up to less than
360◦.

So,

Any regular convex solid has equilateral plane
figures as its faces, and the angles at any ver-
tex will add up to less than 360◦.

Given the axioms, postulates, and definitions
of three-dimensional Euclidean geometry,

with strict
geometrical
necessity,

There are five and
only five regular
convex solids.

No rebuttals or exceptions
available within the bounds of
Euclidean geometry.

D

Q C

R

W

B

Fig. 2. Toulmin’s analysis of Theaetetus’s proof that the platonic solids are exactly
five in number (adapted from Toulmin & al., 1979, Fig. 7.4, p. 89).

Toulmin’s focus is on argumentation in natural language, not mathematics,
although he is satisfied that the layout applies there as well. However, his only
developed mathematical example is the proof from Euclid reproduced here as
Fig. 2. One substantial shortcoming that this proof has as a model for how
Toulmin’s layout may be applied more generally is that it has only one step.
Most mathematical proofs have many. Moreover, the number of steps a proof
possesses is a function of the detail with which it is presented. In the next section
I develop an extension of Toulmin’s system which permits the presentation of
multi-step proofs and also exhibits the relationship between presentations of

2 A frequently used example, derived from Toulmin (1958, p. 104).
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differing depths of detail. Before doing so, I shall pause briefly to discuss an
idiosyncrasy of Toulmin’s approach: its highly visual nature.

2.3 The Pros and Cons of Visual Presentation

There are clear benefits to be gained from the visual presentation of argument,
as a growing body of research acknowledges (see Kirschner & al., 2003, for exam-
ple). A shared visual presentation can significantly facilitate communication of
complex ideas, whether collaborative or pedagogic. The Toulmin layout, which
is usually represented graphically, is a good example of this. However, visual pre-
sentation also has its drawbacks. Diagrams can be time-consuming to produce
and frustrating to update, comment upon or integrate with other systems. As
the diagrams grow in complexity these problems escalate.

At least two responses may be made to these difficulties. Firstly, these prob-
lems can largely be eliminated through the use of suitable software. Several pro-
grams are now available which, to a greater or lesser extent, automate the process
of argument diagraming. Some of these programs (such as Araucaria: see Reed
& Rowe, 2005) can be adapted to represent Toulmin layouts. Secondly, the con-
vention of representing Toulmin layouts diagrammatically aids understanding,
but is not essential. The basic layout may be thought of as a triple, 〈D,W,C〉.
The greater generality of the enhanced layout may be brought to bear by asso-
ciating a further triple 〈B,Q,R〉 with the warrant. We can therefore represent
a full Toulmin layout as 〈D,W 〈B,Q,R〉, C〉, where each component represents
a set of propositions, except for Q, a single term.

3 Combining Basic Layouts

3.1 Four Principles for Combining Layouts

Various proposals have been made to extend Toulmin’s layout (for example,
Newman & Marshall, 1992, pp. 15 f.). Many of these are concerned with ap-
plications of the layout to types of argument unlikely to occur in mathematical
proof. I propose the following principles for combining mathematical layouts:

I Treat data and claim as the nodes in a graph or network.
II Allow nodes to contain multiple propositions.

III Any node may function as the data or claim of a new layout.
IV The whole network may be treated as data in a new layout.

Principle I: I shall not consider ways of extending the layout by adding links to
components other than the data or claim. This often seems to duplicate existing
features of the layout. For example, making the warrant of one layout the claim
of a second duplicates the role of backing, albeit with more structure. Where such
extensions are original, as in Newman & Marshall’s (1992, p. 24) attachment of
data and warrant to a rebuttal, they frequently seem more appropriate for other
contexts, such as the legal argumentation for which this extension was devised.
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Further to the argument in Sect. 2.3, we may observe that although graphs
are frequently set out diagrammatically, this is not essential. Strictly speaking,
a directed graph comprises a finite set of vertices, or nodes, and a finite multiset
of edges, or ordered pairs of vertices. Each simple layout within a compound
layout will correspond to such an ordered pair. Hence, in a network of layouts
〈Di,Wi〈Bi, Qi, Ri〉, Ci〉, Di and Ci label the vertices, and Wi and the other
components label the edges.

C1
D1

D2

W1

(a) Linked

C2C1

W2

D1

W1

(b) Sequential

C1

D1 W1

D2 W2

(c) Convergent

D1

C1W1

C2W2

(d) Divergent

C2

C1

W2

D1

W1

D2

(e) Embedded

Fig. 3. Five ways of combining layouts.

