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Abstract

We investigate a recently-devised polyhedral semantics for intermediate logics, in
which formulas are interpreted in n-dimensional polyhedra. An intermediate logic is
polyhedrally complete if it is complete with respect to some class of polyhedra. The
first main result of this paper is a necessary and sufficient condition for the polyhedral-
completeness of a logic. This condition, which we call the Nerve Criterion, is expressed
in terms of Alexandrov’s notion of the nerve of a poset. It affords a purely combinatorial
characterisation of polyhedrally-complete logics.

Using the Nerve Criterion we show, easily, that there are continuum many inter-
mediate logics that are not polyhedrally-complete but which have the finite model
property. We also provide, at considerable combinatorial labour, a countably infinite
class of logics axiomatised by the Jankov-Fine formulas of ‘starlike trees’ all of which
are polyhedrally-complete. The polyhedral completeness theorem for these ‘starlike
logics’ is the second main result of this paper.

1 Introduction
The genesis of many connections between logic and geometry is rooted in the discovery
of topological semantics for intuitionistic and modal logic, as pioneered by Marshall
Stone [Sto38], Tang Tsao-Chen [Tsa38], Alfred Tarski [Tar39] and John C. C. McKinsey
[McK41]. This semantics is now well-known. In short, one starts with a topological
space X , and interprets intuitionistic formulas inside the Heyting algebra of open sets
of X , and modal formulas inside the modal algebra of subsets of X with □ interpreted
as the topological interior operator. A celebrated result due to Tarski [Tar39] states
that this provides a complete semantics for intuitionistic propositional logic (IPC) on
the one hand, and the modal logic S4 on the other. Moreover, one can even obtain
completeness with respect to certain individual spaces. Specifically, McKinsey and
Tarski showed [MT44] that for any separable metric space X without isolated points,
if IPC ⊬ φ, then φ has a countermodel based on X , and similarly with S4 in place of
IPC. Later, Helena Rasiowa and Roman Sikorski showed that one can do without the
assumption of separability [RS63].
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This result traces out an elegant interplay between topology and logic; however,
it simultaneously establishes limits on the expressive power of this kind of interpret-
ation. Indeed, examples of separable metric spaces without isolated points are the
n-dimensional Euclidean space Rn and the Cantor space 2ω. What McKinsey and
Tarski’s result shows, then, is that these spaces have the same logic, namely IPC (or
S4). The upshot is that topological semantics does not allow logic to capture much of
the geometric content of a space.

A natural idea is that, if we want to remedy the situation and allow for the capture
of more information about a space, then we need an algebra finer than the Heyting
algebra of open sets, or the modal algebra of arbitrary subsets with the interior operator.
For example, Marco Aiello, Johan van Benthem, Guram Bezhanishvili and Mai Gehrke
consider the modal logic of chequered subsets of Rn: finite unions of sets of the form∏n

i=1 Ci , where each Ci ⊆ R is convex ([ABB03] and [BBG03]; see also [BB07]). In
[Bez+18], [Gab+17] and [Gab+18], this algebra-refinement idea is taken one step
further. To be able to capture some of the geometric content of a space, one may
restrict attention to topological spaces and subsets which are polyhedra (of arbitrary
dimension). Indeed, the set Subo(P) of open subpolyhedra of P is a Heyting algebra
under ⊆ (and a similar result holds in the modal case). This allows for an interpretation
of intuitionistic and modal formulas in Subo(P). The main result of [Bez+18] is that
more is true. A polyhedral analogue of Tarski’s theorem holds: these polyhedral
semantics are complete for IPC and S4.Grz. Furthermore, this approach delivers that
logic can capture the dimension of the polyhedron in which it is interpreted, via the
bounded depth formulas bdn [CZ97, Sec. 2.4]. In particular, the polyhedron P is n
dimensional if, and only if, P validates bdn+1 and does not validate bdn+2 for n ∈ ω
[Bez+18].

In this paper we make further advances in the study of polyhedral semantics. We
introduce and study polyhedral completeness for intermediate logics. We say that
an intermediate logic L is polyhedrally complete if there is a class C of polyhedra
such that L is the logic of C . It follows from [Bez+18] that IPC and the logic BDn of
bounded depth n, for each n, are polyhedrally-complete. We construct infinitely many
polyhedrally-complete logics, and show that there are continuum many polyhedrally
incomplete ones all of which have the finite model property.

To this end we employ a time-honoured tool from combinatorial and polyhedral
geometry, the nerve of a poset (=partially ordered set). The nerve will be our key
concept relating logic with polyhedral geometry. In detail, the nerveN (F) of the poset
F is the collection of finite non-empty chains in F ordered by inclusion. As was already
noted in [Bez+18], given a polyhedron P, a triangulation of P corresponds to a validity-
preserving map from P onto the poset F of the faces of the triangulation. Through
Esakia duality, in turn, this validity-preserving map corresponds to an embedding of
the Heyting algebra of upsets of F into the Heyting algebra of open subpolyhedra of
P. Nerves are closely related to barycentric subdivisions of triangulations. Indeed, if a
finite poset F is the face poset of some triangulation Σ of a polyhedron P, then N (F)
corresponds to a barycentric subdivision of Σ.

Applying methods and results from rational polyhedral geometry we present a proof
of our first main result, the Nerve Criterion for polyhedral completeness (Theorem 4.1):
A logic L is complete with respect to some class of polyhedra if and only if it is the
logic of a class of finite posets closed under taking nerves. Thus, we obtain that the
logic of any given polyhedron is the logic of the iterated nerves of any one of its
triangulations. The criterion yields many negative results, showing in particular that
there are continuum-many non-polyhedrally-complete logics with the finite model
property (Theorem 5.4).

As to positive results, we consider logics defined using starlike trees — trees which
only branch at the root — as forbidden configurations. Starlike logics are then those
defined by the Jankov-Fine formulas of a collection of starlike trees. Exploiting the
Nerve Criterion, and a result by Zakharyaschev [Zak93] that all these logics have the
finite model property, we prove our second main result (Theorem 6.15): Every starlike
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logic is polyhedrally-complete. This yields a countably infinite class of polyhedrally-
complete logics of each finite height and of infinite height. (For instance, Scott’s
well-known logic SL is in this class.) As forbidden configurations, starlike trees have a
natural geometric meaning, expressing connectedness properties of polyhedral spaces.

The paper is organised as follows. In Section 2, we give the required background
on intermediate logics and polyhedral geometry. Section 3 presents the polyhedral
semantics first defined in [Bez+18]. In Section 4, we present and prove the Nerve
Criterion for polyhedral-completeness (Theorem 4.1). Making use of this criterion,
Section 5 establishes that all stable logics (as defined in [BB09]) of height at least 2 are
polyhedrally-incomplete. Then in Section 6, we define the class of starlike logics, and
prove that each one is polyhedrally-complete. The techniques in these two sections are
entirely combinatorial.

Finally, let us briefly comment on further research. One major problem already
mentioned in [Bez+18] is to characterise the logic of piecewise-linear manifolds of a
fixed dimension. Here we announce significant progress on this question; the results
will appear in a forthcoming paper. A second relevant goal would be a complete
classification of polyhedrally-complete logics. At the the time of writing, we do not
know how to attain this goal. One might wonder if our results on starlike logics extend
to arbitrary trees, or even to a wider class of posets. As to the latter, some negative
results are obtained in [Ada19, Corollary 4.12]. For the former, the situation is rather
obscure to us at the time of writing; cf. the discussion on ‘general trees’ in [Ada19,
p. 61]. Identifying further classes of polyhedrally complete logics beyond the starlike
ones introduced in this paper would be the next immediate task in the direction of
obtaining a classification of polyhedrally-complete logics.1

2 Preliminaries
In this section we remind the reader of the relational and algebraic semantics for
intermediate logics, and survey the definitions and results which will play their part in
the forthcoming. As a main reference we use [CZ97]. We assume rather less familiarity
with polyhedral geometry, and thus present in more detail the material we need.

2.1 Posets as Kripke frames
A (Kripke) frame for intuitionistic logic is simply a poset. We thus use the term ‘frame’
in this paper as a synonym of ‘poset’. The validity relation ⊨ between frames and
formulas is defined in the usual way, see, e.g., [CZ97, Ch. 2]. Given a class of frames
C, its logic is:

Logic(C) := {φ a formula | ∀F ∈ C: F ⊨ φ}
Conversely, given a logic L , define:

Frames(L ) := {F a Kripke frame | F ⊨L}
Framesfin(L ) := {F a finite Kripke frame | F ⊨L}

A logic L has the finite model property (fmp) if it is the logic of a class of finite frames.
Equivalently, if L = Logic(Framesfin(L )).

Fix a poset F . For any x ∈ F , its upset, downset, strict upset and strict downset are
defined, respectively, as follows.

↑(x) := {y ∈ F | y ⩾ x}
↓(x) := {y ∈ F | y ⩽ x}
⇑(x) := {y ∈ F | y > x}
⇓(x) := {y ∈ F | y < x}

1This paper is partly based on the fist-named author’s M.Sc. thesis [Ada19].
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For any set S ⊆ F , its upset and downset are defined, respectively, as follows.

↑U :=
⋃
x∈U

↑(x)

↓U :=
⋃
x∈U

↓(x)

A subframe is a subposet. A subframe U ⊆ F is upwards-closed or a generated subframe
if U = ↑U , and it is downwards-closed if ↓U = U . The Alexandrov topology on F is the
set Up F of its upwards-closed subsets. This constitutes a topology on F . In the sequel,
we will freely switch between thinking of F as a poset and as a topological space. Note
that the closed sets in this topology correspond to downwards-closed sets.

A chain in F is X ⊆ F which as a subposet is linearly-ordered. The length of the
chain X is |X |. A chain X ⊆ F is maximal if there is no chain Y ⊆ F such that X ⊂ Y
(i.e. such that X is a proper subset of Y ). The height of F is the element of N∪ {∞}
defined by:

height(F) := sup{|X | − 1 | X ⊆ F is a chain}
For notational uniformity, say that this value is also the depth of F , depth(F). For any
x ∈ F , define its height and depth as follows.

height(x) := height(↓(x))
depth(x) := depth(↑(x))

The height of a logic L is the element of N∪ {∞} given by:

height(L ) := sup{height(F) | F ∈ Frames(L )}
A top element of F is t ∈ F such that depth(t) = 0. For any x , y ∈ F , say that x is an
immediate predecessor of y, and that y is an immediate successor of x , if x < y and
there is no z ∈ F such that x < z < y. Write Succ(x) for the collection of immediate
successors of x .

The poset F is rooted if it has a minimum element, which is called the root, and is
usually denoted by ⊥. Define:

Frames⊥(L ) := {F ∈ Frames(L ) | F is rooted}
Frames⊥,fin(L ) := {F ∈ Framesfin(L ) | F is rooted}

An antichain in F is a subset Z ⊆ F in which no two elements are comparable. The
width, notation width(F), of F is the cardinality of the largest antichain in F .

A function f : F → G is a p-morphism if for every x ∈ F we have:

f (↑(x)) = ↑( f (x))
Equivalently, f should satisfy the following conditions.

∀x , y ∈ F : (x ⩽ y ⇒ f (x)⩽ f (y)) (Forth)

∀x ∈ F : ∀z ∈ G : ( f (x)⩽ z⇒∃y ∈ F : (x ⩽ y ∧ f (y) = z)) (Back)

An up-reduction from F to G is a surjective p-morphism f from an upwards-closed set
U ⊆ F to G. Write f : F ◦→ G.

Proposition 2.1. If there is an up-reduction F ◦→ G then Logic(F) ⊆ Logic(G). In other
words, if G ⊭ φ then F ⊭ φ.

Proof. See [CZ97, Corollary 2.8, p. 30 and Corollary 2.17, p. 32].

Corollary 2.2. If C is any collection of frames and L = Logic(C), then:

L = Logic(Frames⊥(L ))
Proof. First, L ⊆ Logic(Frames⊥(L )). Conversely, suppose L ⊬ φ. Then there exists
F ∈ C such that F ⊭ φ, hence there is x ∈ F such that x ⊭ φ (for some valuation
on F), meaning that ↑(x) ⊭ φ. Now, ↑(x) is upwards-closed in F , hence id↑(x) is an
up-reduction F ◦→ ↑(x). Then by Proposition 2.1, we get that ↑(x) ⊨ L , so that
↑(x) ∈ Frames⊥(L ).
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2.2 Heyting algebras, topological semantics
A Heyting algebra is a bounded lattice equipped with a Heyting implication → that
satisfies:

c ⩽ a→ b ⇔ c ∧ a ⩽ b

The validity relation ⊨ between Heyting algebras and formulas is defined in the usual
way; the notation Logic(−) is extended appropriately. The logic of a Heyting algebra
is exactly the logic of its finitely generated subalgebras. Say that A is locally-finite if
for every S ⊆ A finite, the algebra 〈S〉 generated by S is finite. If F is any poset, the
bounded distributive lattice Up F is a Heyting algebra, and:

Proposition 2.3. If F is a poset, Logic(F) = Logic(Up F)

Proof. See [CZ97, Corollary 8.5, p. 238].

