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Abstract

The properties of angular momentum and its connection to magnetic
momentum are explored, based on a reconsideration of the Stern-Gerlach
experiment and gauge invariance. A possible way to solve the so called
spin crisis is proposed. The separation of angular momentum of a quan-
tum system of particles into orbital angular momentum plus intrinsic an-
gular momentum is reconsidered, within the limits of the Schrödinger
theory. A proof is given that, for systems of more than two particles, un-
less all of them have the same mass, the possibility of having eigenvalues
of the form (n+ 1/2)h̄ is not excluded.
PACS: 03.65.Ta angular momentum, magnetic moment, spin crisis

1 introduction

We have no means to study the states of angular momentum of material
quantum systems but through their interaction with external electromag-
netic fields. The simplest experimental arrangement is that of Stern-
Gerlach, were a collimated beam of silver atoms passes through a region
where there is a strong non-homogeneous magnetic field. The force acting
on the magnetic moment of individual atoms produced the famous two
state separation which, years after the original experiment, will be taken
as part of the experimental evidence in support of the theory of electronic
spin. In this paper we get back in time to make a critical analysis of the
Stern-Gerlach Experiment.

As we will prove, there have been some misconceptions, involving the
relation between spin and magnetic moment, in particular, that have per-
haps misleaded Theoretical Physics in the task of building a mathemat-
ically consistent theoretical framework to explain those experimental re-
sults, as well as in the formulation of a relativistic quantum theory and a
quantum electrodynamics that’s free of unwelcome mathematical incon-
sistencies.
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In our first section, we prove that it is not true that

~̂µ ∝ Ĵ,

where
[Ĵi, Ĵj ] ∝ iεijkĴk,

for the components µi of the magnetic moment of a quantum system, in
the presence of an electromagnetic field. We find in this fact an expla-
nation of the observed anomalies in the magnetic moment of protons and
neutrons and of the so called proton spin crisis [8, 9].

In our second section we prove that, within the limits of Schrödinger
theory, and for isolated systems of three or more particles, it is not true
that the projection of the orbital angular momentum and the internal an-
gular momentum—along a given direction in space—have to be, in gen-
eral, integer multiples of h̄.

2 Angular Momentum and Electrodynam-
ics

Let’s start with a refresher of the way angular momentum gets to play
a role in electrodynamics. Consider a system of particles restricted to
move, for whatever reason, inside a bounded region Ω of space, where

there is an external magnetic field. The force on the ith particle is fi =
qivi ∧ B(ri). Let r be a fixed point inside Ω, then, on Taylor’s theorem
we can approximate

fi = qivi(t) ∧
(
B(r) +

∂B

∂r
· (ri(t)− r)

)
.

So the instantaneous net force is made of two terms:

F =

n∑
i=1

[
qivi(t) ∧

(
B(r)−

(
∂B

∂r
· r
))

+ qivi(t) ∧
(
∂B

∂r
· ri(t)

)]
.

The average of the first in a period of time τ that’s long enough to
minimize statistical fluctuations, must be zero: otherwise the system will
drift. So, we are left with an average force:

F =
1

τ

∫ t+ τ
2

t− τ
2

(
n∑
i=1

[
qivi(z) ∧

(
∂B

∂r
· ri(z)

)]
dz

)

=
1

2τ

∫ t+ τ
2

t− τ
2

[
n∑
i=1

(qiri ∧ vi) dz

]
· ∂B
∂r

(For the steps omitted see [3].) If all the particles have the same charge/mass
ratio q/m, then

F =
q

2mτ

∫ t+ τ
2

t− τ
2

[
n∑
i=1

(miri ∧ vi) dz

]
· ∂B
∂r

=
q

2m
L · ∂B

∂r
(1)
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Where L is the average angular kinetic momentum.
Remarks:

1. We have assumed the system of charges to be restricted to move
inside a fixed region Ω where there is an external constant magnetic
field.

2. We are considering here an angular kinetic momentum, which is not
necessarily the same physical magnitude as the canonical angular
momentum, which is precisely the case in the presence of an external
magnetic field.

3. We have averaged the instantaneous force in a period of time which is
long enough to minimize statistical fluctuations. That’s the reason
that we have obtained a force that is the gradient of a potential,
despite the fact that it is impossible for the magnetic force to do
any work at all.

