
Non-mathematical Content by Mathematical Means

There is no mathematical substitute for philosophy.
Kripke (1976, p. 416)

Abstract

In this paper, I consider the use of mathematical results in philosophical arguments
arriving at conclusions with non-mathematical content, with the view that in general such
usage requires additional justification. As a cautionary example, I examine Kreisel’s argu-
ments that the Continuum Hypothesis is determined by the axioms of Zermelo-Fraenkel set
theory, and interpret Weston’s 1976 reply as showing that Kreisel fails to provide sufficient
justification for the use of his main technical result.

If we take the perspective that mathematical results are used in the context of a mod-
elling of something not necessarily mathematical, then the situation is clarified somewhat,
and the procedure for arriving at justification for the use of such results becomes clear. I
give an example of a particularly strong form this justification might take, using the idea
of formalism independence due to Gödel and Kennedy.

§1. Introduction. This paper takes place in the context of the philosophical analysis of
the mathematical activity of a mathematician or group of mathematicians. Our primary con-
cern is the situation in which this analysis makes use of mathematical techniques and results,
but is also something more than a purely mathematical investigation. In other words, while
the conclusions drawn are about mathematics, they themselves have some non-mathematical
content. The main thesis of this paper is that in such a situation one should be careful about
the use of mathematical results, and that in general their inclusion in philosophical arguments
requires some buttressing.

Let us consider some examples. (i) Kreisel’s (1965) arguments that the axioms of Zermelo-
Fraenkel set theory determine the Continuum Hypothesis. This is our main example, and will
be considered in detail below. For the time being, note that Kreisel uses a technical result of
Zermelo concerning the models of second-order ZF (from now on ZF2) in his argument. What
of non-mathematical content? First notice that I have been somewhat conservative in stating
Kreisel’s conclusion. I might have given it more simply as “the Continuum Hypothesis has a
determinate answer”. Kreisel does not conclude this explicitly, but others have. For instance,
citing Kreisel (1965), Isaacson writes:

In a sense made precise and established by the use of second-order logic, there is
only one set theory of the continuum. It remains an open question whether in that
set theory there is an infinite subset of the power set of the natural numbers that
is not equinumerous with the whole power set. (Isaacson 2011, p. 38)

It might not be so apparent that the conservative conclusion stated above has any non-
mathematical content, but I will argue below that it does. This is exactly the point in ar-
guments which go further (such as Isaacson’s) at which the non-mathematical content first
emerges. (ii) Putnam’s Skolemisations. Putnam (1983) makes various uses of the Downward
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Löwenheim-Skolem Theorem; for instance, he considers the theorem applied to the hypo-
thetical formalisation of all science, and concludes that “‘theoretical constraints’, whether
they come from set theory itself or from ‘total science’, cannot fix the interpretation of the
notion set in the ‘intended’ way.” (iii) Hamkins’ Ancient Paradise. Hamkins (2012) provides
a mathematical argument against what he calls the “ancient paradise position”.

This position holds that there is a highly regular core underlying the universe of set
theory, an inner model obscured over the eons by the accumulating layers of debris
heaped up by innumerable forcing constructions since the beginning of time. If we
could sweep the accumulated material away, on this view, then we should find an
ancient paradise. (Hamkins 2012)

The so-called “mantle” of a model of ZFC is the intersection of all models of which it is a
forcing extension, and Hamkins claims that this is a good candidate for this hypothetical
“ancient paradise”. The argument he gives that such a regular core does not exist makes use
of a theorem stating that every model of ZFC is the mantle of another model of ZFC.

By way of further elucidation, let us consider our main thesis in the context of Kreisel’s
programme of informal rigour. This is a programme which concerns the process of obtaining
“rules and definitions by analyzing intuitive notions and putting down their properties”, and
wants:

(i) to make this analysis as precise as possible (with the means available), in
particular to eliminate doubtful properties of the intuitive notions when drawing
conclusions about them; and (ii) to extend this analysis, in particular not to leave
undecided questions which can be decided by full use of evident properties of
these intuitive notions. (Kreisel 1965, p. 138)

Consider any such rule or definition. If we are successful, then it should indeed be a part of
mathematics; however many (if not all) arguments we might give for this will not be purely
mathematical results, and as such will have some non-mathematical content. Of course, by
desideratum (i), our justificatory arguments may well make use of mathematical techniques
(and by use of mathematical techniques, in this context I mean as applied with these intu-
itive notions, rules, and definitions as the objects of investigation). Similar remarks apply to
desideratum (ii), since we may well entertain non-mathematical questions which could be
answered with the aid of mathematical techniques.