Co-Heyting algebras are the order-duals of Heyting algebras. Specifically, a co-
Heyting algebra is a bounded lattice equipped with a co-Heyting implication ← that
satisfies:

a← b ⩽ c ⇔ a ⩽ b ∨ c

For more information on co-Heyting algebras, the reader is referred to [MT46, §1] and
[Rau74], where they are called ‘Brouwerian algebras’.

Given a topological space X , we regard the collection of open sets O (X ) of X as a
Heyting algebra in the standard manner, cf. [CZ97, Proposition 8.31, p. 247]. (Recall
that

U → V = Int(UC ∪ V )

where Int denotes the topological interior operator, and −C is set-theoretic comple-
ment.) We can thus interpret formulas in topological spaces. Write X ⊨ φ for O (X ) ⊨ φ,
and extend the remaining notations accordingly.

The topological space X also comes with a co-Heyting algebra, namely its collection
of closed sets C (X ). The co-Heyting implication on C (X ) satisfies:

C ← D := Cl(C \ D)

where Cl denotes the topological closure operator. If a Heyting algebra A is regarded as
a poset category (A,⩽), then its opposite category Aop = (A,⩾) is a co-Heyting algebra.
In the case of the Heyting algebra O (X ) of open sets of X , O (X )op is isomorphic to the
co-Heyting algebra C (X ) of closed subsets of X .

2.3 Jankov-Fine formulas as forbidden configurations
To every finite, rooted frame Q, we associate a formula χ(Q), the Jankov-Fine formula
of Q (also called its Jankov-De Jongh formula). The precise definition of χ(Q) is
somewhat involved, but the exact details of this syntactical form are not relevant for
our considerations. What matters to us is its notable semantic property.

Theorem 2.4. For any frame F, we have that F ⊨ χ(Q) if and only if F does not up-reduce
to Q.

Proof. See [CZ97, §9.4, p. 310] for a treatment in which Jankov-Fine formulas are
considered as specific instances of more general ‘canonical formulas’. An alternative
proof can be found in [Bez06, §3.3, p. 56], which gives a complete definition of χ(Q).
See also [BB09] for an algebraic version of this result.

Jankov-Fine formulas formalise the intuition of ‘forbidden configurations’. The
formula χ(Q) ‘forbids’ the configuration Q from its frames.

The following consequence of Theorem 2.4 will come in handy later on.

Corollary 2.5. Let L = Logic(C) where C is a class of frames. Then:

Frames⊥,fin(L ) = {F finite, rooted frame | ∃G ∈ C: G ◦→ F}
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Proof. First, if F is a finite, rooted frame such that there is G ∈ C and an up-reduction
G ◦→ F , then by Proposition 2.1 we have that F ∈ Frames⊥,fin(L ). Conversely take F
finite and rooted, and assume that there is no G ∈ C with G ◦→ F . Then by Theorem 2.4,
G ⊨ χ(F) for every G ∈ C; whence L ⊢ χ(F). By Theorem 2.4, F ⊭ χ(F) implying
F ⊭L . This yields F /∈ Frames⊥,fin(L ).

2.4 Intermediate logics
The logic IPC is intuitionistic propositional logic. An intermediate logic is any consistent
logic extending IPC. Classical logic, CPC, is the largest intermediate logic.

Proposition 2.6. IPC is the logic of the class of all finite frames, i.e. IPC has the fmp.

Proof. See [CZ97, Theorem 2.57, p. 49].

For every n ∈ N, let BDn be the logic of all finite frames of height at most n. This
has the following axiomatisation in terms of Jankov-Fine formulas.

Proposition 2.7. BDn is the logic axiomatised by IPC plus the Jankov-Fine formula of
the chain (linear order) on n+ 1 elements.

Proof. See [CZ97, Table 9.7, p. 317, and §9].

Scott’s Logic, SL, is usually axiomatised by the Scott sentence:

SL= IPC+ IPC+ ((¬¬p→ p)→ p ∨¬p)→¬p ∨¬¬p

This logic can also be axiomatised using a forbidden configuration, as follows.

Proposition 2.8. SL= IPC+χ( ).

Proof. See [CZ97, Table 9.7, p. 317, and §9].

2.5 Polytopes, polyhedra, and simplices
Polyhedra are certain subsets of finite-dimensional real affine spaces Rn. An affine
combination of x0, . . . , xd ∈ Rn is a point r0 x0+ · · ·+ rd xd , where r0, . . . , rd ∈ R are such
that r0+· · ·+rd = 1. A convex combination is an affine combination in which additionally
each ri ⩾ 0. Given a set S ⊆ Rn, its convex hull, notation Conv S, is the collection of
convex combinations of its elements. (We stress that each convex combination involves,
by definition, a finite subset of S only.) A subspace S ⊆ Rn is convex if Conv S = S. A
polytope is the convex hull of a finite set. A polyhedron in Rn is a set which can be
expressed as the finite union of polytopes. A subpolyhedron of a polyhedron P in Rn is
a subset of P which is itself a polyhedron. Note that every polyhedron is closed and
bounded, hence compact, in the canonical (Euclidean) topology carried by the real
affine space Rn. All topological notions pertaining to polyhedra in the following refer
to this topology.

A set of points x0, . . . , xd is affinely independent if whenever:

r0 x0 + · · ·+ rd xd = 0 and r0 + · · ·+ rd = 0

we must have that r0, . . . , rd = 0. This is equivalent to saying that the vectors:

x1 − x0, . . . , xd − x0

are linearly independent. A d-simplex is the convex hull σ of d+1 affinely independent
points x0, . . . , xd , which we call its vertices. Write σ = x0 · · · xd ; the dimension of σ is
d.

Proposition 2.9. Every simplex determines its vertex set: two simplices coincide if and
only if they share the same vertex set.

Proof. See [Mau80, Proposition 2.3.3, p. 32].
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A face of σ is the convex hull τ of some non-empty subset of {x0, . . . , xd} (note that τ
is then a simplex too). Write τ≼ σ, and τ≺ σ if τ ̸= σ.

Since x0, . . . , xd are affinely independent, every point x ∈ σ can be expressed
uniquely as a convex combination x = r0 x0 + · · · + rd xd with r0, . . . , rd ⩾ 0 and
r0 + · · ·+ rd = 1. Call the tuple (r0, . . . , rd) the barycentric coordinates of x in σ. The
barycentre bσ of σ is the special point whose barycentric coordinates are ( 1

d+1 , . . . , 1
d+1 ).

The relative interior of σ is defined:

Relintσ := {r0 x0 + · · ·+ rd xd ∈ σ | r0, . . . , rd > 0}
The relative interior of σ is ‘σ without its boundary’ in the following sense. The affine
subspace spanned by σ is the set of all affine combinations of x0, . . . , xd . Then the
relative interior of σ coincides with the topological interior of σ inside this affine
subspace, the latter being equipped with the subspace topology it inherits from Rn.
Note that Cl Relintσ = σ, the closure being taken in the ambient space Rn.

2.6 Triangulations
A simplicial complex inRn is a finite setΣ of simplices satisfying the following conditions.

(a) Σ is ≺-downwards-closed: whenever σ ∈ Σ and τ≺ σ we have τ ∈ Σ.

(b) If σ,τ ∈ Σ, then σ∩τ is either empty or a common face of σ and τ.

The support of Σ is the set |Σ| :=⋃Σ. Note that by definition this set is automatically
a polyhedron. We say that Σ is a triangulation of the polyhedron |Σ|. The set Σ is a
poset under ≺, called the face poset of the triangulation. A subcomplex of Σ is subset
which is itself a simplicial complex. Note that a subcomplex, as a poset, is precisely a
downwards-closed set. Given σ ∈ Σ, its open star is defined:

o(σ) :=
⋃
{Relint(τ) | τ ∈ Σ and σ ⊆ τ}

Proposition 2.10. The relative interiors of the simplices in a simplicial complex Σ
partition |Σ|. That is, for every x ∈ |Σ|, there is exactly one σ ∈ Σ such that x ∈ Relintσ.

Proof. See [Mau80, Proposition 2.3.6, p. 33].

In light of Proposition 2.10, for any x ∈ |Σ| let us write σx for the unique σ ∈ Σ
such that x ∈ Relintσ. The simplex σx is known as the carrier of x .

Proposition 2.11. Let Σ be a simplicial complex, take τ ∈ Σ and x ∈ Relintτ. Then
no proper face σ ≺ τ contains x. This means that σx is the inclusion-smallest simplex
containing x.

Proof. See [Bez+18, Lemma 3.1].

The next result is a basic fact of polyhedral geometry, and is of fundamental
importance in its connection with logic. For Σ a triangulation and S a subset of the
ambient space Rn, define:

ΣS := {σ ∈ Σ | σ ⊆ S}
This, being a downwards-closed subset of Σ, is a subcomplex of Σ.

Lemma 2.12 (Triangulation Lemma). Any polyhedron admits a triangulation which
simultaneously triangulates each of any fixed finite set of subpolyhedra. That is, for a
collection of polyhedra P,Q1, . . . ,Qm such that each Q i ⊆ P, there is a triangulation Σ of
P such that ΣQi

triangulates Q i for each i.

Proof. See [RS72, Theorem 2.11 and Addendum 2.12, p. 16].
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Figure 1: Examples of elementary stellar subdivisions

2.7 Stellar and barycentric subdivisions
For Σ and∆ simplicial complexes,∆ is a subdivision or refinement of Σ, notation∆Ã Σ,
if |Σ|= |∆| and every simplex of ∆ is contained in a simplex of Σ.

Lemma 2.13. If ∆Ã Σ then for every σ ∈ Σ we have:

σ =
⋃
{τ ∈∆ | τ ⊆ σ}

Proof. Let S := {τ ∈∆ | τ ⊆ σ}. Clearly
⋃

S ⊆ σ. Conversely, for x ∈ σ, let τx ∈∆
be such that x ∈ Relintτx . Since ∆ refines Σ, there is some ρ ∈ Σ such that τx ⊆ ρ;
assume that ρ is inclusion-minimal with this property. It follows from [Spa66, §3,
Lemma 3, p. 121] that Relintτx ⊆ Relintρ, meaning that x ∈ σ∩Relintρ. By condition
(b) in the definition of a simplicial complex, we have that σ ∩ ρ is face of ρ. But
then by Proposition 2.11, ρ ≼ σ, since otherwise σ∩ρ would be a proper face of ρ
containing x ∈ Relintρ. Therefore τx ⊆ ρ ⊆ σ so that x ∈⋃S.

We now introduce a special class of subdivisions, for which the original source
[Ale30] remains a fundamental reference. Let Σ be a simplicial complex, and let c ∈ |Σ|.
The elementary stellar subdivision of Σ at c is the set of simplices ∆ obtained from Σ via
the following transformation: Replace each simplex σ ∈ Σ that contains c by the set
of all simplices Conv {τ∪ {c}}, where τ ranges over all faces of σ that do not contain
c. It can then be proved that ∆ is again a triangulation, and a subdivision of Σ. The
equality Σ =∆ holds precisely when the chosen c is a vertex of Σ. If ∆ is a subdivision
of Σ that is obtained via a finite number of successive elementary subdivisions of Σ,
then ∆ is a stellar subdivision of Σ. See Figure 1.

If ∆ is obtained from Σ via an elementary stellar subdivision at c ∈ |Σ|, and c
is moreover the barycentre of the vertices of its carrier simplex σc ∈ Σ (see Pro-
position 2.10 and the comments following it), then ∆ is an elementary barycentric
subdivision of Σ (at the barycentre c).

The barycentric subdivision SdΣ of Σ is then defined as the refinement of Σ obtained
by successively applying elementary barycentric subdivisions at each simplex of Σ,
proceeding in decreasing order of dimension. It can be proved that SdΣ does not
depend on the chosen ordering of the simplices of Σ. See the examples in Figure 2. In
the literature, SdΣ is also often called the first derived subdivision of Σ; cf. e.g. [RS72].
We inductively define, for each k ∈ N, the kth derived subdivision of Σ: Σ(0) := Σ; and
Σ(k) = SdΣ(k−1).
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Figure 2: Examples of barycentric subdivision. Each simplex in the simplicial
complex is divided at its barycentre, proceeding in decreasing order of dimension.
The bottom right tetrahedron is drawn without filled-in faces to aid clarity.

3 The algebra of open subpolyhedra
With the preliminaries in place, we relate intuitionistic logic and polyhedra. For further
details please see [Bez+18].