It is precisely for those reasons that the attempt to portrait Schrödinger’s
theory as failing to explain the result of the Stern-Gerlach experiment as
in [2, 4] is unsound: because the atoms in the Stern-Gerlach experiment
are in motion; there is an external magnetic field and, therefore, the op-
erator of kinetic angular momentum is not −ih̄r ∧ ~∇; and the average
kinetic angular momentum is not the same physical magnitude as the in-
stantaneous kinetic angular momentum. We have explained our second
remark before in [7], based on a conspicuous remark by Weyl[1]:

Let’s consider the Schrödinger’s equation for an elementary particle
with mass m and charge e in the presence of an external electromagnetic
field:

ih̄
∂Ψ

∂t
=

(−ih̄~∇− eA)2

2m
Ψ + eVΨ, (2)

where V and A are the electrodynamic potentials.
As it’s well known from electrodynamics, the configuration of the elec-

tromagnetic field will not change in the gauge transformation

(V,A)→
(
V ′ = V +

∂λ

∂t
,A′ = A + ~∇λ

)
It is not difficult to prove that if Ψ is a solution of (2) then Ψe−i

eλ
h̄ is a

solution of

ih̄
∂Ψ′

∂t
=

(−ih̄~∇− eA′)2

2m
Ψ′ + eV ′Ψ′,

corresponding to the same physical state, because the corresponding den-
sity and current of probability are the same. However:

−ih̄
∫

Ψ′?
(
r ∧ ∂

∂r

)
Ψ′ = −ih̄

∫
Ψ?
(
r ∧ ∂

∂r

)
Ψ− e

∫
Ψ∗Ψ r ∧ ∂λ

∂r
.

In other words: the expected value of the operator −ih̄r ∧ ~∇ depends
on the calibration of the electrodynamic potentials and, as a consequence,
it cannot be the operator of an observable physical magnitude. Equation
(2) gives us the clue to get around this problem. The operator of kinetic
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momentum p = mv must be −ih̄~∇ − eA and, as a consequence, the
operator of kinetic angular momentum must be this

L̂ = −r ∧ (ih̄~∇+ eA). (3)

We come to the same conclussion if we use Ehrenfest theorem, because

mv̂ =
i

h

[
Ĥ, r

]
= −ih̄~∇− eA

As we have shown before [7] this substitution resolves the mathemat-
ical difficulties but, at the same time, it disrupts our understanding of
magnetic momentum, which is based on the commutation relations of the
components of the canonical angular momentum operator

[L̂i, L̂j ] ∝ iεijkL̂k.

It is simply not true that

[µ̂i, µ̂j ] ∝ iεijkµ̂k

for the components of magnetic moment ~̂µ in the presence of an electro-
magnetic field: The configuration of the electromagnetic field determines
the eigenvalues of the kinetic angular momentum—as it is clear from (3)—
and, correspondingly, it determines also the eigenvalues of the magnetic
moment, that plays a central role in atomic and nuclear physics, and in
our understanding of the magnetic properties of condensed matter as well.
The problem is that we will always have an electromagnetic field where
there is a magnetic moment. In general, it is not true that

~̂µ ∝ Ĵ,

where
[Ĵi, Ĵj ] ∝ iεijkĴk.

As an example, most of the rest mass of a proton or a neutron is
supposed to come from the kinetic energy of the corresponding quarks;
this suggests high speeds and high intensities of the electromagnetic field
inside those particles and, as a consequence, the term eA might very well
be the most important in (3) for protons and neutrons, explaining the
huge anomalies observed in their magnetic moment, and suggesting a way
to resolve the so called proton spin crisis [8, 9].

There are some other misconceptions involving the concept of angular
momentum which we will address.

3 Intrinsic Angular Momentum of an Iso-
lated System of Particles in Schrödinger’s
Theory

To motivate the discussion that follows, let’s consider a system of classical
particles with masses mi and charges qi. We will use the symbols ri and
vi for the position and the velocity of the ith particle, respectively; for
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the corresponding variables associated to the center of mass—the system
as a whole—we will use M , Q, r and v:

M =
∑

mi, Q =
∑

qi, r =

∑
mi · ri
M

, and v =

∑
mi · vi
M

.

The total angular momentum of the system L =
∑

l(i) is:

L =
∑
i

miri ∧ vi = Mr ∧ v +
∑
i

mi~r i ∧ ~v i,

where ~r i = ri − r and ~v i = vi − v are the position vectors and velocities
of the particles, in the system of reference where the center of mass is at
rest.

The term
Lo = Mr ∧ v (4)

is the orbital angular momentum and

Ls =
∑
i

mi~r i ∧ ~v i (5)

is the internal angular momentum.
For a system made of two particles it is common to introduce the

auxiliary vector
~ρ = ~r 2 − ~r 1 = r2 − r1. (6)

Considering that m1 · ~r 1 +m2 · ~r 2 = 0 we have

~r 1 = −m2

m1
· ~r 2

which, by virtue of (Eq. 6), implies that

~r 2 =
m1

M
· ~ρ,

and, in a similar fashion

~r 1 = −m2

M
· ~ρ.