We can understand the main thesis of this paper as putting a requirement on the process
of informal rigour. Kreisel’s description brings to mind an image of the ‘zealous application
of all the means which we have at our disposal’ in “analyzing intuitive notions and putting
down their properties”. What our thesis urges is that we should rein in our zeal a little. As
far as mathematical results are concerned, we should exercise some caution and take care to
buttress their use in arriving at conclusions which are not purely mathematical.

§2. Kreisel on the Continuum Hypothesis. In the same paper in which he introduces
his programme of informal rigour, Kreisel gives arguments for the claim that the Continuum
Hypothesis is determined by the axioms of ZF set theory. He makes use of a technical result,
due to Zermelo, concerning the second-order axioms (which Kreisel takes to be the full axioms
of set theory).

2



Theorem 1 (Zermelo 1930). Any model of ZF2 is isomorphic to (Vα,∈) for some limit ordinal
α >ω.1

This gives the following important corollary concerning the Continuum Hypothesis (CH).

Corollary 2. ZF2 � CH or ZF2 � ¬CH

Proof. As an instance of Excluded Middle, we have CH∨¬CH. Which ever way this goes, it is
decided by Vω+3, hence all stages Vα for a limit α >ω agree on CH. Therefore, by Theorem 1,
every model of ZF2 agrees on CH, so ZF2 � CH or ZF2 � ¬CH.

In slogan form: models of ZF2 correspond to ‘high’ initial segments of the universe, so all
models agree on lower-level statements such as CH.

We will consider the move from Corollary 2 to the following.

Conclusion 3. The axioms of ZF determine CH.

Of what does the move consist? Superficially at least, we have lost any specific reference
to second-order aspects. If we agree with Kreisel that the second-order axioms are the full
axioms of set theory, then this is not so much of a move. I will argue however that something
more is going on here; in particular, that Conclusion 3 has some non-mathematical content,
while Corollary 2 does not, and that Kreisel does not account for this.

The starting point is Weston’s (1976) reply to Kreisel, in which he contends that “his
[Kreisel’s] second order argument actually presupposes a unique intended interpretation for
ZF”. In fact, Weston argues against a slightly modified version of Kreisel’s argument. The
following result (which Weston refers to as the ‘almost categoricity’ result for ZF2) is an im-
mediate corollary of Theorem 1.

Theorem 4. Given any two models of ZF2, one is isomorphic to an initial segment of the other.

Now, one can easily run Kreisel’s argument making use of this result. For; if one model is
an initial segment of another, then both must agree on CH (so long as they both contain Vω+3,
which they must if they are to be models of ZF2). This modified argument is what Weston
attempts to counter.

[S]uppose that [...] there are two or more interpretations of the axioms of ZF
which are equally natural candidates for “the” intended interpretation, but which
are not almost isomorphic. Then the “all subsets” condition [of the second-order
quantifier] is ambiguous, for what may be “all subsets” in one interpretation need
not be “all subsets” in another. That is, suppose that two mathematicians have in
mind different (not almost-isomorphic) natural interpretations of ZF2. Then each
could use his notion of set to prove the almost categoricity of ZF2 according to his
own interpretation of that theory, and yet, their interpretations are, by hypothesis,
not almost isomorphic. [...] As it stands, the argument merely shows that the CH
has the same truth-value in the group of ∗-structures [models] associated with
each natural interpretation.2 (Weston 1976, p. 288)

1In fact, Zermelo proved a stronger result, namely that the models of ZF2 are, up to isomorphism, precisely the
stages Vκ for κ an inaccessible cardinal.

2Weston’s “∗-structures” are the same thing as our (full) models. He uses the term “structure” for so-called ‘Henkin’
models.
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Weston does not dispute the mathematical result that Corollary 2 follows from the almost
categoricity of ZF2. Rather, he points out that “ZF2 � CH or ZF2 � ¬CH” is misleading, and
that it does not follow that CH is really determined by the axioms of ZF.