3.1 Polyhedral semantics
Given a polyhedron P, let SubP denote the set of its subpolyhedra.

Theorem 3.1. SubP is a co-Heyting algebra, and a subalgebra of C (P).
Proof. See [Bez+18, Corollary 3.4]. The proof makes fundamental use of the Triangu-
lation Lemma.

By an open subpolyhedron of a polyhedron P in this paper we mean the complement
(in P) of a subpolyhedron of P. Denote by SuboP the collection of open subpolyhedra
in P. Evidently, there is an isomorphism SuboP ∼= (SubP)op, and Theorem 3.1 yields
the following.

Theorem 3.2. For any polyhedron P, SuboP is a Heyting algebra, and a subalgebra of
O (P).

For any formula φ and polyhedron P, say that P ⊨ φ if and only if SuboP ⊨ φ as a
Heyting algebra. Call an intermediate logic polyhedrally-complete if it is the logic of
some class of polyhedra. In [Bez+18], it is shown that IPC is polyhedrally-complete,
being the logic of all polyhedra, while BDn is the logic of all polyhedra of dimension
at most n. It is also shown that all polyhedrally-complete logics must have the finite
model property; cf. Theorem 3.7 below.

3.2 Triangulation subalgebras
Let Σ be a triangulation of the polyhedron P. Then Σ ⊆ SubP. Let Pc(Σ) be the
sublattice of SubP generated by Σ.

Lemma 3.3. Pc(Σ) is a co-Heyting subalgebra of SubP.

Proof. See [Bez+18, Lemma 3.6].

Call any algebra of the form Pc(Σ) a triangulation subalgebra.
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Lemma 3.4. Every finitely-generated subalgebra of SubP is contained in some triangula-
tion algebra.

Proof. See [Bez+18, Lemma 3.2]. Essentially, this is the content of the Triangulation
Lemma 2.12.

Turning now to the dual, every triangulation Σ of a polyhedron P gives rise to
a Heyting subalgebra Po(Σ) of SuboP, which we also call a triangulation subalgebra,
generated by the complements of the simplices in Σ.

Corollary 3.5. For any polyhedron P, SuboP is a locally-finite Heyting algebra.

Proof. This follows from the dual of Lemma 3.4 and the fact that triangulation subal-
gebras are finite.

The algebra Po(Σ), though not necessarily easy to visualise geometrically, is in fact
precisely the algebra of upsets of the poset Σ.

Lemma 3.6. The map:

γ↑ : UpΣ→ Po(Σ)

U 7→
⋃
σ∈U

Relint(σ)

is an isomorphism of Heyting algebras.

Proof. See [Bez+18, Lemma 4.3].

As a consequence of the preceding results, we have:

Theorem 3.7. The logic of a polyhedron is the logic of its triangulations.

The following additional facts about triangulation algebras will be useful later on.

Lemma 3.8. (1) Triangulation algebras determine their corresponding triangulations.
That is, for any two triangulations Σ and ∆, if Po(Σ) = Po(∆) then Σ=∆.

(2) If Σ and ∆ are triangulations which are isomorphic as posets then Po(Σ)∼= Po(∆).

(3) If ∆ refines Σ, then Po(Σ) is a subalgebra of Po(∆).

Proof. (1) It follows from conditions (a) and (b) on simplicial complexes that Pc(Σ)
consists exactly of the unions of elements of Σ, and similarly for ∆. Assume
Po(Σ) = Po(∆), so that Pc(Σ) = Pc(∆), and take σ ∈ Σ. Then σ ∈ Pc(∆), so
σ =
⋃

S for some S ⊆∆, and similarly each τ ∈ S is τ=
⋃

Tτ for some Tτ ⊆ Σ.
Hence:

σ =
⋃⋃

τ∈S

Tτ

But then by condition (b) on Σ, every ρ ∈ ⋃τ∈S Tτ must either be equal to σ
or be a proper face of σ. Since Relintσ contains no proper face of σ, we must
have σ ∈ Tτ for some τ ∈ S. But then σ ⊆ τ ⊆ σ, and so σ ∈∆. Applying this
argument also in the other direction, we get that Σ=∆.

(2) This follows from Lemma 3.6.

(3) By Lemma 2.13, every σ ∈ Σ is the union of simplices in ∆. Whence Σ ⊆
Pc(∆). Therefore, by definition Pc(Σ) ⊆ Pc(∆). From this is follows that Po(Σ) ⊆
Po(∆).

10



F N (F)

Figure 3: An example showing that the Framesfin(SL) is not closed under N , even
though SL is polyhedrally-complete.

3.3 PL homeomorphisms
Let P ⊆ Rm and Q ⊆ Rn be polyhedra. A continuous function f : P → Q is piecewise-
linear, or is a PL map, if the graph of f is a polyhedron in the product space Rm ×Rn.
A PL homeomorphism is a PL map that is a homeomorphism.

Proposition 3.9. The inverse of a PL homeomorphism is a PL homeomorphism.

Proof. See [RS72, p. 6].

Proposition 3.10. If P and Q are PL homeomorphic then SuboQ and SuboP are iso-
morphic Heyting algebras, and Logic(P) = Logic(Q).

Proof. It is obvious that any homeomorphism between P and Q induces an isomorph-
ism of their open-set lattices by taking inverse images. Since the inverse image of a
subpolyhedron under a PL homeomorphism is again a subpolyhedron [RS72, Corol-
lary 2.5, p. 13], and in light of Proposition 3.9, we see that when the homeomorphism
is PL this isomorphism of open-set lattices descends to an isomorphism of distributive
lattices between SuboP and SuboQ. This implies that SuboP and SuboQ are isomorphic
as Heyting algebras, too, because the Heyting implication is uniquely determined by
the underlying lattice structure, and the proof is complete.

4 The Nerve Criterion
Given a poset F , its nerve, N (F), is the collection of finite non-empty chains in F
ordered by inclusion. The following theorem is the first main contribution of the paper:

Theorem 4.1 (The Nerve Criterion). A logic is polyhedrally-complete if, and only if, it is
the logic of a class of finite posets closed under the nerve operator N .

The utility of the Nerve Criterion is that it transforms logico-geometric questions
into questions about finite posets, to which finite combinatorial methods are applicable.
Remark 4.2. We cannot strengthen the left-to-right direction to the following. “If a
logic L is polyhedrally-complete then Framesfin(L ) is closed under the nerve operator
N ”. By Corollary 6.16 below Scott’s Logic SL is polyhedrally-complete. However
Framesfin(SL) contains the frame F given in Figure 3. As can be seen there, the nerve
N (F) does not validate SL, since there is an up-reduction N (F) ◦→ . Using the
terminology introduced in Section 6, the problem is that while F is (2 ·1)-connected, it
is not (2 · 1)-diamond-connected.

Achieving a proof of the Nerve Criterion will require considerable work with rational
triangulations and their subdivisions. We next state the key intermediate result to
be obtained. Let A be a triangulation subalgebra of SuboP, for some polyhedron P.
By Lemma 3.8 (1), there is a unique triangulation Σ of P such that A = Po(Σ). For

11



any k ∈ N, let A(k) := Po(Σ(k)), where Σ(k) is the k-th derived subdivision of Σ (see
Section 2.7).

Theorem 4.3. Let P be a polyhedron, and let A be any triangulation subalgebra of SuboP.
For any finitely-generated subalgebra B of SuboP, there is k ∈ N such that B is isomorphic
to a subalgebra of A(k).

Sections 4.1–4.4 will be devoted to proving Theorem 4.3. The proof of the Nerve
Criterion is completed in Section 4.6.

4.1 Rational polyhedra and unimodular triangulations
The geometric intuition behind Theorem 4.3 is that any triangulation can be approxim-
ated from any other by taking iterated barycentric subdivisions. One difficulty with
spelling out such an intuition is that if we start with a triangulation Σ on vertices with
irrational coordinates, and try to approximate it using the iterated barycentric subdi-
visions of a triangulation on vertices with rational coordinates, the approximations
can never quite capture (a refinement of) Σ. The approach taken here is effectively
to show that it suffices to restrict attention to the rational case. In order to make this
idea precise, we need tools on rational triangulations that go beyond the standard
polyhedral topology handbooks, which typically deal with the real case only. For these
tools we mainly use [Mun11] as a background reference.

A polytope in Rn is rational if it may be written as the convex hull of finitely many
points in Qn ⊆ Rn. A polyhedron in Rn is rational if it may be written as a union of a
finite collection of rational polytopes. A simplicial complex Σ is rational if it consists of
rational simplices. Note that when this is the case, |Σ| is a rational polyhedron.

For any x ∈ Qn ⊆ Rn, there is a unique way to write out x in coordinates as
x = ( p1

q1
, . . . , pn

qn
) such that for each i, we have pi , qi ∈ Z coprime. The denominator of

x is defined:
Den(x) := lcm{q1, . . . , qn}

Thus, Den(x) = 1 if and only if x has integer coordinates. Letting q = Den(x), the
homogeneous correspondent of x is defined to be the integer vector:

ex :=
�

qp1

q1
, . . . ,

qpn

qn
, q
�

A rational d-simplex σ = x0 · · · xd is unimodular if there is an (n+1)×(n+1)matrix
with integer entries whose first d + 1 columns are ex0, . . . , exd , and whose determinant
is ±1. This is equivalent to requiring that the set {ex0, . . . , exd} can be completed to a
Z-module basis of Zd+1. A simplicial complex is unimodular if each one of its simplices
is unimodular.

4.2 Farey subdivisions
Proposition 4.4. Given a rational simplex σ with vertices x0, . . . , xd ∈Qn ⊆ Rn, there is
a unique m ∈Qn such that em=∑di=0 ex i . Moreover, m ∈ Relintσ.

Proof. Let Hn+1 ⊆ Rn+1 be the hyperplane specified by:

Hn+1 := {(x1, . . . , xn+1) ∈ Rn+1 | xn+1 = 1}
IdentifyQn with the set of rational points of Hn+1 via the map (q1, . . . , qn) 7→ (q1, . . . , qn, 1).
Under this identification, em lies in the rational cone:

¨
d∑

i=0

ciex i | ci ∈ R, ci ⩾ 0

«

A routine computation then proves the geometrically evident fact that m is the point of
intersection of the line spanned in Rn+1 by the vector em, with the hyperplane Hn+1;
from which the result follows.
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The element m ∈Qn in Proposition 4.4 is called the Farey mediant of (the vertices of)
the simplex σ. Note that when d = 0, i.e. when σ is a vertex of Σ, then m coincides
with the vertex σ. Also observe that the Farey mediant and the barycentre of σ are in
general distinct, though both lie in Relintσ.

We can now define a specific type of stellar subdivision based on Farey mediants, cf.
[Mun11, §5.1, p. 55]. Let Σ be a simplicial complex, let σ ∈ Σ, and let m be the Farey
mediant of σ. The elementary Farey subdivision of Σ at m is the elementary stellar
subdivision of Σ at m. In general, the triangulation ∆ is a Farey subdivision of Σ if it is
obtained from the latter via finitely many successive elementary Farey subdivisions.

At the combinatorial level, Farey and barycentric subdivisions are indiscernible:

Lemma 4.5. Let Σ,∆ be simplicial complexes with Σ rational, assume that γ: Σ→∆
is an isomorphism of Σ and ∆ as posets, let σ ∈ Σ, and let m be the Farey mediant
of σ. Then the elementary Farey subdivision of Σ at m and the elementary barycentric
subdivision of ∆ at the barycentre of γ(σ) are isomorphic as posets.

Proof. Indeed, at the level of posets, elementary Farey subdivision and elementary
barycentric subdivision are the same operation, as direct inspection of the definitions
confirms. For further details see also [Ale30, §III].

However, going beyond the combinatorial level, the construction of universal
approximations of arbitrary rational polyhedra does require Farey subdivisions and
cannot be done with barycentric ones. This is made precise in the following fundamental
fact of rational polyhedral geometry.

Lemma 4.6 (The De Concini-Procesi Lemma). Let P be a rational polyhedron, and let
Σ be a unimodular triangulation of P. There exists a sequence (Σi)i∈N of unimodular
triangulations of P with Σ0 = Σ such that:

(a) For each i ∈ N, Σi+1 is an elementary Farey subdivision of Σi , and

(b) For any rational polyhedron Q ⊆ P, there is i ∈ N such that Σi triangulates Q.

Proof. See [Mun11, Theorem 5.3, p. 57].

4.3 From R to Q
To deploy the power of Lemma 4.6, we need to relate general polyhedra to rational
polyhedra, and general triangulations to unimodular ones.

Lemma 4.7. Let P be a polyhedron, and let Σ be a triangulation of P. There exist an
integer n ∈ N, a rational polyhedron Q ⊆ Rn, and a unimodular triangulation ∆ of Q
such that P and Q are PL-homeomorphic via a map that induces an isomorphism of Σ
and ∆ as posets.