From those equations we can prove that

Ls = µ · ~ρ× ~̇ρ, (7)

where µ = m1·m2
M

, which is a well known result in classical mechanics,
where the solution of a two-body problem (if the potential energy depends
only on the distance between the two particles) is reduced to the solution
of a single body problem in a central field—whilst the center of mass
moves like a free particle—by means of the transformation

r =
m1 · r1 +m2 · r2

M
, ~ρ = r2 − r1.

The use of those coordinates has a similar effect in quantum mechanics,
where a Schrödinger equation of the form

ih̄
∂Ψ

∂t
= − h̄2

2m1
∆r1Ψ− h̄2

2m2
∆r2Ψ + V (|r2 − r1|)
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is transformed into the separable equation

ih̄
∂Ψ

∂t
= − h̄2

2M
∆rΨ−

h̄2

2µ
∆~ρΨ + V (~ρ)Ψ.

The Hamiltonian takes this form in correspondence with the classical
decomposition of the kinetic energy:

K =
Pr

2

2M
+

P~ρ

2µ
.

The corresponding terms in the Hamiltonian are

− h̄2

2M
∆r and − h̄2

2µ
∆~ρ.

There is an analogous decomposition of the total angular momentum:

~̂L = −ih̄r ∧ ∂

∂r
− ih̄~ρ ∧ ∂

∂~ρ
(8)

Based on the principle of correspondence, we assume that the first
term is the operator of the orbital angular momentum and the second is
the operator of internal, or intrinsic, angular momentum of the system,
considered as a whole. We can do a little better and prove that the last
operator actually corresponds to the total angular momentum:

−ih̄r1 ∧
∂

∂r1
− ih̄r2 ∧

∂

∂r2

We show how to do this, though it might be obvious, because the existence
of a mathematical proof is relevant for the work to come. To start we have

r1 = r− m2

M
~ρ and r2 = r +

m1

M
~ρ

In consequence

−ih̄r ∧ ∂

∂r
− ih̄~ρ ∧ ∂

∂~ρ

= −ih̄m1r1 +m2r2
M

∧
(
∂

∂r1
+

∂

∂r2

)
−ih̄ (r2 − r1)∧

(
−m2

M

∂

∂r1
+
m1

M

∂

∂r2

)
= −ih̄r1 ∧

∂

∂r1
− ih̄r2 ∧

∂

∂r2
.

Two sets of spherical coordinates can be used to represent the com-
ponents of r and ~ρ. Therefore, in this case of a system of two particles,
because of (8), the allowed values of the projection of either, orbital or
internal angular momentum, along any direction in space, are integer mul-
tiples of h̄, and the same is true for the total angular momentum.

Let’s consider, in general, a system of n particles, introducing the new
variables

~ρi =

n∑
i=1

αijrj ,
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where

ri =

n∑
i=1

βij~ρj .

In other words, we suppose the matrix (αij)n×n to be invertible and,
furthermore:

(αij)
−1
n×n = (βij)n×n

in such manner that:

n∑
k=1

αikβkj =

n∑
k=1

βikαkj = δij . (9)

As a consequence, we have

∂

∂ri
=

n∑
k=1

∂

∂~ρk

∂~ρk
∂ri

=

n∑
k=1

αki
∂

∂~ρk

and

−ih̄
n∑
i=1

ri ∧
∂

∂ri
= −ih̄

n∑
i=1

n∑
j=1

n∑
k=1

αkiβij~ρj ∧
∂

∂~ρk
= −ih̄

n∑
j=1

n∑
k=1

δjk~ρj ∧
∂

∂~ρk

(10)

= −ih̄
n∑
j=1

~ρj ∧
∂

∂~ρj

This is interesting for us, because it rises the question if it is possible
to write n linear combinations of the position vectors ri:

~ρi =

n∑
j=1

αijrj ,

in such manner that the first of them is the position vector of the center
of mass:

~ρ1 =

∑n

j=1
mjrj

M
the Schrödinger’s equation in the new variables takes the form

ih̄
∂Ψ

∂t
= − h̄2

2M
∆~ρ1Ψ + Ĥ

(
~ρ2, ..., ~ρn,

∂

∂~ρ2
, · · · , ∂

∂~ρn

)
Ψ (11)

and [
Ĥ,−ih̄

n∑
j=2

~ρj ∧
∂

∂~ρj

]
= ~̂0.