Let us now modify Weston’s argument so that it is more faithful to Kreisel’s original rea-
soning, and in doing so consider things in more detail. Weston’s talk of ‘interpretations in
the mind of mathematicians’ helps to make his argument more perspicuous, but we can dis-
pense with it here. The important point is that Zermelo’s theorem is a result in (some) set
theory. Call this the ‘background set theory’, to distinguish it from the set theory ZF2, which is
the mathematical object/structure which Zermelo’s theorem concerns. Note, this background
may actually be ZF2 again; in any case it must be strong enough to prove Zermelo’s theorem.3

I will consider things from two perspectives. (1) From a more realist stance (which is the main
perspective considered in this section) in any interpretation of this background set theory, the
way in which CH is decided by the axioms of ZF is exactly the value which it takes in that
interpretation. The natural question to ask is, why stop here? If Kreisel’s argument is needed
to convince us that CH is determined by the axioms of ZF, might we also need an argument to
convince us that CH is determined in the background set theory? In other words, if we do not
already know that there aren’t two interpretations of the background set theory which answer
the CH question in different ways, can we really say that ZF determines CH? (2) Taking a less
realist perspective, the statement ZF2 � CH or ZF2 � ¬CH corresponds exactly to the instance
of the Law of Excluded Middle CH ∨ ¬CH. So we should have as much confidence that ZF2
determines CH one way or the other as we have that CH is determined one way or the other
simpliciter.

I do not claim that the above offers an insurmountable challenge to Kreisel. Rather, it
demonstrates that Kreisel’s (implicit) move from Corollary 2 to Conclusion 3 is too quick, and
requires some further justification to go through.

What of non-mathematical content? Above I talked of the axioms of ZF really determining
CH. It seems that the purely mathematical result “ZF2 � CH or ZF2 � ¬CH” is not enough
to give us this, since it is made relative to a context in which CH need not be determinate
(already). So this ‘really’ is where the non-mathematical content comes in: we want to say
that the axioms determine CH absolutely: there is an answer to the Continuum Hypothesis
such that it, and it alone, is compatible with the Zermelo-Fraenkel axioms. And this is what
Kreisel would like too, if his suggestion — that in order to decide CH we should consider
“new primitive notions, e.g. properties of natural numbers, which are not definable in the
language of set theory” (i.e. notions lost when one replaces second-order quantification with
a first-order schema) — is to carry any weight.

In the next section, I will — from a particular perspective — investigate the general prob-
lem of buttressing arguments making use of mathematical results. But for now I will examine
the present situation and consider some means by which we might justify the emergence of
this pesky non-mathematical content, as well as some challenges to be met. I give two general
forms of argument.

3As to the background set theory with which Zermelo proves his result, the relevant passage from his paper is the
following.

We call “normal domain” a domain of “sets” and “urelements” that satisfies our “ZF’-system” with
regard to the “basic relation” a ∈ b. We shall treat “domains” of this kind, their “elements”, their “sub-
domains”, their “sums” and “intersections” according to the general set-theoretic concepts and axioms
exactly like sets, from which they do not substantially differ anyway. (Zermelo 1930; translation in:
Zermelo 2010, p. 405; emphasis mine)
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First, one might try to block the counterargument by claiming that the consideration of
incompatible interpretations of the background set theory is not valid since it is something
rather different from ZF2. Note that Kreisel should already be unhappy about this, since this
background set theory is naturally his intuitive “precise notion of set”, which he appears to
identify, in some way, with ZF2 — or at least, it seems likely that any justification he might
give for CH’s determinacy on his “precise notion of set” will stem from its determinacy from
the axioms of ZF.

Notwithstanding Kreisel’s objections, there are several ways in which we might flesh-out
this counter-argument-blocking claim. (1) “This background set theory is a stronger formal
theory — strong enough in particular to decide CH ‘on its own’.” It is difficult to imagine
any justification for the use of this theory over ZF2 which does not on its own immediately
give a justification for believing an answer to CH. (2) “While having multiple incompatible
interpretations is a possibility, there is only one intended interpretation of this background set
theory (at least up to compatibility with respect to the answer to CH).” The qualifier “intended”
brings with it its own baggage, but moreover, as with (1), one wonders why this ‘intended
interpretation’ solution is not applied directly to ‘normal’ set theory, to get the result without
invoking any second-order machinery (Weston makes a similar point in his reply to Kreisel).
(3) “This business of ‘going up another level’ is simply not valid.” In other words, while we
may fruitfully examine interpretations of ZF2, this examination takes place in some kind of
‘mathematical bedrock’, and talk of multiple interpretations of this bedrock is meaningless.
This is perhaps the most promising alternative. We might claim, for instance, that this bedrock
cannot be considered in any way as a mathematical object/structure (or that it cannot be
modelled in this way at least with respect to the determinacy of the Continuum Hypothesis).
Of course, one can consider some mathematical situation in which we are able to ‘go up one
level’ (i.e. in which we can investigate multiple interpretations of a background set theory)
so the holder of such a view must be able to show why this is not in fact what is going on.
Furthermore, we might question why it is that exactly one step up is permissible, and not
more or less. Perhaps allowing two steps might prove fruitful in some situations, or, again,
we might just take ‘normal’ set theory as the bedrock and be done with it.