Proof. This is a standard argument. Fix a bijection β from the vertices of Σ to the
standard basis of Rn, where n is the number of vertices in Σ. Take a simplex σ =
x0 · · · xd in Σ. Note that the points β(x0), . . . ,β(xd) are affinely independent; let α(σ)
be the d-simplex spanned by their convex hull: α(σ) := Conv{β(x0), . . . ,β(xd)}. Since
the vertices of α(σ) are standard basis elements, α(σ) is a unimodular simplex by
definition. Let fσ : σ→ α(σ) be the linear map determined by fσ(x i) = β(x i) for each
i, and let gσ : α(σ)→ σ be its inverse, determined by gσ(β(x i)) = x i .

Now, let Q :=
⋃
σ∈Σ α(σ). For any simplices σ ≼ τ, the map fσ agrees with fτ on σ.

Hence we may glue these maps together to form a map f : P →Q, i.e. f (x) = fσ(x),
where σ is any simplex of Σ containing x . Similarly, we may glue together the maps
gσ for σ ∈ Σ to form an inverse to f . By definition f is a PL homeomorphism. Finally,
note that ∆ := {α(σ) | σ ∈ Σ} is a triangulation of Q, and that f induces the poset
isomorphism σ 7→ α(σ) between Σ and ∆.

Lemma 4.8. Let Σ be a unimodular triangulation of the rational polyhedron P, and
suppose Σ′ is a Farey subdivision of Σ. There is a triangulation∆ of P which is isomorphic
as a poset to Σ′, and k ∈ N such that Σ(k) refines ∆.
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Proof. The proof works by replacing each elementary Farey subdivision by an element-
ary barycentric subdivision. We induct on the number m ∈ N>0 of elementary Farey
subdivisions needed to obtain Σ′ from Σ. If m = 1, let σ be the simplex of Σ being
subdivided at its Farey mediant. Then the first barycentric subdivision Σ(1) of Σ refines
the elementary barycentric subdivision Σ∗ of Σ at the barycentre of σ. By Lemma 4.5,
Σ∗ and Σ′ are isomorphic.

For the induction step, suppose m> 1, and write (Σi)mi=0 for the finite sequence of
triangulations connecting Σ= Σ0 to Σ′ = Σm through elementary Farey subdivisions.
By the induction hypothesis, there is k ∈ N such that Σ(k) refines a triangulation ∆
isomorphic to Σm−1; let us fix one such isomorphism γ. Let σ be the d-simplex of Σm−1

that must be subdivided through its Farey mediant in order to obtain Σm. Let further
δ be the simplex of ∆ that corresponds to σ through the isomorphism γ. Since the
d-simplices are exactly the height-d elements of ∆, we get that δ is a d-simplex. Then
Σ(k+1) refines ∆∗, the latter denoting the elementary barycentric subdivision of ∆ at
the barycentre of δ. But ∆ is isomorphic to Σm−1, and therefore by Lemma 4.5, ∆∗ is
isomorphic to Σm.

Finally, we shall need the non-trivial fact that arbitrary triangulations of a rational
polyhedron realise no more combinatorial types than its rational triangulations; this is
due to Meurig Beynon:

Lemma 4.9 (Beynon’s Lemma). Let P be a rational polyhedron, and let Σ be a triangu-
lation of P. There exists a rational triangulation of P which is isomorphic as a poset to
Σ.

Proof. This is the main result of [Bey77].

4.4 End of proof of Theorem 4.3
Proof of Theorem 4.3. Let Σ be the triangulation of P such that A = Po(Σ). Using
Lemma 4.7, Lemma 3.8 (2) and Proposition 3.10 we may assume without loss of
generality that P is rational andΣ is unimodular. By Lemma 3.4, there is a triangulation
∆ of P such that B is isomorphic to a subalgebra of Po(∆). By Beynon’s Lemma 4.9
and Lemma 3.8 (2), we may assume that ∆ is rational (and hence each member of
B is, too). By the De Concini-Procesi Lemma 4.6, there is a Farey subdivision Σ′ of Σ
that refines ∆. Therefore by Lemma 3.8 (3), B is isomorphic to a subalgebra of Po(Σ′).
By Lemma 4.8, there is k ∈ N such that Σ(k) refines Σ′ up to isomorphism. Hence by
Lemma 3.8 (3) again, A(k) contains a subalgebra isomorphic to Po(Σ′), and therefore
also a subalgebra isomorphic to B. This completes the proof.

4.5 Nerves, subdivisions, and geometric realisations
The reason that Theorem 4.3 is relevant to the Nerve Criterion is the following classical
connection between nerves of posets and derived subdivisions, which is deeply rooted
in the work of Pavel S. Alexandrov.

Proposition 4.10. Let Σ be a simplicial complex, regarded as a poset under inclusion of
faces. Then the barycentric subdivision of Σ is isomorphic as a poset to the nerve of Σ:

SdΣ∼=N (Σ)
Proof. The proof flows readily from the definitions, and is in any case available from
multiple sources; see e.g. [Ale98, Ch. IV, §2.2] (Alexandrov’s own textbook treatment),
or [Mau80, Proposition 2.5.10, p. 51], or [RW12, §3]. Details are left to the reader.

Corollary 4.11. For P a polyhedron and Σ a triangulation of P we have:

Logic(P) = Logic(N k(Σ) | k ∈ N)
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Proof. Indeed:

Logic(P) = Logic(SuboP)

= Logic(A | A finitely-generated subalgebra of SuboP) ([CZ97, Ch. 7])

= Logic(Po(Σ
(k)) | k ∈ N) (Theorem 4.3)

= Logic(Σ(k) | k ∈ N) (as above)

= Logic(N k(Σ) | k ∈ N) (Proposition 4.10)

In order to complete a proof of the Nerve Criterion, we will also need to use
geometric realisations of finite posets via nerves, another classical tool. Let F =
{x1, . . . , xm} be a finite poset, and let e1, . . . , em be the standard basis vectors of Rm.
The set:

∇F := {Conv{ei1 , . . . , eik} | {x i1 , . . . , x ik} ∈ N (F)}
can be proved to be a triangulation by elementary arguments; its underlying polyhedron
|∇F | is the geometric realisation of F . For us, the key fact about geometric realisations
is:

Lemma 4.12. Let F be a finite poset. The map max: N (F)→ F, which sends a chain to
is maximum element, is a p-morphism, and Logic(|∇F |) ⊆ Logic(F).

Proof. The first statement is easy to verify by direct inspection, and a detailed proof
was already given in [Bez+18, p. 389]. For the second statement, observe first that
∇F and N (F) are isomorphic as posets (under inclusion), by their definitions. Thus,
by Proposition 2.1, the surjective p-morphism ∇F → F yields Logic(∇F) ⊆ Logic(F).
But Up(∇F) is a subalgebra of Subo(|∇(F)|) by Lemma 3.6 together with Lemma 3.3,
so that Logic(|∇F |) ⊆ Logic(∇F) ⊆ Logic(F), as was to be shown.

4.6 End of proof of the Nerve Criterion
Proof of Theorem 4.1, the Nerve Criterion. Assume that L is the logic of a class C of
polyhedra. For each P ∈ C fix a triangulation ΣP , and let:

C∗ := {N k(ΣP) | P ∈ C and k ∈ N}
Then:

Logic(C∗) =
⋂
P∈C

Logic(N k(ΣP) | k ∈ N)

=
⋂
p∈C

Logic(P) (Corollary 4.11)

= Logic(C) =L
Conversely, assume that L = Logic(D), where D is a class of finite frames closed under
N . Let:

D∗ := {|∇(F)|: F ∈ D}
where |∇(F)| is the geometric realisation of F as in Section 4.5. We will show that
L = Logic(D∗). First suppose that L ⊬ φ, so that F ⊭ φ for some F ∈ D. Then we
have that |∇(F)| ⊭ φ, so that Logic(D∗) ⊬ φ. Conversely, suppose that Logic(D∗) ⊬ φ,
so that |∇(F)| ⊭ φ for some F ∈ D. By definition ∇(F) is a triangulation of |∇(F)|,
hence by Corollary 4.11 there is k ∈ N such that ∇(F)(k) ⊭ φ. But ∇(F) ∼=N (F) by
definition, and so by Proposition 4.10 we get N k+1(F)∼=∇(F)(k). Thus, as D is closed
under N , we get that L ⊬ φ.
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5 Polyhedrally-incomplete logics
In this section, we apply the Nerve Criterion to show that every stable logic other than
IPC is polyhedrally-incomplete. A logic L is stable if Frames⊥(L ) is closed under
monotone images. (We point out that the original definition of [BB17, Def. 6.6] used
Esakia spaces. However, it can be shown that these definitions are equivalent [Ili18,
Theorem 3.3.17].)

Proposition 5.1. The following well-known logics2 are all stable.

(i) The logic of weak excluded middle, KC= IPC+ (¬p ∨¬¬p).

(ii) Gödel-Dummett logic, LC= IPC+ (p→ q)∨ (q→ p).

(iii) LCn = LC+BDn.

(iv) The logic of bounded width n, BWn = IPC+
∨n

i=0(pi →
∨

j ̸=i p j).

(v) The logic of bounded top width n, defined:

BTWn :=
∧

0⩽i< j⩽n

¬(¬pi ∧¬p j)→
n∨

i=0

(¬pi →
∨
j ̸=i

¬p j)

(vi) The logic of bounded cardinality n, defined:

BCn := p0 ∨ (p0→ p1)∨ ((p0 ∧ p1)→ p2)∨ · · · ∨ ((p0 ∧ · · · ∧ pn−1)→ pn)

Proof. See [BB17, Theorem 7.3].

In fact:

Theorem 5.2. There are continuum-many stable logics.

Proof. See [BB17, Theorem 6.13].

Theorem 5.3. Every stable logic has the finite model property.

Proof. See [BB17, Theorem 6.8].

However, Theorem 5.3 notwithstanding:

Theorem 5.4. If L is a stable logic other than IPC, and Frames(L ) contains a frame of
height at least 2, then L is not polyhedrally-complete.

Proof. Let L be a polyhedrally-complete stable logic of height at least 2. We show
that L = IPC.

By the Nerve Criterion 4.1, there is a class C of finite frames closed under N such
that L = Logic(C). Since Frames(L ) contains a frame of height at least 2, we must
have L ⊬ BD1. Since L = Logic(C), there is therefore F ∈ C such that height(F)⩾ 2.
This means there are x0, x1, x2 ∈ F with x0 < x1 < x2. Without loss of generality, we
may assume that x2 is a top element and that x1 is an immediate predecessor of x2

and x0 an immediate predecessor of x1. Now, by assumption N k(F) ∈ C for every
k ∈ N. Let us examine the structure of these frames a little. Note that {x0, x1, x2} is a
chain. Let X be a maximal chain in ⇓(x0). We have the following relations occurring
in N (F).

X ∪ {x0}

X ∪ {x0, x1} X ∪ {x0, x2}

X ∪ {x0, x1, x2}

2For more information on these logics see [CZ97, Table 4.1, p. 112].

16



Moreover, by assumptions on x0, x1, x2 and X , we have that X ∪ {x0, x1, x2} is a top
element of N (F), with X ∪ {x0, x1} and X ∪ {x0, x2} immediate predecessors, and
X ∪ {x0} an immediate predecessor of those. So, we may apply this argument once
more, to obtain the following structure sitting at the top of N 2(F).

Iterating, we see that at the top of N k(F) we have the following structure.

z

· · ·
· · ·

2k−1 top nodes

Let z be the base element of this structure, as indicated. Now, take k ∈ N and let
{t1, . . . , tm} be the top nodes of N k(F) produced by this construction, where m = 2k−1.
By Proposition 2.1, ↑(z) ∈ Frames⊥(L ).

Let now G be an arbitrary poset with up to m elements {y1, . . . , ym} (possibly with
duplicates) plus a root ⊥. Define f : ↑(z)→ G as follows.

x 7→
§

yi if x = t i ,
⊥ otherwise.

Then f is monotonic. SinceL is stable, this means that G ∈ Frames⊥(L ). Thus (since,
by Proposition 2.6 and Corollary 2.2, IPC is the logic of finite rooted frames) we get
that L = IPC.

6 Polyhedrally-complete logics: starlike complete-
ness
In this section, we use the Nerve Criterion to establish a class of logics which are
polyhedrally-complete. This constitutes the second main result of the paper.

6.1 Starlike trees
A finite poset T is a tree if it has a root ⊥, and every other x ∈ T \ {⊥} has exactly one
immediate predecessor. A branch in T is a maximal chain. Say that T is a starlike tree
if every x ∈ T \ {⊥} has at most one immediate successor. (The terminology ‘starlike’
comes from graph theory, see [WS79].) A starlike tree is determined by the multiset of
its branch heights, which motivates the following notation.