If we can prove that this problem has a solution, we will be justified in
our assumption that Schrödinger’s theory predicts that the allowed values
of the projection of the internal angular momentum along an arbitrary
spatial direction are integer multiples of Planck’s constant.Though this
can be true for the total angular momentum it is not necessarily true for
its components: the orbital angular momentum and the intrinsic angular
momentum.
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3.1 The Case of Three Particles

To simplify our discussion we consider a system made out of three parti-
cles. Then

M~ρ1 = m1r1 +m2r2 +m3r3 (12)

~ρ2 = α21r1 + α22r2 + α23r3

~ρ3 = α31r1 + α32r2 + α33r3

The inverse of this relation, as follows from an almost trivial application
of Cramer’s rule, is given by:

r1 =
M (α22α33 − α23α32) ~ρ1 + (m3α32 −m2α33) ~ρ2 + (m2α23 −m3α22) ~ρ3
m1 (α22α33 − α23α32) +m2 (α23α31 − α21α33) +m3 (α21α32 − α22α31)

r2 =
M (α23α31 − α21α33) ~ρ1 + (m1α33 −m3α31) ~ρ2 + (m3α21 −m1α23) ~ρ3
m1 (α22α33 − α23α32) +m2 (α23α31 − α21α33) +m3 (α21α32 − α22α31)

r3 =
M (α21α32 − α22α31) ~ρ1 + (m2α31 −m1α32) ~ρ2 + (m1α22 −m2α21) ~ρ3
m1 (α22α33 − α23α32) +m2 (α23α31 − α21α33) +m3 (α21α32 − α22α31)

The transformation (12) has to be invertible; in consequence we re-
quire: ∣∣∣∣∣ m1 m2 m3

α21 α22 α23

α31 α34 α33

∣∣∣∣∣ = M (13)

(The value of this determinant can be fixed at will, with the only condition
that it is not zero.)

For an isolated system, the forces can only depend on the differences
ri − rj , and not on the position of the center of mass, therefore, we must
have that

α22α33 − α23α32 = α23α31 − α21α33 = α21α32 − α22α31 (14)

Let’s consider now the operator of kinetic energy:

K̂ = − h̄2

2M

[(
∂

∂r1

)2

+
(
∂

∂r2

)2

+
(
∂

∂r3

)2
]

From equations (12) we get

∂

∂ri
=
mi

M

∂

∂~ρ1
+ α2i

∂

∂~ρ2
+ α3i

∂

∂~ρi
+

Therefore, to achieve the separation (11) we must have:

3∑
i=1

miα2i =

3∑
i=1

miα3i = 0

which means that the formal vector ~α1 = (m1,m2,m3) must be orthogonal
to the formal vectors ~α2 = (α21, α22, α23) and ~α3 = (α31, α32, α33) and,
therefore, it is parallel, or anti-parallel to ~α2 ∧ ~α3. However, according
to (14) the components of ~α2 ∧ ~α3 are identical and, as a consequence,
the Schrödinger equation will be separable in the form (11), by a linear
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transformation of the form (12) if and only if the masses are identical, in
the case of three particles.

Notice that the quantities in (14) are the minor determinants D11,
D12, and D13 of the matrix:(

α11 α12 α13

α21 α22 α23

α31 α32 α33

)
≡

(
m1 m1 m1

α21 α22 α23

α31 α32 α33

)

and that a similar condition will be necessary for an arbitrary number of
particles, as well as the orthogonality conditions: the Schrödinger equa-
tion will be separable in the form (11), by a linear transformation of the
form (12) if and only if the masses are identical. This is a very strong
condition which is not even true for protons and neutrons, if we consider
the experimental facts in support of the theory that they are made of up
and down quarks[5, 6], with possibly different masses[10]. ( Disregarding
the fact, apparently, most of the rest mass of nucleons comes from the
kinetic energy of the corresponding quarks and the energy of the gluon
field.)

The fact that we cannot separate Schrödinger’s equation in the form
(11) doesn’t mean that we cannot decompose the total angular momentum
as the sum of an orbital angular momentum (of the center of mass)
and an intrinsic angular momentum. We can do that:

L̂orbital = −ih̄
∑n

i=1
miri

M
∧

[
n∑
i=1

∂

∂ri

]
and

L̂intrinsic = −ih̄
n∑
i=1

ri ∧
(
∂

∂ri

)
− L̂orbital.

We can prove that each of those operators satisfies the well known com-
mutation relations. What we cannot guarantee is that the eigenvalues
of the projection of the orbital angular momentum or the intrinsic angu-
lar momentum along an arbitrary spatial direction will be multiples of h̄:
they can be multiples of h̄/2, as follows from the commutation relations.
Some additional complications appear when we consider charged particles
as we have pointed out before [7].
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