Second, and going in the other direction, we could argue that the apparent circularity
indicated above is not, in fact, vicious. We might say, for example, that Kreisel’s argument
establishes the determinacy of CH simultaneously for all levels. That is, we take the background
set theory to be ZF2 (or perhaps rather to involve an intuitive notion of set which can be
formalised — or modelled — by ZF2), and claim that the argument leading to Corollary 2
also happens simultaneously for this background set theory (and its background and so on),
so that the possibility of it having incompatible interpretations with respect to CH is blocked.

This notion of ‘simultaneity’ requires some further working out and justification, but even
granted that, someone unconvinced that ZF determines CH might raise the following objec-
tion. The strategy does not preclude the possibility of an ‘independent tree of levels with
a different answer to CH’. I will not treat this issue in full generality here, but will instead
paint a mathematical picture which should indicate the form of the problem. I will work with
the assumptions (a) that each set theory, background set theory, and so on is ZF2, (b) that
interpretations are models in the sense of Model Theory, (c) that every interpretation of a set
theory is an object within an interpretation of the background to this set theory, and (d) that
we can ‘step outside’ and look at the whole situation mathematically. With this in mind, we
can consider the discrete partial order P of interpretations, where the successor of an inter-
pretation is the ‘background’ interpretation in which it is an object. Now, the simultaneity
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argument claims that for every interpretation I , all predecessors of I in P agree on the an-
swer to CH. It does not follow from this however that every interpretation agrees on the
answer to CH, for it does not preclude the possibility of two independent (disjoint) trees of
interpretations, each with a different answer to CH. See Figure 1 for a picture.

CH CH

CH

· · ·

· · ·

...

CH CH

CH

¬CH ¬CH

¬CH

· · ·

· · ·

...

¬CH ¬CH

¬CH

Figure 1: Two ‘independent trees of interpretations’ with different answers to CH

One way in which we might make all of this more concrete is to return to Weston’s talk of
“interpretations in the minds of mathematicians”. For, we can model a mathematician consid-
ering an interpretation in which she proves the second-order determinacy of CH as ‘going one
step up in the partial order’. Then two mathematicians having disagreeing interpretations of
set theory with respect to the Continuum Hypothesis correspond to two points in the partial
order at the bottom of independent trees of interpretations with different answers to CH.

Note that if the preceding mathematical analysis really is needed for anything more than
a compact and reasonably clear (but eliminable) means to explicate the problem facing the
‘simultaneity’ strategy, then its use in the argument must be subject to the main thesis of this
paper, and hence must require some buttressing before it can hold weight.

§3. Mathematical Models and Independence. We now move away from Kreisel and
the Continuum Hypothesis, and worry about the general question of how we can justify the
use of mathematical results in arguments leading to conclusions with some non-mathematical
content. I will here adopt a certain perspective in which the distinction between mathemat-
ical and non-mathematical content is given prominence and which makes the path to the
justification of the use of mathematical results clear.

The starting point is this: we will explicitly not assume that the things about which we
wish to argue mathematically behave in a wholly mathematical fashion. Instead, what we
take to be happening is a process of mathematical modelling. This is a more general version
of the position espoused by Shapiro in his 1998 paper on the notion of logical consequence.

A formal language is a mathematical model of a natural language (of mathemat-
ics), in roughly the same sense as, say, a Turing machine is a model of calculation,
a collection of point masses is a model of a system of physical objects, and the Bohr
construction is a model of an atom. In other words, a formal language displays
certain features of natural languages, or idealizations thereof, while ignoring or
simplifying other features. (Shapiro 1998)

This perspective separates the mathematical usage in our arguments from that which is under
analysis. Talking of the ‘emergence’ of non-mathematical content is no longer so appropriate:
mathematical analysis is subsidiary to philosophical, and serves only to model something
which may have a non-mathematical component. The procedure for justification is then clear:
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once we have noted that our mathematical results concern a model of what is under analysis,
we must provide evidence as to why this model is a good and accurate one with respect to
the features relevant to the result. In particular, we should explain why the thing so modelled
behaves in a mathematical way, and why the assumptions and rules of the model correspond
well enough to what it models, so that the model tracks the real thing, at least as far as the
desired result.