Let n1, . . . , nk, m1, . . . , mk ∈ N>0, with n1, . . . , nk distinct. Then let us define T =
〈nm1

1 · · ·nmk
k 〉 as the starlike tree, uniquely determined to within an isomorphism, with

the property that if we remove the root ⊥ we are left with exactly, for each i, mi chains
of length ni . Let 〈ε〉= •, the singleton poset. Call α= nm1

1 · · ·nmk
k (or ε) the signature

of T . We will always assume that n1 > n2 > · · ·> nk. See Figure 4 for some examples
of starlike trees together with their signatures. We will sometimes write 10 for ε.
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〈2〉 〈13〉 〈3 · 12〉 〈32 · 2 · 1〉

Figure 4: Some examples of starlike trees

The length of a signature α = nm1
1 · · ·nmk

k is defined as |α| := m1 + · · ·+mk. Let
|ε| := 0. For j ⩽ |α|, the jth height, α( j), is ni , where:

m1 + · · ·+mi−1 ⩽ j < m1 + · · ·+mi

Let α and β be signatures. Say that α⩽ β if |α|⩽ |β | and for every j ⩽ |α| we have
α( j)⩽ β( j). Considering the examples in Figure 4, we have the following relations:

13 < 3 · 12 < 32 · 2 · 1, 2< 3 · 12

Note that if α= nm1
1 · · ·nmk

k , we have α⩽ β if and only if |α|⩽ |β | and for every i ⩽ k,
we have:

β(m1 + · · ·+mi)⩾ ni

Proposition 6.1. If α⩽ β then there is a p-morphism 〈β〉 → 〈α〉.
Proof. We can realise 〈α〉 as a downwards-closed subset of 〈β〉. The p-morphism
f : 〈α〉 → 〈β〉 is then defined as follows. First, f is the identity on 〈α〉. Second, for any
branch of 〈β〉 which contains a branch of 〈α〉, we let f send any remaining elements to
the maximum of the branch of 〈α〉. Finally, any remaining elements of 〈β〉 are mapped
to the maximum element of some fixed branch in 〈α〉. A routine calculation shows that
f is a p-morphism.

Note that the starlike tree 〈k〉 is the chain on k + 1 elements; we will use this
notation for chains from now on. We will write the signature as k1, to disambiguate it
from k as a number. For k ∈ N>0, the k-fork is the starlike tree 〈1k〉.

6.2 Starlike logics
We are now in a position to define the principal class of logics that will be investigated
in this section. Let S := {α signature | α ̸= 12}. Take Λ ⊆ S (possibly infinite). The
starlike logic SFL(Λ) based on Λ is the logic axiomatised by IPC plus χ(〈α〉) for each
α ∈ Λ. Write SFL(α1, . . . ,αk) for SFL({α1, . . . ,αk}).
Remark 6.2. For an explanation as to why the difork 〈12〉 is omitted, see Proposition 6.22
below and the preceding discussion.

Proposition 6.3. SL= SFL(2 · 1). So Scott’s Logic is a starlike logic.

Proof. See [CZ97, §9 and Table 9.7, p. 317].

Let us examine what SFL(Λ) ‘means’ in terms of its class of frames. The formula
χ(〈α〉) turns out to express a kind of connectedness property. We make this precise
using the following definitions.

Let F be a finite poset. A path in F is a sequence p = x0 · · · xk of elements of F such
that for each i we have x i < x i+1 or x i > x i+1. Write p : x0⇝ xk. The path p is closed
if x0 = xk. The poset F is path-connected if between any two points there is a path.

Lemma 6.4. A poset is path-connected if, and only if, it is connected as a topological
space.

Proof. See [BG11, Lemma 3.4].
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A connected component of F is a subposet U ⊆ F which is connected as a topological
subspace and is such that there is no connected V with U ⊂ V .

Lemma 6.5. Let F be a poset.

(1) The connected components of F partition F.

(2) The connected components of F are downwards-closed and upwards-closed.

Proof. These results follow straightforwardly from the fact that by Lemma 6.4 the
connected components are exactly the equivalence classes under the relation ‘there is
a path from x to y ’.

Define ConComps(F) to be the set of connected components of F . The connectedness
type ConType(F) of F is the signature nm1

1 · · ·nmk
k such that ConComps(F) contains for

each i exactly mi sets of height ni − 1, and nothing else. Let ConType(∅) := ε.
Remark 6.6. Note that when F is connected, ConType(F) = n+1, where n = height(F).

Let α > ε be a signature. An α-partition of F is an open partition in which the
number and heights of the connected components are specified by α. In other words,
it is a partition:

F = C1 ⊔ · · · ⊔ C|α|
into open sets such that C j has height at least α( j) − 1. For notational uniformity,
say that F has an ε-partition if F = ∅. The following lemma is a straightforward
consequence of the definitions.

Lemma 6.7. A finite poset F has an α-partition if and only if α⩽ ConType(F).

Corollary 6.8. When F is connected, F has an α-partition if and only if α= k1, where
k ⩽ height(F) + 1.3

Let F be a poset and α be a signature. F is α-connected if there is no x ∈ F such
that there is an α-partition of ⇑(x). By Lemma 6.7, this is equivalent to requiring that
α ̸⩽ ConType(⇑(x)) for each x ∈ F .

We can now express the meaning of χ(〈α〉) on frames.

Theorem 6.9. For F a finite poset and α any signature, F ⊨ χ(〈α〉) if and only if F is
α-connected.

To prove this result, we make use of the following slight strengthening of The-
orem 2.4. Let F and Q be finite posets, and assume that Q has root ⊥. An up-reduction
f : F ◦→Q is pointed with apex x ∈ F if we have dom( f ) = ↑(x) and f −1{⊥}= {x}.
Lemma 6.10. If there is an up-reduction F ◦→Q then there is a pointed up-reduction
F ◦→Q.

Proof. Take f : F ◦→ Q, and choose x ∈ f −1{⊥} maximal. Then f |↑(x) is still a p-
morphism, and is moreover a pointed up-reduction F ◦→Q.

Corollary 6.11. Let F,Q be finite posets, with Q rooted. Then F ⊨ χ(Q) if and only if
there is no pointed up-reduction F ◦→Q.

Proof of Theorem 6.9. Assume that F ⊭ χ(〈α〉). Then by Corollary 6.11 there is a
pointed up-reduction f : F → 〈α〉 with apex x . This means that f −1[〈α〉 \ {⊥}] = ⇑(x).
Let C j be the preimage of the jth branch of 〈α〉 \ {⊥} under f , for each j ⩽ |α|. Since
f is a p-morphism, C j is upwards-closed. Note that the C j ’s are disjoint and hence they
form an open partition of ⇑(x). Now, since C j is the preimage of a chain of length α( j),
we can find a chain of the same length inside C j . From this it follows that C j has height
at least α( j)− 1. But then (C j | j ⩽ |α|) is an α-partition of ⇑(x), meaning that F is
not α-connected.

Conversely, assume that F is not α-connected, so that there is x ∈ F and an α-
partition (C j | j ⩽ k) of ⇑(x). For each C j , we have, by definition, that height(C j) ⩾

3Recall that k1 is the signature of length 1 which contains the single value k. The starlike tree 〈k1〉 is the
chain on k+ 1 elements.
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α( j)− 1. Hence by Proposition 2.7 there is a p-morphism f j : C j → 〈α( j)− 1〉. Define
f : ↑(x)→ 〈α〉 as follows.

y 7→
§ ⊥ if y = x ,

f j(y) if y ∈ C j

Then f is a p-morphism, so an up-reduction F ◦→ 〈α〉.
Remark 6.12. In particular it follows that BDn = IPC+χ(〈n+ 1〉). This is just Proposi-
tion 2.7 of course.

The last matter to resolve before moving on to consider the completeness of starlike
logics is their number. For this we make use of Higman’s Lemma. A quasi-well-order is
a preorder which is well-founded and has no infinite antichain. Given a preorder I , let
I<ω be the set of finite sequences of elements of I ordered by (x1, . . . , xn)⩽ (y1, . . . , ym)
if and only if there is f : {1, . . . n} → {1, . . . , m} injective such that for each k ⩽ n we
have xk ⩽ y f (k).

Lemma 6.13 (Higman’s Lemma, [Hig52]). If I is a quasi-well-order then so is I<ω.

Proposition 6.14.

(1) Every starlike logic is finitely axiomatizable.

(2) There are exactly countably-many starlike logics.

Proof. (1) As every starlike logic is axiomatizable by Jankov formulas of starlike
trees, it suffices to show that there is no infinite antichain of starlike trees with
respect to p-morphic reduction. In light of Proposition 6.1, it therefore suffices to
show that there is no infinite antichain of signatures with respect to the ordering
defined on them. Now, we can recast signatures as (monotonic decreasing) finite
sequences of integers. Indeed, the signature α is determined by the sequence
(α(1), . . . ,α(|α|)). In this way, the set of signatures is seen to be a suborder of
ω<ω. Now, (ω,⩽) is clearly a quasi-well-order, and hence by Higman’s Lemma
6.13, so is ω<ω. Thus there is no infinite antichain of signatures, as required.

(2) The result follows from (1) as there are only countably many finitely axiomatiz-
able logics.

6.3 Starlike completeness
The main theorem to be proved in this section is the following.

Theorem 6.15. Every starlike logic is polyhedrally-complete.

As an immediate consequence, we obtain:

Corollary 6.16. Scott’s Logic is polyhedrally-complete.

Remark 6.17. The starlike logic SFL(2 · 1,13) is particularly important geometrically.
In [Ada+20], it is shown that this is the logic of all convex polyhedra.

In order to prove Theorem 6.15, we introduce the following new validity concept
on frames. Let F be a poset and φ be a formula. F nerve-validates φ, notation F ⊨N φ,
if for every k ∈ N we have N k(F) ⊨ φ.

Remark 6.18. Since for every G we have the p-morphism max: N (G) → G (see
Lemma 4.12), by Proposition 2.1 this is equivalent to requiring that N k(F) ⊨ φ for
infinitely-many k ∈ N.

Lemma 6.19. A logic L is polyhedrally-complete if and only if it has the finite model
property and every rooted finite frame of L is the up-reduction of a poset which nerve-
validates L .
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Proof. Assume that L is polyhedrally-complete. Then by the Nerve Criterion 4.1 it
is the logic of a class C of finite frames which is closed under N , and so has the fmp.
Then by Corollary 2.5, every finite rooted frame F of L is the up-reduction of some
F ′ ∈ C. Since C ⊆ Frames(L ) and is closed under N , such an F ′ nerve-validates L .

Conversely, let C be the class of all finite rooted frames which nerve-validate L .
Note that C is closed under N . Further, clearly L ⊆ Logic(C). To see the reverse
inclusion, suppose that L ⊬ φ. Since L has the fmp, there is F ∈ Frames⊥,fin(L ) such
that F ⊭ φ. By assumption, F is the up-reduction of F ′ ∈ C. Then by Proposition 2.1,
F ′ ⊭ φ, meaning that Logic(C) ⊬ φ.

Lemma 6.20. Every starlike logic has the finite model property.

Proof. In [Zak93, Corollary 0.11], Zakharyaschev shows that every logic axiomatised
by the Jankov-Fine formulas of trees has the finite model property.

Now, as every finitely axiomatizable logic with the finite model property is decidable
we obtain from Proposition 6.14(1) and Lemma 6.20 the following.

Corollary 6.21. Every starlike logic is decidable.

With Lemma 6.20, we can now use Lemma 6.19 to produce a proof of Theorem 6.15.
Given a rooted finite frame F of SFL(Λ), we proceed as follows.

(1) We examine what it means for a frame to nerve-validate χ(〈α〉).
(2) We see that it can be assumed that F is graded (a structural property of posets

defined below).

(3) Using this additional structure, we construct a frame F ′ and the p-morphism
F ′→ F , with the property that F ′ ⊨N SFL(Λ)

The reader will have noticed that the difork 〈12〉 is omitted from the definition of
a starlike logic, and consequently from Theorem 6.15. In fact, polyhedral semantics
is quite fond of this tree: when we take it as a forbidden configuration, the resulting
landscape of polyhedrally-complete logics is as sparse as possible, as is shown below.

Proposition 6.22. Let L be a polyhedrally-complete logic containing SFL(12). Then
L = CPC, the maximum logic.

Proof. Suppose for a contradiction that L is a polyhedrally-complete logic containing
SFL(12) other than CPC. By the Nerve Criterion 4.1,L = Logic(C) where C is a class of
finite posets closed underN . SinceL ≠ CPC, there must be F ∈ C with height(F)⩾ 1.
This means that F has a chain x0 < x1. As in the proof of Theorem 5.4, we may assume
that x1 is a top element of F and that x0 is an immediate predecessor of x1. Take X a
maximal chain in ⇓(x0). Then, as in that proof, we obtain the following structure lying
at the top of N (F).