Principle II: Toulmin already permits multiple data: consider the data in Fig. 2.
This allows him to capture the linked argument structure represented as Fig. 3(a).
We shall go beyond Toulmin in permitting multiple propositions within a node
to be distinguished as separate nodes (represented graphically by nested boxes).
However, this is unnecessary unless the propositions are individually attached
to other nodes.
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In practice, we will still treat claims as singular. There may be some economy
of exposition to be gained in permitting multiple claims to function as implicit
disjunctions, in the manner of multiple conclusion sequent calculi. However, since
nodes may function as both data and claim, this would risk unnecessary confu-
sion.

Principle III: This principle allows us to construct sequential, convergent and
divergent arguments, represented in Fig. 3(b)–(d). Sequential layouts are briefly
considered in Toulmin & al. (1979, p. 79); convergent and divergent arguments
do not seem to be addressed. Strict adherence to Principle III prevents the
occurrence of circuits, that is nodes which may be reached by two separate
paths. (So the graphs we produce are actually trees.) Circuits are inferentially
benign, provided they are acyclic—that is non-question-begging. However, they
represent a redundancy of derivation which is seldom found in mathematical
proofs. We could modify the principle to include acyclic circuits, but at the cost
of complicating the folding rules introduced in Section 3.2.

Principle IV: This is our most radical departure from Toulmin, but we shall
see that it is essential in order to capture some of the most pervasive forms of
mathematical argument. Indeed, the reification of proofs as objects within larger
proofs was a fundamental step in the development of mathematics. It is rather
less common in ordinary discourse, making this situation dual to those we set
aside in discussion of Principle I.

Principle IV does not allow embedding of a network into the claim of a new
layout. The effect of such a step would be that the data and warrant of the
new layout justified the derivation contained in the embedded network, placing
them more naturally within the backing of (the individual steps of) the latter
network. Principle III does permit data containing an embedded network to be
treated as the claim of a new layout. However, in practice we shall avoid this
move, restricting embedding to initial data.

Figure 4 exhibits how these principles may be used to reproduce some of the
most common techniques in mathematical proof. Adjunction, Fig. 4(a), is just
an instance of the linked layout, Fig. 3(a). Proof by contradiction, Fig. 4(b),
combines divergent, Fig. 3(d), and embedded, Fig. 3(e), layouts. Representing
each leg of the divergent layout separately would produce a logically equivalent
presentation of this argument as a combination of linked and embedded layouts.
This is the combination employed in both proof by cases, Fig. 4(c), and induction,
Fig. 4(d).

3.2 Folding Compound Layouts into a Single Layout

Is it possible to ‘fold’ the steps of a compound layout into a single layout?
This process may obscure much of the detail of a proof, but should preserve
soundness. That is, the folded proof should be no less sound than the unfolded
proof: depending on its qualifiers, this may not itself be sound.
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D1 ∧D2
D1

D2

Adjunction

C1

W1

(a) Adjunction

C1

C2W2

∼ C2W3

D1 ∼ C1

RAA W1

(b) Proof by Contradiction

CnD1

W1

CnDn−1

Wn−1

Dn Cn

D1 ∨ . . . ∨Dn−1

...

Wn

(c) Proof by Cases

P (b)

P (k + 1)P (k), k ≥ b

W2 P (n), n ≥ b

InductionD1

D3

W3

C3

C2D2

(d) (Weak) Induction

Fig. 4. Some common proof methods.
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To see how this may be done, we will first observe that any network satisfying
Principles I–IV must have at least one node of in-degree zero, which is not
derived from anything, and at least one node of out-degree zero, from which
nothing is derived. We shall call the former nodes initial, the latter final, and
all other nodes intermediate. The folded layout should exhibit the dependency
of the final nodes on the initial nodes; the intermediate nodes may be ignored.
To preserve soundness, the warrant of the folded layout must be sufficient to
justify each step of the unfolded proof. For networks following Principles I–III
only, that is without embedding, a folded layout which meets these requirements
may be defined as follows:〈 ⋃

in(Di)=0

Di,
∧
i

Wi,
∧

out(Ci)=0

Ci

〉
(1)

The warrant, W , of the folded layout is thus defined as the conjunction of every
warrant, Wi, in the unfolded layout. This guarantees the inferential resources
necessary to carry out the proof, although in practice a more concise warrant
may suffice. The minimal requirement is that W ⇒ Wi for all Wi, where ‘⇒’ rep-
resents an appropriate account of derivation, which at this point we are assuming
is used indifferently throughout the proof.

To deal with Principle IV, start with the most deeply embedded network(s)
and reduce each to a simple layout, as in (1). There may be multiple layouts
embedded in the same box, as in Fig. 4(c): see the next section for a worked
example. Then replace each embedded layout with a new data node D#

j defined
as Dj ⇒ Cj , where Dj and Cj are the data and claim of the embedded layout(s).
Finally, conjoin the warrant(s), Wj , of each embedded layout to that of the layout
in which it was embedded, Wk. The following simple layout will result:〈⋃

j

(Dj ⇒ Cj),Wk ∧
∧
j

Wj , Ck

〉
(2)

In representing the embedded layout propositionally, we are again assuming that
a single account of derivation is in use throughout the proof.