How do we now understand the troubles with Kreisel’s arguments concerning the Contin-
uum Hypothesis? From the present perspective we can say that the move from Corollary 2
to Conclusion 3 implicitly assumes that second-order determination is a good model for the
determination of statements by axioms; the Weston-style argument given above then reveals
this assumption as faulty.

There is one kind of evidence for the accuracy of a model which should be regarded as par-
ticularly strong. Gödel in his remarks before the 1946 Princeton Bicentennial Conference (see
(Gödel, 1946)) notes how the notion of computability displays a kind of ‘formalism indepen-
dence’, in contrast with the notions of provability and definability. Kennedy (2013) develops
these ideas further, and isolates two senses in which Gödel talks of formalism independence
with respect to computability. (a) “Stability under a class of presentations”:

Whether one defines the notion of computability by means of the Gödel-Herbrand-
Kleene definition (1936), Church’s λ-definable functions (1936), Gödel-Kleene µ-
recursive functions (1936), Turing machines (1936), Post (1943) systems, or Markov
(1951) algorithms, one ends up with the same class of functions. (Kennedy 2013,
p. 362)

(b) “The absence of the sort of relativity to a given language that leads to stratification of
the notion such as (in the case of definability in a formalized language) into definability in
languages of greater and greater expressive power” (quoted from Parsons’ introductory note
to (Gödel, 1946)). We are especially interested in the first sense; however, here we talk of
‘model independence’ as opposed to ‘formalism independence’. Let us suppose that we have
isolated some aspect of mathematical activity for which we have a diverse collection of models,
all of which turn out to be equivalent. This is indeed a rather special situation, and — absent
of arguments that these models fail to capture something essential — we are furnished with
evidence of a strong link between model and modelled.

The qualifier “diverse” plays an important role here. Let us consider the case of computa-
tion as a prototype. As indicated above, Gödel and Kennedy consider the various definitions
of computation as formalisms of an intuitive notion; however, in line with the perspective de-
clared at the beginning of this section, and in agreement with Shapiro (1998), such definitions
will here be considered to specify mathematical models. Now, what is special about compu-
tation is not simply that we have many equivalent models: it seems that all ways one thinks
to devise a model — and a great variety of methods have been proposed, involving thinking
about the problem in very different ways — turn out to specify the same class of functions.
This observation forms the key part of the justification for believing in a strong link between
the models of computation and computation itself. Thus, in the general case, the fulfilment of
this “diverse” qualifier corresponds to providing evidence for a kind of Church-Turing Thesis
for the aspect being modelled.

In what kind of situations might we hope for model independence? The notion of com-
putation may sometimes be useful in analysing mathematical activity, but it arguably has
much less utility in this respect when compared to the notions of provability and definability.
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Gödel’s lecture takes the form of a challenge: to conduct, for these two notions (and others),
an analysis analogous to that of computability, arriving at a kind of formalism independence.
Kennedy takes up this challenge with respect to the second, and forms her Church-Turing
Thesis for definability in terms of the set-theoretic hierarchy constructible using a particular
logic. This programme, if successful — and as long as we can convert any arguments for for-
malism independence into arguments for model independence — should furnish us with the
material with which we may securely buttress arguments which employ mathematical results
concerning the notions of provability and definability.

§4. Conclusion. Kreisel does not provide sufficient justification for the employment
mathematical results in obtaining his not-entirely-mathematical conclusion. Even granted the
possibility of patching up his argument, this determination stands. We should worry about
how to justify the use of mathematical techniques and results in our arguments.

I considered above one potential path leading to such justification, which is visible from a
view that very much embraces the distinction between mathematical and non-mathematical
content. It would however be interesting and sensible to examine a more conservative reac-
tion, one which tries to justify in a negative fashion: by reducing the importance and urgency
of the problem. For instance, one might claim that some apparently purely-mathematical
results already have non-mathematical content. Or, going in the other direction, it might
be contended that mathematical analysis exhausts what there is to say about mathematical
activity, so that any appearance of non-mathematical content is illusory, or points to faulty
reasoning.

In any case, the principle aim of the considerations made here is to clarify and make pre-
cise investigations of mathematical activity. Doing so is very much in the spirit of Kreisel’s
programme of informal rigour, and I regard the present essay as product of his rich and stim-
ulating 1965 paper.
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