X ∪ {x0}

X ∪ {x0, x1}

X ∪ {x1}
Applying the nerve once more, we obtain the following structure at the top of N 2(F).

Z

Since C is closed under N , we get that N 2(F) ∈ Frames(L ). But ↑(Z) maps p-morph-
ically onto 〈12〉, contradicting that L ⊢ χ(〈12〉). #

We now proceed with the proof of Theorem 6.15.
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6.4 Nerve-validation
While validating χ(〈α〉) corresponds to α-connectedness (as shown in Theorem 6.9),
nerve-validating χ(〈α〉) corresponds to α-nerve-connectedness. Let F be a poset and
x < y in F . The diamond and strict diamond of x and y are defined, respectively:

↕(x , y) := ↑(x)∩ ↓(y)
⇕(x , y) := ↕(x , y) \ {x , y}

A poset F is α-diamond-connected if there are no x < y in F such that there is
an α-partition of ⇕(x , y). The poset F is α-nerve-connected if it is α-connected and
α-diamond-connected.

With a slight conceptual change, α-connectedness and α-diamond-connectedness
can be harmonised as follows. For any poset F , we take a new element∞, and let
F̌ := F ∪ {∞}, where∞ lies above every element of F . Then F is α-nerve-connected
if and only if there are no x < y in F̌ for which there is an α-partition of ⇕(x , y).

The following result shows that α-nerve-connectedness is exactly the notion we
want.

Theorem 6.23. Let F be a finite poset and take α ∈ S . Then F ⊨N χ(〈α〉) if and only if
F is α-nerve-connected.

Proof. Assume that F is not α-nerve-connected with the aim of showing F ⊭N χ(〈α〉).
Choose x < y in F̌ such that ⇕(x , y) has an α-partition. That is, there is an open
partition (C j | j ⩽ |α|) of ⇕(x , y) such that height(C j) = α( j). Choose a chain X ⊆ F
such that:

(i) x , y ∈ X ∪ {∞}, and

(ii) X ∩⇕(x , y) =∅,

which is moreover maximal with respect to these requirements. We will show that
⇑(X )N (F) has an α-partition. Note that by maximality of X , elements Y ∈ ⇑(X )N (F) are
determined by their intersection Y ∩⇕(x , y). For j ⩽ |α|, let:

bC j := {Y ∈ ⇑(X )N (F) | Y ∩ C j ̸=∅}
Take j, l ⩽ |α| distinct. Since both C j and Cl are upwards- and downwards-closed in
⇕(x , y), there is no chain Y ∈ ⇑(X )N (F) such that Y ∩ C j ̸= ∅ and Y ∩ Cl ̸= ∅. This
means that:

(1) bC j and bCl are disjoint.

(2) For any Y ∈ ⇑(X )N (F) we have Y ∈ bC j if and only if Y ∩⇕(x , y) ⊆ C j . Hence each
bC j is upwards- and downwards-closed in ⇑(X )N (F).

Furthermore, since (C j | j ⩽ |α|) covers ⇕(x , y), we get that (bC j | j ⩽ |α|) covers
⇑(X )N (F). Finally, any maximal chain in bC j is a sequence of chains Y0 ⊂ · · · ⊂ Yl such
that |Yi+1 \ Yi |= 1; this then corresponds to a maximal chain in C j . Therefore:

height(bC j) = height(C j)

Ergo (bC j | j ⩽ |α|) is an α-partition of ⇑(X )N (F), meaning thatN (F) is not α-connected.
Then, by Theorem 6.9, N (F) ⊭ χ(〈α〉), hence by definition F ⊭N χ(〈α〉).

For the converse direction, we will show that if F is α-nerve-connected, then so
is N (F), which will give the result by induction (note that α-nerve-connectedness
is stronger than α-connectedness, and hence by Theorem 6.9 if N k(F) is α-nerve-
connected then N k(F) ⊨ χ(〈α〉)). So assume that F is α-nerve-connected. We will
first prove α-connectedness. Take X ∈ N (F) with the aim of showing that ⇑(X )N (F)
has no α-partition.

Firstly, assume that X has more than one ‘gap’; that is, there are distinct w1, w2 ∈
F \ X such that X ∪ {w1} and X ∪ {w2} are still chains, but such that there exists z ∈ X
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...

u1

w1

v1

...

u2

w2

v2

...

X

Figure 5: The set-up when X has more than one gap

with w1 < z < w2. Take Y, Z ∈ ⇑(X )N (F). We will use the two gaps to juggle elements
between the two sets so as to provide a path Y ⇝ Z which never touches X (i.e. lies
in ⇑(X )N (F)). For i ∈ {1, 2}, let ui ∈ X ∩⇓(wi) be greatest and vi ∈ X ∩⇑(wi) be least.
See Figure 5 for a representation of the situation. Now, without loss of generality, we
may assume that Y ∩⇕(u1, v1) ̸=∅ (we may add w1 to Y , noting that w1 ∈ ⇕(u1, v1)).
Similarly, we may assume that Y ∩⇕(u2, v2) ̸=∅, and likewise for Z . We then have the
following path in ⇑(X )N (F) (note that some of the sets along the path may be equal,
but in all cases the path is still there):

Y

Y \ m(u1, v1)

(Y \ m(u1, v1))∪ {w1}

X ∪ {w1}

(Z \ m(u1, v1))∪ {w1}

Z \ m(u1, v1)

Z

Here, the gap ⇕(u2, v2) is used to ensure that Y \⇕(u1, v1) and Z \⇕(u1, v1) are not equal
to X , and the fact that we have v1 ⩽ z ⩽ u2 ensures that all these sets are indeed in
N (F). Hence, ⇑(X )N (F) is path-connected so connected. Therefore, by Corollary 6.8,
it suffices to show that height(⇑(X )N (F))< height(F). But this is immediate from the
definition of N .

Hence we may assume that X has exactly one gap (when X has no gaps, ⇑(X )N (F) =
∅). This means that there are x , y ∈ X with x < y such that X ∩⇕(x , y) =∅ and X is
maximal outside of ⇕(x , y). As before then, elements Y ∈ ⇑(X )N (F) are determined by
their intersection Y ∩⇕(x , y). Suppose that ⇑(X )N (F) has an α-partition (bC j | j ⩽ |α|).
For each j ⩽ |α|, let:

C j :=
⋃ bC j ∩⇕(x , y)

Note that
⋃

j⩽|α| C j = ⇕(x , y). For each j ⩽ |α|, since bC j is downwards-closed, we have
that, for z ∈ ⇕(x , y):

z ∈ C j ⇔ ∃Y ∈ bC j : z ∈ Y ⇔ X ∪ {z} ∈ bC j

This means in particular that the C j ’s are pairwise disjoint. Further, if z ∈ C j and
w ∈ ⇕(x , y) with w< z, then X ∪ {w, z} is a chain, and so as bC j is upwards-closed, we
have X ∪ {w, z} ∈ bC j , meaning that w ∈ C j; similarly when w> z. Whence each C j is
upwards- and downwards-closed. Finally, as above, maximal chains in bC j correspond
to maximal chains in C j of the same length, whence:

height(bC j) = height(C j)
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But then (C j | j ⩽ |α|) is an α-partition of ⇕(x , y), contradicting the fact that F is
α-nerve-connected. #

This shows that N (F) is α-connected. What about α-diamond-connectedness?
In fact we can show this without using any assumptions on F . Take X , Y ∈ N (F)
with X ⊂ Y . We will show that ⇕(X , Y )N (F) has no α-partition. We may assume
that |Y \ X | ⩾ 2, otherwise ⇕(X , Y )N (F) = ∅. Note that this means in particular that
α > 1, since F is α-connected. If |Y \ X | = 2, then ⇕(X , Y )N (F) is the antichain on
two elements, which, since α ̸= 12 by assumption, has no α-partition. So assume
that |Y \ X | ⩾ 3; we will show that in fact ⇕(X , Y )N (F) is connected. Take distinct
Z , W ∈ ⇕(X , Y )N (F). Choose z ∈ Z \ X and w ∈W \ X . Since |Y \ X |⩾ 3, we have that
X ∪ {z, w} ∈ ⇕(X , Y )N (F). Hence the following is a path in ⇕(X , Y )N (F):

Z

X ∪ {z}

X ∪ {z, w}

X ∪ {w}

W

Therefore, ⇕(X , Y )N (F) is connected. Finally, note that:

height(⇕(X , Y )N (F))⩽ height(N (F)) = height(F)

Remark 6.24. Note that the proof shows an interesting property of the formulas χ(〈α〉):
we have F ⊨N χ(〈α〉) if and only if N (F) ⊨ χ(〈α〉). This is not true in general. For
example, formulas expressing bounded width can take many iterations of the nerve
construction to become falsified.

6.5 Graded posets
The next step is to show that we can put F ∈ Frames⊥,fin(SFL(Λ)) into a special form.
The following definition comes from combinatorics (see e.g. [Sta97, p. 99]).

Definition 6.25 (Graded poset). A rank function on a poset F is a map ρ : F → N such
that:

(i) whenever x is minimal in F , we have ρ(x) = 0,

(ii) whenever y is the immediate successor of x , we have ρ(y) = ρ(x) + 1.

If F is non-empty and has a rank function, then it is graded.

The notion of gradedness has a strong visual connection. When a poset is graded,
we can draw it out in well-defined layers such that any element’s immediate successors
lie entirely in the next layer up.

Lemma 6.26. Let F be a finite poset.

(1) F is graded if and only if for every x ∈ F, all maximal chains in ↓(x) have the same
length.

(2) When F is graded, ρ(x) = height(x) for every x ∈ F, and height(F) =maxρ[F].

(3) Rank functions, when they exist, are unique.

Proof. (1) See [Sta97, p. 99]. Assume that F is graded, and take X a maximal chain
in ↓(x) for some x ∈ F . Let k = ρ(x). We will show that |X | = k+ 1. Since X
is a chain, the ranks of each of its elements are distinct. Since X is maximal,
x ∈ X . Suppose for a contradiction that there is j < k such that there is no x ∈ X
of rank j. We may assume that j is minimal with this property. We can’t have
j = 0, since otherwise X wouldn’t contain any minimal element, so wouldn’t be
a maximal chain. Hence, there is y ∈ X with ρ(y) = j − 1. Let z be next in X
after y. Then y has an immediate successor w such that w ⩽ z. By definition,
ρ(w) = j, so w /∈ X . But X ∪ {w} is a chain, contradicting the maximality of X .
#Therefore, |X |= k+ 1.
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Conversely, define ρ : F → N by:

x 7→ height(x)

Let us check that ρ is a rank function. (i) Clearly, when x is minimal, ρ(x) = 0.
(ii) Suppose for a contradiction that there are x , y ∈ F , with y an immediate
successor of x , such that ρ(y) ̸= ρ(x) + 1. First, by definition, ρ(y)> ρ(x), so
we must have ρ(y) > ρ(x) + 1. Choose maximal chains X ⊆ ↓(x), Y ⊆ ↓(y).
Note that by assumption:

|Y |> |X |+ 1

But now, since y is an immediate successor of x , both X ∪{y} and Y are maximal
chains in ↓(y) of different heights. #

(2) This follows from the proof of (1).

(3) This follows from (2).

Corollary 6.27. (1) Every tree is graded.

(2) For any finite poset F, its nerve N (F) is graded, with rank function given by
ρ(X ) = |X | − 1.

Proof. For (2), note that for any X ∈ N (F) we have height(X ) = |X | − 1.

What we will show in the proceeding two subsections is that any frame SFL(Λ)
can be assumed to be graded. In other words, we prove the following ‘gradification’
theorem.

Theorem 6.28. Take Λ ⊆ S and let F be a finite rooted poset such that F ⊨ SFL(Λ).
Then there is a finite graded rooted poset F ′ and a p-morphism f : F ′ → F such that
F ′ ⊨ SFL(Λ).

The proof of the theorem works differently depending on whether we have Scott’s
tree 〈2 · 1〉 present. Theorem 6.29 deals with the case 2 · 1 ∈ Λ, while Theorem 6.33
deals with the case 2 · 1 /∈ Λ.

6.6 Gradification in the presence of Scott’s tree
Let us first consider the gradification theorem in the case 2 · 1 ∈ Λ.

Theorem 6.29. Let Λ ⊆ S be such that 2 ·1 ∈ Λ. Let F be a finite rooted poset such that
F ⊨ SFL(Λ). Then there is a finite graded rooted poset F ′ and a p-morphism f : F ′→ F
such that F ′ ⊨ SFL(Λ).

To begin with, the following lemmas show us that this case is not too complicated.

Lemma 6.30. Take Λ ⊆ S such that 2 · 1 ∈ Λ but n /∈ Λ for any n ∈ N.