By applying these rules recursively, it is possible to reduce a compound layout
of arbitrary complexity to a simple layout. Of course, such a reduction will
omit much detail, but it will preserve soundness. As a simple example, consider
the representation of proof by contradiction in Fig. 4(b). Applying (1) to the
embedded argument produces a simple layout 〈C1,W2 ∧ W3, C2∧ ∼ C2〉. We
may then use (2) to produce a single layout representing the whole argument,
〈C1 ⇒ (C2∧∼ C2),W1 ∧W2 ∧W3,∼ C1〉.

3.3 An Extended Example

Figure 5 shows how the techniques introduced above may be applied to a real
example, in this case the proof that every natural number greater than one has
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P (2)

P (k + 1)k + 1 is prime

Def. of P

P (k + 1)
k + 1 = mn s.t. 2 ≤
m, n ≤ k

Def. of P

k + 1 is not
prime

Def. of P

P (2), . . . , P (k)

P (k + 1)

n ∈ N is
prime or
not

P (n),
n ≥ 2

Induction

(i)
(ii)

(iii)

Fig. 5. Proof that every natural number greater than one has a prime factorization.
(P (n) abbreviates ‘n has a prime factorization’.)

a prime factorization. The proof is by induction, in this case strong induction,
rather than the weak induction exhibited in Fig. 4(d), since all the preceding
cases are included in the antecedent of the inductive step. Moreover, the induc-
tive step is itself a proof by cases, so we have more than one level of embedding.
I have indicated the nested boxes in the network as (i)–(iii). However, box (i)
is not a case of embedding, but rather a sequential pair of layouts in which new
data is added at the intermediate stage. This network, and the simple layout
above it are the two cases which constitute the proof of the inductive step. As
such they are embedded in the data of that step, here indicated as (ii). Together
with the base step, P (2), the inductive step is itself embedded in the data (iii)
of the outermost layout.

By applying the folding rules from Section 3.2, we may fold the whole proof
into a single layout,

〈{P (2), {k + 1 is prime ⇒ P (k + 1),
{k + 1 is not prime, P (2), . . . , P (k)} ⇒ P (k + 1)} ⇒ P (k + 1)},

Def. of P ∧ n ∈ N is prime or not ∧ Induction,

P (n) for n ≥ 2〉. (3)

This just says that the desired result follows from the base case and the induc-
tive step, in accordance with induction and the warrants for the inductive step.
Clearly, if the unfolded proof is sound, the folded proof must be too.

4 Enhanced Layouts

For the sake of simplicity I have so far only considered combinations of layouts
which lack backing, qualifiers or rebuttals. It is reasonable to omit these from
analyses of the steps of a proof when they are identical in every step. This is true
of many mathematical proofs. However, in some of the most interesting cases
it is not. The folding rules from Sect. 3.2 may be augmented to include these
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additional components as follows:〈 ⋃
in(Di)=0

Di,
∧
i

Wi

〈∧
i

Bi, lub
⋃
i

Qi,
∨
i

Ri

〉
,

∧
out(Ci)=0

Ci

〉
(4)

〈⋃
j

(Dj⇒Qj
Cj),Wk∧

∧
j

Wj

〈
Bk∧

∧
j

Bj , lub{Qk∪
⋃
j

Qj}, Rk∨
∨
j

Rj

〉
, Ck

〉
(5)

These rules are conservative of those for the more primitive components, with
one exception. Once we permit differently qualified steps in the same proof we
may no longer assume that all derivations have equal force. The univocal concept
of derivation used in (2) is therefore indexed to the prevailing qualifier in (5).

The justification of the rules for backing and rebuttals is straightforward. We
treat backing identically to warrants, by conjoining all the individual backings
to ensure a common backing sufficient for the folded layout. Since the rebuttal of
a single step is enough to rebut the entire proof, the compound rebuttal is just
the disjunction of all the individual rebuttals. Combining qualifiers takes a little
more care. To do so we need to make some preliminary assumptions. Firstly, that
all qualifiers occurring more than once in a derivation are non-cumulative. We
shall describe a qualifier Q as non-cumulative iff it holds of a compound layout
of n steps, each with qualifier Q itself. Typically qualifiers indicating dependence
on some axiom or assumption are non-cumulative, whereas qualifiers indicating
likelihood are cumulative. However, for small values of n, qualifiers indicating
high, but not absolute, levels of confidence may be treated as non-cumulative,
since multiplying the possibility of error by the number of steps would still yield
a very low number.3 Secondly, we must assume that the different qualifiers Qi

may be given a partial ordering, such that Qj ≤ Qk iff every Qj-qualified step is a
Qk-qualified step. For example, every constructively valid step is also classically
valid, so ‘constructively’ ≤ ‘classically’. Finally, we shall assume that every pair
of qualifiers has a least upper bound (lub). Note that this qualifier need not itself
be attached to any step of the proof.