(1) If there is no k ∈ N>0 such that 1k ∈ Λ, then SFL(Λ) = SFL(2 · 1).
(2) Otherwise, let k ∈ N>0 be minimal such that 1k ∈ Λ. Then SFL(Λ) = SFL(2 · 1, 1k).

Proof. (1) Take α ∈ Λ. Then by assumption α(1) ⩾ 2, hence, as α ̸= n, we have
2 · 1⩽ α. Then by Proposition 6.1 there is a p-morphism 〈α〉 → 〈2 · 1〉. Hence by
the semantic meaning of Jankov-Fine formulas, Theorem 2.4, we have that any
frame validating χ(〈2 · 1〉) will also validate χ(〈α〉). This means that SFL(Λ) ⊆
SFL(2 · 1). The converse direction is immediate.

(2) Takeα ∈ Λ. Ifα(1)⩾ 2 then by Proposition 6.1 there is a p-morphism 〈α〉 → 〈2·1〉.
Assume that α(1) ̸⩾ 2. Since α ̸= ε, we have α(1) = 1, meaning that α = 1l

for some l ∈ N>0. By assumption k ⩽ l. But then 1k ⩽ α, giving that there is a
p-morphism 〈α〉 → 〈1k〉. It follows that for any α ∈ Λ, 〈α〉 up-reduces to either
〈2 · 1〉 or 〈1k〉. By Theorem 2.4, any frame validating χ(〈2 · 1〉) and χ(〈1k〉) will
also validate χ(〈α〉). This implies that SFL(Λ) ⊆ SFL(2 · 1,1k). The converse
direction is obvious.
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Corollary 6.31. Take Λ ⊆ S such that 2 · 1 ∈ Λ and there is n ∈ N with n ∈ Λ; assume
that n is the minimal such natural number.

(1) If there is no k ∈ N>0 such that 1k ∈ Λ, then SFL(Λ) = SFL(n, 2 · 1).
(2) Otherwise, let k ∈ N>0 be minimal with 1k ∈ Λ. Then SFL(Λ) = SFL(n, 2 · 1,1k).

Proof. This follows from Lemma 6.30 and the fact that when n1 < n2 every frame
validating χ(〈n1〉) also validates χ(〈n2〉).

Using this, the ‘meaning’ of SFL(Λ) can be expressed relatively simply. Note that
this meaning is expressed in terms of the depth of elements x ∈ F . Up until this point
we have mainly been concerned with the height of elements.

Lemma 6.32. Take Λ ⊆ S such that 2 · 1 ∈ Λ, and let F be a finite poset. Let n ∈ N be
minimal such that n ∈ Λ, or∞ if no such signature is present. Similarly, let k ∈ N>0

be minimal with 1k ∈ Λ, or ∞. Then F ⊨ SFL(Λ) if and only if the following three
conditions are satisfied for every x ∈ F.

(i) We have height(F)< n.

(ii) Whenever depth(x) = 1, we have |⇑(x)|< k.

(iii) Whenever depth(x)> 1, the set ⇑(x) is connected.

Proof. By Corollary 6.31 and the fact that F ⊨ χ(〈n〉) if and only if height(F)⩽ n− 1,
it suffices to treat the case n =∞. Now by Lemma 6.30, SFL(Λ) = SFL(2 ·1, 1k) when
k <∞, and SFL(Λ) = SFL(2 · 1) otherwise.

Assume that F ⊨ SFL(Λ). (ii) In the case k <∞, take x ∈ F with depth(x) = 1.
Note that ⇑(x) is an antichain, so ({y} | y ∈ ⇑(x)) is an open partition of ⇑(x). Since
x ⊨ χ(〈1k〉), by Lemma 6.7 and Theorem 6.9 we must have |⇑(x)|< k. (iii) Now take
x ∈ F with depth(x)> 1, and suppose for a contradiction that ⇑(x) is disconnected.
Then we can partition ⇑(x) into disjoint upwards-closed sets U , V . Since depth(x)> 1,
one of U and V (say U) must have height at least 1. But then (U , V ) is a (2 ·1)-partition
of ⇑(x), contradicting that F ⊨ χ(〈2 · 1〉) by Theorem 6.9. #

Conversely, assume that F ⊭ SFL(Λ) We will show that one of (ii) and (iii) is
violated. If F ⊭ χ(〈2 · 1〉), then by Theorem 6.9 there is x ∈ F and a (2 · 1)-partition
(U , V ) of ⇑(x). But then height(U)⩾ 1, meaning that depth(x)> 1, and furthermore
⇑(x) is disconnected, violating (iii). So let us assume that k <∞, that F ⊨ χ(〈2 · 1〉)
but that F ⊭ χ(〈1k〉). Again, we get x ∈ F and a 1k-partition (C1, . . . , Ck) of ⇑(x). We
must have that height(C1) = 0, otherwise (C1, C2 ∪ · · · ∪ Ck) is a (2 · 1)-partition of
⇑(x). Similarly height(Ci) = 0 for every i ⩽ k. This means that depth(x) = 1, and
that |⇑(x)|⩾ k, violating (ii).

Let us turn now to the proof of Theorem 6.29. We first outline the construction
before coming to the full proof.

• We first split F up into its tree unravelling Tree(F) (defined below).

• We then lengthen branches so that every top element has the same height.

• Lastly, we join top nodes of this tree in order to recover any α-connectedness
that we lost.

See Figure 6 for an example of this process.
Given any finite, rooted poset F , its tree unravelling Tree(F) is the set of chains X

in F such that X is maximal in ↓(max(X )), ordered by subset inclusion. Define the
function last: Tree(F)→ F by:

X 7→max(X )

Then Tree(F) is a tree and last is a p-morphism (see [CZ97, Theorem 2.19, p. 32]).
We make use of the following abbreviations. For any poset F , the set of top elements

(i.e. elements of depth 0) in F is denoted by Top(F); let Trunk(F) := F \Top(F).
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F Tree(F) T0 F ′

Figure 6: An example of gradification in the presence of Scott’s tree

Proof of Theorem 6.29. Let n := height(F). We may assume ε /∈ Λ. If 2 ∈ Λ, then by
Remark 6.12, n⩽ 1, so F is already graded. So assume that 2 /∈ Λ.

Start with the tree unravelling T = Tree(F) of F . Form a new tree T0 by replacing
each top node t ∈ Top(T) with a chain of new elements t∗(0), . . . , t∗(mt), where
mt = n− height(t). The relations between these new elements and the rest of T is as
follows:

t∗(0)< · · ·< t∗(mt),

x < t∗(0) ⇔ x < t ∀x ∈ T

Note that in T0 all branches have the same length n + 1. Define the p-morphism
g : T0→ T by:

x 7→
§

x if x ∈ Trunk(T ),
last(t) if x = t∗(i) for some t ∈ Top(T ) and i ⩽ mt

Form F ′ from T0 by identifying, for top nodes t, s ∈ Top(T ), the elements t∗(mt) and
s∗(ms) whenever last(t) = last(s). That is, let F ′ := T0/W , where:

W := {{t∗(mt) | last(t) = u} | u ∈ Top(F)}
Note that we have a p-morphism f = last ◦ g ◦ qW : F ′ → F . Furthermore, F is

clearly finite and rooted. As to gradedness, take x ∈ F ′ with the aim of showing that all
maximal chains in ↓(x) are of the same length, utilising Lemma 6.26. If x ∈ Trunk(F ′),
then ↓(x)F ′ is a linear order. So assume that x ∈ Top(F ′). Then any maximal chain X
in ↓(x) corresponds to a branch of T0, and therefore has length n+ 1.

Let us now use Lemma 6.32 to verify that our construction preserves α-connected-
ness for α ∈ Λ and complete the proof. Let k ∈ N>0 be minimal such that 1k ∈ Λ, or∞
if no such signature is present. For u ∈ Top(F) let bu be the equivalence class of those
elements t∗(mt) such that last(t) = u. Note that by construction, for x ∈ Trunk(T)
and u ∈ Top(F):

x < bu ⇔ last(x)< u (⋆)

We need to check the three conditions of Lemma 6.32.

(i) Note that height(F ′) = height(F).

(ii) For any x ∈ F ′ with depth(x) = 1, either x ∈ Trunk(T) or x = t∗(nt − 1) for
some top node t ∈ T . In the former case, the fact that |⇑(x)|⩽ k follows from (⋆)

and the fact that |⇑(last(x))F |⩽ k. In the latter case we have ⇑(x) =
¦Ùlast(t)
©

.

(iii) Similarly, for any x ∈ F ′ with depth(x) > 1, either x ∈ Trunk(T) or x = t∗(r)
for some top node t ∈ T and r < nt − 1. In the latter case, ⇑(x) is a chain, so
connected. For the former case, it suffices to show that any two top elements
bu,bv ∈ ⇑(x) are connected by a path in ⇑(x). Note that depth(last(x))F > 1.
Now, since F ⊨ χ(〈2 · 1〉), by Lemma 6.32 there is a path u⇝ v in ⇑(last(x))F .
We may assume that this path is of form given in Figure 7 (a), where w0, . . . , wk
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(a)
w0
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w1

a1

· · ·
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(b)
cw0

y0

cw1

y1

· · ·
yk−2

Õwk−1

yk−1

cwk

Figure 7: The form of the paths in ⇑(last(x))F and ⇑(x)F ′

x

F

x

Tree(F)

x

T0

x

F ′

Figure 8: The technique in the proof of Theorem 6.29 does not work in general

are top nodes in F . Using (⋆), this path then translates into a path bu⇝ bv as in
Figure 7 (b), where yi ∈ last−1{ai} ∩ ⇑(x) for each i.

6.7 Gradification without Scott’s tree
Now that the situation 2 · 1 ∈ Λ has been dealt with, let us turn to the case 2 · 1 /∈ Λ.

Theorem 6.33. Let Λ ⊆ S be such that 2 ·1 /∈ Λ. Let F be a finite, rooted poset such that
F ⊨ SFL(Λ). Then there is a finite, graded, rooted poset F ′ and a p-morphism f : F ′→ F
such that F ′ ⊨ SFL(Λ).

Unfortunately, the proof of Theorem 6.29 crucially relied on the fact that the original
frame F was (2 · 1)-connected. Consider for instance the frame F given in Figure 8,
which at x is not (2 · 1)-connected. If we apply the construction to F , we end up
with a frame F ′ in which x sits below two connected components of height 1, that is4,
ConType(⇑(x)F ′) = 22. Hence F ′ is not 22-connected, while F is. Taking 2·1 away from
Λ is a double-edged sword however, since it allows for more complex constructions in
F ′.

The following reusable lemma will come in handy a couple of times.

Lemma 6.34. Let f : F ′→ F be a surjective p-morphism between finite posets, and take
x ∈ F ′. Assume that for any y, z ∈ Succ(x) there is a path y ⇝ z in ⇑(x) whenever there
is a path f (y)⇝ f (z) in ⇑( f (x)). Then:

ConComps(⇑(x)) = { f −1[C] | C ∈ ConComps(⇑( f (x)))}
In particular, if height( f −1[C]) = height(C) for any C ∈ ConComps(⇑( f (x))) then:

ConType(⇑(x)) = ConType(⇑( f (x))
Proof. Note that, since f is a p-morphism and F and F ′ are finite, { f −1[C] | C ∈
ConComps(⇑( f (x)))} is a partition of ⇑(x) into upwards- and downwards-closed sets.
So it suffices to show that f −1[C] is connected for every C ∈ ConComps(⇑( f (x))).
Take y0, z0 ∈ f −1[C]. Since f −1[C] is downwards-closed in ⇑(x), there are y, z ∈
Succ(x)∩ f −1[C] such that y ⩽ y0 and z ⩽ z0. Then f (y), f (z) ∈ C , so by assumption
there is a path f (y)⇝ f (z) in ⇑( f (x)). But then by assumption there is a path y ⇝ z
in ⇑(x), which lies in f −1[C] since the latter is upwards- and downwards-closed. This
yields a path y0⇝ z0.

4Recall that ConComps(F) is the set of connected components of F and that ConType(F) of F is the signature
nm1

1 · · ·n
mk
k such that ConComps(F) contains for each i exactly mi sets of height ni − 1, and nothing else.
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F Tree(F) F ′

Figure 9: An example of gradification in the absence of Scott’s tree.

a0

c0

b0

a1

c1

b1

a2

c2

b2

a3

Figure 10: The relations between the zigzag points in case l = 3.

Let us turn now to the proof of Theorem 6.33. The construction works in two steps
as follows (see Figure 9 for an example).

• Again, we start by splitting F up into its tree unravelling Tree(F).

• Then, in order to connect the frame back up again while ensuring that it remains
graded, we construct ‘zigzag roller-coasters’ connecting top nodes of different
heights.

Proof of Theorem 6.33. As in the proof of Theorem 6.29, we may assume that ε, 1, 2 /∈
Λ.