The qualifier of the compound layout may then be defined as the least up-
per bound of the qualifiers of the individual steps. In some pathological cases
the different steps of a proof may appeal to mutually inconsistent standards of
rigour, for instance classical and Brouwerian intuitionistic mathematics. Here
the least upper bound of the two qualifiers will be something falling far short of
mathematical rigour (of either kind), such as ‘perhaps’, since the proof must be
invalid.

The use of qualifiers (and backing) in a layout can make explicit the different
assumptions and standards of rigour underlying different steps of the proof. We
can see this in the classically but not constructively valid proof of the Inter-
mediate Value Theorem laid out in Fig. 6. This proof has several steps which
are constructively (and therefore also classically) valid, here folded together into
3 A number representing an upper bound on the possibility of error of the whole

layout, since the sources of error associated with each step need not be independent.
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f : R 7→ R;
f is continuous;
f(u) < m < f(v);
u < v.

So,

u ∈ X = {x ∈ R : x < v ∧ f(x) < m};
R is complete; If f is continuous at w then
f(w) < m implies w is not an upper bound
for X and f(w) > m implies w is not a least
upper bound for X.

Constructive
mathematics

Constructively

X has a lub w s.t.
u < w < v and
f(w) 6< m, f(w) 6>
m.

So,

Trichotomy: If x, y ∈ R then
x < y, x = y or x > y.

Classical logic
(specifically LEM)

Classically
f(w) = m for
some w s.t.
u < w < v.

D1

W1

B1

Q1

C1 (or D2)

W2

B2

Q2

C2

Fig. 6. Classical proof of the Intermediate Value Theorem.

the first step. However, there is at least one step with the qualifier ‘classically’,
hence ‘classically’ must also be the compound qualifier, since it is the least upper
bound of ‘constructively’ and ‘classically’.

5 Rebuttals

The system developed above is a potentially powerful tool for the rational re-
construction of mathematical proofs. It bears some similarity to projects such
as Leslie Lamport’s ‘structured proofs’ (1995) or Michael Kohlhase’s OMDoc
(2000). In particular, the derive steps which comprise the OMDoc proof envi-
ronment correspond fairly closely to basic Toulmin layouts. However, these steps
lack any analogue to either the qualifier or the rebuttal component of a full lay-
out. In this respect OMDoc (and structured proofs) are fit to their primary
purpose: to facilitate greater formalization of proofs. Conversely, my approach is
primarily intended to respect the level of (in)formality with which the proof was
originally framed. Central to this pursuit is the rebuttal component. In this final
section I explore how it may enrich our understanding of mathematical proof.

Ostensibly, Toulmin denies that mathematical arguments can ever be re-
butted: observe the place holder for rebuttal in Fig. 2. He does accept that
mathematical arguments are open to criticism, but only by challenging their
‘standards of rational adequacy’ (Toulmin & al., 1979, p. 133). Individual proofs
may be undermined by wide-ranging shifts in mathematical rigour, but they are
not subject to more specific rebuttal. But this is just to say that Toulmin’s focus
is on formal, not informal, mathematics. His is an entirely reasonable attitude
to take to settled and formalized mathematical results. However, in the con-
text of informal mathematics, it is equally reasonable to admit the possibility of
rebuttal.
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QD C

R

W

B

Q′D,
R ⇒∼ L

L ⇒ C

W ′

B′

 

Fig. 7. Lemma incorporation

The ease with which Lakatos’s rules lend themselves to translation into the
idiom developed in this paper helps to confirm its usefulness in the analysis of
informal mathematics. In the first rule, the conjecture corresponds to the (fi-
nal) claim of a network of Toulmin layouts representing the proof. The lemmas
are the initial data, the global counterexamples rebuttals of the final step in
the proof, and the local counterexamples rebuttals to earlier steps. The second
rule, Lakatos’s technique of lemma incorporation, may then be understood as
a transformation on a Toulmin layout, as represented in Fig. 7. Here we would
generally expect Q′ ≤ Q, since removing the rebuttal should have strengthened
the argument. It is also likely that W ′ = W and B′ = B, since the only addi-
tional support required for the new layout is a valid inference in most systems of
logic (∼ L |= L ⇒ C). With Lakatos’s Rule 4 we see a genuine dividend in the
new idiom: whereas Lakatos’s focus is propositional, Toulmin’s is on the process
of argument. Lakatos’s account of this move only permits the replacement of one
proposition, ‘the refuted lemma’, with another; our model permits the replace-
ment of a rebutted section of a proof network, including not just data, but also
warrants, backing, qualifiers, and rebuttals.
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