Start with T = Tree(F). For every two distinct p, q ∈ Top(T) such that last(p) =
last(q) = t, we will build a ‘roller-coaster’ structure Z(p, q), which will furnish a bridge
between p and q. Every such structure Z(p, q) is independent, so that they can all
be added to T at the same time. First note that by Corollary 6.27, T is graded; let
ρ : T → N be its rank function.

Now, take distinct p, q ∈ Top(T) such that last(p) = last(q) = t. Let l := ρ(q)−
ρ(p). By swapping p and q, we may assume that l ⩾ 0. We need to join p to q with a
path which ascends in grade. We do this using a zigzagging path, which consists of
lower points a0, . . . , al , upper points b0, . . . , bl−1 and intermediate points c0, . . . , cl−1.
The relations between these points are as follows (see Figure 10).

ai < ci < bi , ai+1 < bi

Consider p ∧ q (i.e. the intersection of p and q, regarded as chains), and let k :=
ρ(p)−ρ(p ∧ q)− 1. Note that k ⩾ 0 since p and q are incomparable. Moreover, k ⩾ 1
as follows. Suppose for a contradiction that k = 0, so that p is an immediate successor
of p ∧ q. Then last(p) is an immediate successor of last(p ∧ q). But last(q) = last(p),
so we have, as chains:

p = (p ∧ q)∪ {last(p)}= (p ∧ q)∪ {last(q)}= q

contradicting that p and q are distinct. #
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p

q

p ∧ q

Figure 11: The zigzag path and the ladder structure in place.

To ensure that the new poset F ′ is still graded, we need to dangle some scaffolding
down from the zigzag path to p ∧ q. Below each lower point ai we will dangle a chain
of k+ i − 1 points d(i, 1), . . . , d(i, k+ i − 1). The relations are as follows:

d(i, 1)< d(i, 2)< · · ·< d(i, k+ i − 1)< ai

Finally, let Z(p, q) denote the whole structure of the zigzag path plus the dangling
scaffolding. Attach Z(p, q) to T by adding the following relations and closing under
transitivity (see Figure 11).

a0 < p, al < q, ∀i : p ∧ q < d(i, 1)

Let F ′ be the result of adding Z(p, q) to T for every pair p, q, and define the function
f : F ′→ F by:

f (x) :=
§

last(x) if x ∈ T
last(p) if x ∈ Z(p, q) for some p, q

First, let us see that f is a p-morphism. The (Forth) condition follows from the fact
that last is monotonic, and that:

• if x ⩽ y with x ∈ T and y ∈ Z(p, q), then by construction x ⩽ p ∧ q, meaning
that f (x) = last(x)⩽ last(p ∧ q)⩽ last(p) = f (y), and

• if x ⩽ y with x ∈ Z(p, q) and y ∈ T , then by construction y ∈ {p, q}, so that
f (x) = last(p) = f (y).

The (Back) condition follows from the fact that last is open, and that each Z(p, q)
maps to a top node.

Second, for any pair p, q, we can extend the rank function ρ to the new structure
Z(p, q) as follows (as indicated by the heights of the nodes in Figure 11):

ρ(ai) = ρ(p) + i − 1

ρ(bi) = ρ(p) + i + 1

ρ(ci) = ρ(p) + i

ρ(d(i, j)) = ρ(p ∧ q) + j

To see that, thus extended, ρ is still a rank function, it suffices to check that the
newly-ranked Z(p, q) fits into T as a ranked structure. That is, we need to check the
following equations.

ρ(p) = ρ(a0) + 1

ρ(q) = ρ(al) + 1

ρ(d(i, 1)) = ρ(p ∧ q) + 1
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Figure 12: The form of the paths in ⇑(last(x)) and ⇑(x)

But these follow by definition. In this way we see that F ′ is graded.
Finally, it remains to be shown that F ⊨ SFL(Λ). So take x ∈ F . First, whenever

x ∈ Z(p, q) for some p, q, by construction ⇑(x) is α-connected for every signature other
than ε, 12, 2 · 1 and k where k ⩾ height(F) + 1. Hence we may assume that x ∈ T .
Let us use Lemma 6.34. Take y, z ∈ Succ(x) such that there is a path f (y)⇝ f (z) in
⇑(last(x)), with the aim of finding a path y ⇝ z in ⇑(x).

First assume that y ∈ Z(p, q) for some p, q. Then since y ∈ Succ(x) and x ∈ T , by
construction x = p∧q. All of Z(p, q) is connected in ⇑(x), hence there is a path y ⇝ p.
Let p′ ∈ T be the immediate successor of x which lies below p (this exists since T is a
tree). Then we have a path y ⇝ p′ in ⇑(x). With this case thus dealt with, we may
now assume that y ∈ T , and similarly that z ∈ T .

So, we have a path last(y)⇝ last(z). We now proceed in a similar fashion to the
proof of Theorem 6.29. We may assume that the path last(y)⇝ last(z) has the form
in Figure 12 (a), where t0, . . . , tk are top nodes in F . Let u0 := y and uk := z. For each
i ∈ {1, . . . , k− 1}, choose ui ∈ last−1{ai}. For i ∈ {0, . . . , k− 1}, take pi , qi ∈ last−1{t i}
such that ui ⩽ pi and ui+1 ⩽ qi . For each such i, since last(pi) = last(qi), there is a
path pi ⇝ qi which lies in Z(pi , qi), and hence lies in ⇑(x). Compose all these paths as
in Figure 12 to form a path y ⇝ z in ⇑(x) as required.

It now remains to show that if C ∈ ConComps(⇑(last(x))), then height( f −1[C]) =
height(C). First, since f is a p-morphism, height( f −1[C]) ⩾ height(C). Conversely,
let X ⊆ f −1[C] be a maximal chain. Assume X intersects with some Z(p, q). Then we
can replace the part X ∩ (Z(p, q)∪ {p, q}) with the unique maximal chain in ⇑(p ∧ q)T

containing q (this exists since T is a tree). Then by construction this does not decrease
the length of X nor does it move X outside of f −1[C] (since the latter is upwards- and
downwards-closed). Therefore, we may assume that X ⊆ T , so X corresponds to a
chain last[X ] of the same length in C .

Therefore, by Lemma 6.34 we get that ConType(⇑(x)) = ConType(⇑(last(x)).
Applying Lemma 6.7, we have that ⇑(x) has an α-partition if and only if ⇑(last(x))
has an α-partition.

6.8 Nervification
We now find ourselves, having suitably prepared F , in a position to make use of
its additional graded structure. The general method of the final construction, in
which we transform F into a frame which nerve-validates SFL(Λ), is the same as in
Theorem 6.29 and Theorem 6.33. We begin with the tree unravelling Tree(F), perform
some alterations, then rejoin top nodes. A key difference here is that we won’t rejoin
every top node to every other top node whose ‘last’ value is the same. Instead, we
line up all the top nodes mapping to the same element and link each top node to at
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F Tree(F) F ′

Figure 13: An example of nervification, using the graded structure of F

most two other top nodes, which we think of as its neighbours. See Figure 13 for an
example of the construction.

Definition 6.35. Let T be a finite tree. Then for each x ∈ T , we have that ↓(x) is a
chain. For k ⩽ height(x), let x (k) be the element of this chain which has height k. Let
x (−k) be the element which has height height(x)− k.

Definition 6.36. For n ∈ N, let Sn := S \ {1k | k < n}.
Theorem 6.37. Take Λ ⊆ S and let F be a finite, graded, rooted poset of height n
such that F ⊨ SFL(Λ). Then there is a poset F ′ and a p-morphism f : F ′→ F such that
F ′ ⊨ SFL(Λ) and such that F ′ is α-diamond-connected for every α ∈ Sn.

Proof of Theorem 6.37. We may assume that ε, 1 /∈ Λ. Further, if 2 ∈ Λ, then height(F) =
1, so F is already α-diamond-connected for every α ∈ Sn. Hence we may assume that
2 /∈ Λ.

Once more, start with T = Tree(F). Chop off the top nodes: let T ′ := Trunk(T).
For each t ∈ Top(F), we will add a new structure W (t), which lies only above elements
of T ′. Let ρ : F → N be the rank function on F . Note that ρ ◦ last: T → N is the rank
function on T .

Take t ∈ Top(F). Enumerate last−1{t}= {p1, . . . , pm}. For each i ⩽ m− 1, define:

ri := pi ∧ pi+1

li := ρ(last(ri))

ki := ρ(t)−ρ(last(ri))− 1

Note that ki ⩾ 1 just as in the proof of Theorem 6.33. Since F is graded and T is a tree,
we have that:

|⇕(ri , pi)
T |= |⇕(ri , pi+1)

T |= ki

In other words, p(li )i = p(li )i+1 = ri . We will construct a ‘chevron’ structure which joins
p(−1)

i to p(−1)
i+1 . For each i ⩽ m− 1, take new elements a(i, 1), . . . , a(i, ki), and add them

to T ′ using the following relations.

a(i, 1)< · · ·< a(i, ki), ∀ j ⩽ ki : p(l+ j)
i , p(l+ j)

i+1 < a(i, j)

Let W (t) be this new structure (i.e. the chain {a(i, 1)< · · ·< a(i, ki)} in place). See
Figure 14 and Figure 15 for examples of this process of adding chevrons.

The process of adding W (t) is independent for each t ∈ Top(F). Let F ′ be the
result of adding every W (t) to T ′. Define f : F ′→ F by:

f (x) :=
§

last(x) if x ∈ T ′

t if x ∈W (t) for some t ∈ Top(F)

Since we have made sure that each W (t) contains, for each pi ∈ last−1{t}, a node
above p(−1)

i which maps to t, and that all of the new structure maps to a top node, f is
a p-morphism.
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Figure 14: The chevron structure in a case with two branches.
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Figure 15: The chevron structure in a more complex case involving three branches.

Let us see that F ′ ⊨ SFL(Λ). Take x ∈ F ′. If x ∈ W (t) for some t, then ⇑(x)
is either empty or a chain, hence ⇑(x) ⊨ SFL(Λ). So we assume that x ∈ T ′. The
verification is now very similar to that in Theorem 6.33, making use of Lemma 6.34.
Take y, z ∈ Succ(x) such that there is a path f (y)⇝ f (z) in ⇑(last(x)). As in the proof
of Theorem 6.33, by construction of W (t) we may assume that y, z ∈ T ′. Just as in
that proof, we can construct a path y ⇝ z from the path f (y)⇝ f (z), using the fact
that whenever t ∈ ⇑(last(x)) ∩Top(F), any w, v ∈ f −1{t} are connected by a path
in ⇑(x)F ′ (this is how we constructed F ′). It is straightforward then to check that if
C ∈ ConComps(⇑(last(x))) we have height( f −1[C]) = height(C), giving that:

ConType(⇑(x)) = ConType(⇑(last(x)))
To complete the proof, let us see that F ′ is α-diamond-connected for every α ∈ Sn.

Take x , y ∈ F ′ with x < y and consider ⇕(x , y). There are several cases.

(a) Case y ∈ T ′. We have that ⇕(x , y)F
′
= ⇕(x , y)T

′
, which is linearly-ordered since

T ′ is a tree; hence it is connected and of height at most n− 2.

Hence y = a(i, j) for a(i, j) ∈W (t) a new element. Let pi , pi+1, ri , li be as above.

(b) Case x ∈W (t). Note that by construction ⇕(x , y) is linearly-ordered.

(c) Case x = p(l+e)
i for some e. If we have height(⇕(x , y)) = 1, then e = i − 1 and

⇕(x , y) is the antichain on two elements, which is α-connected. Otherwise, by
construction, a(i, j − 1) ∈ ⇕(x , y) which is connected to everything.

(d) Case x = p(l+e)
i+1 for some e. This is symmetric.

(e) Case x = ri . Again, if height(⇕(x , y))) = 1 then j = 1 and ⇕(x , y) is the antichain
on two elements, otherwise a(i, 1) ∈ ⇕(x , y) which is connected to everything.
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(f) Otherwise, x < ri (since T ′ is a tree). Then ri ∈ ⇕(x , y) which is connected to
everything.

6.9 End of Proof of Theorem 6.15
We can now prove our second main result:

Proof of Theorem 6.15. By Lemma 6.19 and Lemma 6.20, we need to show that every
finite, rooted frame of SFL(Λ) is the up-reduction of one which nerve-validates SFL(Λ);
in fact this up-reduction is just a p-morphism. So take such a frame F . We may
assume that F is graded: when we have 2 ·1 ∈ Λ, apply Theorem 6.29, otherwise apply
Theorem 6.33. Then by Theorem 6.37, there is a frame F ′ and a p-morphism f : F ′→ F
such that F ′ is α-nerve-connected for every α ∈ Λ (note that by Remark 6.12 we must
have Λ ⊆ Sn where n = height(F)). Then, by Theorem 6.23, F ′ nerve-validates SFL(Λ),
which completes the proof.
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